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Abstract 

RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the 
progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltrans-
ferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in 
the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene 
to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is 
related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in vari-
ous malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research pro-
gress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss 
its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in 
cancer.
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Introduction
Among posttranscriptional modifications, more than 100 
different types of RNA chemical modifications have been 
identified. N6-methyladenosine (m6A) modifications 
account for approximately 50% of all methylated RNA 
[1] and are one of the most common and abundant inter-
nal modifications [2, 3]. It is found in almost all eukary-
otes and in some bacteria, viruses, yeasts, and plants [4, 
5]. In 1974, the presence of a methyl substituent at N-6 
of adenosine in nucleic acids was first identified in puri-
fied poly (A) RNA fragments [6, 7]. Subsequent studies 
confirmed that it is mainly present in the RRACH motif 
(where R = A/G, H = A/C/U) and is enriched in the 3’ 

untranslated regions (UTRs), near the stop codon, and in 
the internal exon.

m6A methylation is widely present in mRNA, miRNAs, 
and long noncoding RNAs [8–11] and is involved in the 
basic pathophysiological metabolic processes of RNA, 
including splicing, nuclear output, translation, decay, 
folding, and RNA–protein interactions [12–15]. This 
newly identified type of modification plays an important 
role in regulating gene expression, which has become 
known as RNA epigenetics. In human physiology, m6A 
methylation plays a critical role in embryonic stem cell 
differentiation, meiosis, DNA repair, circadian rhythm, 
tissue development, and tumorigenesis [16–19]. Abnor-
malities in m6A methylation result in embryonic devel-
opment disorders, failure of differentiation, neurological 
diseases, and tumorigenesis [20–23].

Functionally, m6A is divided into “writer” [24, 25], 
“eraser” [26], and “reader” [27] (Table  1, Fig.  1). m6A 
modification is a dynamically reversible pathway that 
mainly relies on erasers to encode m6A demethylase 
and remove m6A modifications in RNA molecules. At 
present, the known erasing genes include FTO and 
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Table 1  The functions of m6A enzymes in RNA metabolism

Type Factors Function

Writers METTL3 Catalyzes m6A modification [52]

METTL14 Stabilizes the structure of MTC and recognizes target RNAs [68]

WTAP Contributes to the localization of METTL3-METTL14 heterodimer to the nuclear speckle [49, 70]

VIRMA Recruits the MTC to the special RNA site and interacts with polyadenylation cleavage factors 
CPSF5 and CPSF6 [51]

BM15/15B Recruits METTL3-METTL14 heterodimer to target transcripts [53]

ZC3H13 Bridges WTAP to the mRNA-binding factor Nito [55]

ZCCHC4 Responsible for m6A modification of 28S rRNA [60–62]

METTL16 Catalyzes m6A modification in U6-snRNA and participates in pre-RNA splicing [56, 57]

METTL5 Responsible for m6A modification of 18S rRNA [58, 59]

Erasers FTO Removes m6A modification [29–31]

ALKBH5 Removes m6A modification [31, 58, 110]

ALKBH3 Removes m6A modification [33, 34]

Readers YTHDC1 Impacts mRNA splicing and nuclear export [37]

YTHDC2 Promotes RNA decay and translation [38]

YTHDF1 Enhances the translational rates of its mRNA targets [35]

YTHDF2 Induces mRNA degradation [36]

YTHDF3 Promotes mRNA translation (YTHDF1) and decay (YTHDF2) [39]

IGF2BP1/2/3 Promotes mRNA stability and translation [41]

HNRNPA2B1/C/G Regulates primary miRNA processing, mRNA structure and alternative splicing [44, 45]

eIF3 Promotes mRNA translation [42]

Fig. 1  Molecular composition of the m6A RNA methylation. m6A is installed by “writers” (METTL3/14, WTAP, RBM15/15B, VIRMA, HAKAI, ZC3H13, 
METTL5/16, and ZCCHC4), removed by “erasers” (FTO, ALKBH5, and ALKBH3), and recognized by “readers” (YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, 
HNRNPA2B1/C/G, and eIF3)
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ALKBH5 [28]. FTO can affect the splicing and stability 
of mRNA by regulating m6A modification [29, 30], while 
ALKBH5-mediated demethylation affects the output 
and metabolism of mRNA and the assembly of mRNA 
processing factors in nuclear spots [31].  Both of these 
genes have dual regulatory effects on the occurrence 
and development of tumors.  They catalyze the conver-
sion of m6A to N6-hydroxymethyladenosine (hm6A) and 
hm6A to N6-formyladenosine (f6A) in two steps.  Once 
formed, f6A spontaneously transforms into adenosine 
(A) [32]. In recent years, another demethylation trans-
ferase, AlkB homolog 3 (ALKBH3), has been identified, 
which may have a similar process [33, 34]. The m6A 
“reader” is responsible for identifying m6A methylated 
transcripts and generating functional signals, includ-
ing the YTH domain family of proteins (YTHDC1/2, 
YTHDF1/2/3) [35–39], IGF2 mRNA binding protein 
(IGF2BP1/2/3) [40, 41], eukaryotic initiation factor 3 
(eIF3) [42], and the heterokaryotic nuclear RNA pro-
tein family (HNRNPC, HNRNPG) [43–45]. These read-
ers have been shown to mediate RNA splicing, nuclear 
export, translation efficiency, RNA stability, and RNA 
decay [37]. Different reading proteins recognize differ-
ent m6A sites and perform different functions [46]. For 
example, YTHDF1/YTHDF3 identifies the m6A sequence 
in the ITGA6 3’ UTR and promotes the translation of 
target genes that affect the malignant progression of 
bladder cancer [47]. YTHDF2 recognizes the methyla-
tion of SOCS2 and promotes its mRNA degradation to 
further regulate HCC cell proliferation and migration 
[48]. Methylation of RNA molecules is catalyzed by the 
methyltransferase complex (MTC), known as the "writer" 
protein, which consists of METTL3, METTL14, Wilms 
tumor 1 associated protein (WTAP), RNA-binding motif 
protein 15/15B (RBM15/15B), zinc finger CCCH-type 
containing 13 (ZC3H13) proteins,  Vir-like m6A meth-
yltransferase-associated (VIRMA/KIAA1429), and Cbl 
proto-oncogene like1 (CBLL1/Hakai) [49–53]. METTL3 
is the only methyltransferase with catalytic activity, but 
it needs to bind to METTL14 to be effective [54]. The 
two combine to form a core complex (also known as the 
m6A-METTL complex, MAC) that catalyzes m6A meth-
ylation of most RNA.  Other components of MTC form 
regulatory complexes (also known as m6A-METTL asso-
ciated complexes, MACOM) that direct the core complex 
to specific site regions of RNA and provide binding sites, 
leading to increased catalytic activity [50, 55]. In addi-
tion, several studies have demonstrated the novel readers 
METTL16, METTL5, and ZCCHC4, which mediate m6A 
modifications of U6 snRNA, 18S rRNA, and 28S rRNA, 
respectively [56–62]. "Writers" and "erasers" can effec-
tively install and remove mRNA methylation, and they 
work together to achieve a stable, dynamically balanced 

reversible process [63]. After the completion of the meth-
ylated splicing modification, the mature mRNA will 
undergo nuclear export and recognition by the reading 
protein, leading to further functional realization [64, 65].

Although METTL14 does not have true catalytic activ-
ity, it serves as an important adapter for METTL3 activ-
ity to enhance methyltransferase activity by recognizing 
RNA substrates and methyl localization [66–68]. As an 
allosteric activator of METTL3 activity, METTL14, as 
an inactivated methyltransferase and allosteric activa-
tor of METTL3 activity, is involved in the development 
of various tumors.  When METTL14 is mutated at can-
cer-associated sites, this reduces the catalytic activity 
and substrate specificity of the enzymes involved, lead-
ing to the reversal of methylation efficiency of consen-
sus GGACU and non-consensus GGAUU sequences 
(decreased methylation at consensus sites and increased 
methylation at non-consensus sites), resulting in the 
occurrence of cancer [66, 69]. This paper reviews the 
research progress in understanding the role of METTL14 
in the molecular mechanism of various malignant tumors 
and the biological processes involving METTL14. In 
addition, we discuss the structure and function of the 
METTL3-METTL14 heterodimer, the association of 
METTL14 with histone modification and potential thera-
peutic strategies for the dysregulation mechanisms of 
METTL14.

Structure and function of the METTL3‑METTL14 
heterodimer
METTL3 and METTL14 are essential components of 
the methyltransferases complex, which form a stable 
heterodimer in a 1:1 ratio [69]. Both of them contain the 
methyltransferase domain (MTD) [70]. MTD3 is com-
prised of 357–580 AA residues, which includes three 
loops (gate loop 1, gate loop 2, and interface loop), two 
CCCH motifs, catalytic sites (DPPW motif ), and S-aden-
osylmethionine (SAM) binding sites [54, 70, 71]. Among 
these, SAM binding sites are mainly contained in loop 1 
and loop 2, while the remaining rings, namely, the inter-
face rings, have a large area and extensive contact with 
the METTL14 MTD [54]. METTL3 can transfer SAM 
methyl groups to the adenine base of RNA to produce 
homocysteine (SAH) to achieve methyl transfer [70]. In 
addition, its catalytic cavity has only the conservative 
motif EPPL [70]. Although MTD14 is structurally simi-
lar to MTD3, it lacks SAM binding sites, and thus it does 
not have catalytic activity [71]. However, METTL3 alone 
has weak catalytic activity, which is greatly increased only 
when combined with METTL14 [72]. Some studies have 
explained this phenomenon, suggesting that METTL14 
provides an RNA-binding scaffold that plays an impor-
tant role in maintaining the structural integrity of binary 
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complexes and recognizing RNA substrates [73]. It is 
worth noting that some studies have reported that the 
C-terminal RGG domain of METTL14 contributes to 
its recognition function [74]. However, these studies are 
not sufficient. We still do not understand the mecha-
nism by which this structure helps to identify targets, 
and whether there are other structures that help in this 
identification.  If there are, it is of interest to know what 
are they and how they interact. In addition, it has been 
found in recent years that the METTL3-METTL14 com-
plex has a certain repair effect on DNA damaged regions 
in vitro [75]. Under the same conditions, the METTL3-
METTL14 heterodimer ssDNA methylation rate is much 
higher than that of ssRNA, and the single-stranded DNA 
has catalytic activity, while the double-stranded DNA 
does not [76]. This result provides new knowledge about 
the METTL3-METTL14 complex (Fig. 2).

METTL14 functions as an antioncogene
In most tumors, METTL14 acts as an antioncogene, 
downregulating the level of m6A in tumor cells by exert-
ing its function as a m6A methyltransferase to suppress 
the occurrence and progression of tumors (Fig. 3).

Colorectal cancer
Colorectal cancer (CRC) is a malignant disease with a 
high incidence worldwide. According to statistics, there 
are 945,000 new cases and nearly 700,000 deaths every 
year, making it one of the top four causes of cancer death 
[77–79]. Liu et  al. confirmed that METTL14 expression 
was upregulated in CRC tissues, and survival analysis 
showed that the METTL14 expression level was signifi-
cantly correlated with the prognosis of CRC [80]. Chen 
et  al. further found that downregulation of METTL14 
and m6A promoted the growth, invasion, and migra-
tion of cancer cells.  The specific molecular mechanism 
is that overexpression of METTL14 affects the bind-
ing of DGCR8 and primiR-375 and regulates the level 
of miR-375.  Furthermore, it further downregulates 
Yes-associated protein 1 (YAP1) to inhibit the growth 
of cancer cells and inhibit the invasion and migration 
of cancer cells by downregulating SP1 [81]. To better 
understand how METTL14 inhibits the malignant pro-
gression of cancer cells, some studies have also included 
reading proteins. For example, Wang et  al. showed that 
methyl-CpG binding protein 2 (MeCP2) and METTL14 
enhance the expression of Kruppel like factor 4 (KLF4) 
protein and mRNA in an IGF2BP2-dependent manner 

Fig. 2  The METTL3-MEETL14 methyltransferase complex. MTD3 of METTL3 is the real catalyst, while METTL14 stabilizes the structure and promotes 
RNA substrate recognition to improve methylation transferase activity. The catalytic cavity of METTL3 (DPPW motif ) has an open conformation and 
binds to a cofactor (SAM), and METTL14 (EPPL motif ) assumes a closed conformation. The two CCCH (ZnF) moieties of METTL3 are required for RNA 
substrate binding
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and inhibit the proliferation, metastasis, and invasion 
of CRC [82]. Chen et al. also confirmed that METTL14 
mediates epithelial-mesenchymal transformation (EMT) 
and that PI3K/AKT signal transduction inhibition of 
CRC cell migration and invasion works partly through 
SRY-related  high-mobility-group box  4 (SOX4). When 
METTL14 is knocked down, SOX4 mRNA is increased, 
and this process depends on YTHDF2 recognition [83]. 
Another study proved that lncRNA XIST was the down-
stream target gene of METTL14 through transcriptomic 
sequencing (RNA-seq) and methylated RNA immuno-
precipitation (Me-RIP). When METTL14 was knocked 
down, the m6A level of XIST was downregulated and 
mRNA expression increased, thus promoting the malig-
nant progression of CRC. In addition, METTL14 down-
regulates XIST-dependent m6A-YTHDF2 pathways [84]. 
Significant downregulation of METTL14 and YTHDC2 
may be a potential prognostic biomarker for rectal can-
cer [85]. Moreover, Dong et  al. revealed that in tumor-
associated macrophages (TAMs) of CRC, knockout of 
METTL14 results in a decrease in m6A levels, an increase 
in EBI3, and dysfunction of antitumor T cells, which 
then promots the malignant progression of tumors [86]. 
In conclusion, studies have shown that the relation-
ship between METTL14 and CRC is relatively extensive 
and involves the immune microenvironment. It is worth 
mentioning that studies that examine the METTL14 gene 

in the context of the immune system represent an inter-
esting direction.

Liver cancer
Hepatocellular carcinoma (HCC) is a highly malignant 
tumor with high recurrence and metastasis rates and poor 
mortality. It is the most common fatal malignant tumor 
worldwide [87–89]. Although the risk indicators for HCC 
are well understood, the underlying molecular mecha-
nisms remain unclear. Traditionally, it is believed that 
the occurrence of liver cancer is related to chromosome 
gain/loss and somatic mutation. In recent years, increas-
ing evidence has shown that epigenetics plays a vital role 
in regulating the occurrence of liver cancer [90]. Shi et al. 
showed that METTL14 gene expression was significantly 
downregulated in HCC, which was associated with a 
poor prognosis in cancer patients. EGFR was identified 
as the downstream target gene of METTL14 by RNA 
sequencing and m6A sequencing, and METTL14 was 
shown to regulate the EGFR/PI3K/AKT signaling path-
way in an m6A methylation-dependent manner, thereby 
inhibiting EMT and invasion of cancer cells [91].  How-
ever, in metastatic liver cancer, miR-126 is the target gene 
of METL14, and this pathway downregulates the expres-
sion of miR-126 to promote tumor metastasis by regu-
lating the interaction between DGCR8 and primiR-126 
[92].  Du et  al. found that METTL14-mediated m6A 

Fig. 3  The stimulatory role of METTL14 in human cancers, including AML, breast cancer, and pancreatic cancer
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modification maintained the stability of USP48 mRNA, 
thus participating in the regulation of HCC, and revealed 
that the METTL14-USP48-SIRT6 axis plays an inhibi-
tory role by regulating glycolysis [93]. In addition, Li et al. 
proposed that METTL14 may inhibit the occurrence of 
HCC by upregulating the expression levels of cysteine 
sulfonate decarboxylase (CSAD), glutamic oxalacetic 
transaminase (GOT2), and cytokine signaling inhibitor 2 
(SOCS2) [94].  These studies show that METTL14 has a 
significant impact on liver cancer.

Breast cancer
Breast cancer remains a serious challenge for women 
around the world, with a five-year survival rate of less 
than 30% for patients with advanced cancer [95]. Further 
research on the molecular mechanism of breast cancer is 
becoming increasingly important to improve the survival 
rate and clinical prognosis. Several studies have demon-
strated reduced METTL14 expression in breast cancer 
tissues [96, 97]. Its expression level was shown to be neg-
atively correlated with tumor grade [98]. The lower the 
expression level was, the worse the prognosis [97]. Over-
expression of METTL14 can lead to a decrease in m6A 
levels and inhibit the migration and proliferation of can-
cer cells [96].

Endometrial carcinoma
Endometrial cancer (EC) is a common malignant gyneco-
logical tumor worldwide. Even in early-stage cancer, rou-
tine surgery has a great impact on the fertility of patients, 
and the development of effective interventions is of 
great importance [99, 100]. Ma et al. reported that m6A 
RNA methylation was closely associated with the clin-
icopathological stage and prognosis of endometrial can-
cer and that METTL14 was used as a potential marker 
for the diagnosis and prognosis of endometrial cancer 
[101]. Liu et al. found that the R298P mutation in the key 
component of METTL14 leads to a reduction in m6A 
methylation and activation of the AKT pathway, thereby 
promoting the proliferation and migration of endome-
trial cancer cells. The increase in AKT activity depended 
on the decrease in PHLPP2 expression and the increase 
in mTORC2 expression [102].

Bladder cancer
Bladder cancer (BC) is the most universal tumor of the 
urinary system and has become the fifth most common 
cancer in the United States, producing an estimated 
81,400 cases in 2019  [22, 103]. Gu et  al. found that low 
expression of METT14 in BC and bladder tumor-ini-
tiating cells (TICs), decreased m6A levels, and m6A 
levels were associated with clinical severity and progno-
sis. Knockout of METTL14 enhances Notch1 expression 

and stability, promoting the development of BC and blad-
der TIC self-renewal [104]. The METTL14-m6A-Notch1 
pathway plays a critical role in bladder tumorigenesis and 
bladder TICs. Zhang et al. revealed that isorhapontigenin 
(ISO) inhibited the migration, invasion, and EMT of BC 
cells by upregulating METTL14 mRNA expression and 
decreasing vimentin protein levels by activating the tran-
scription factor FOXO3a [105].

Neuroblastoma
Neuroblastoma (NB) is the most common tumor in 
infants and young children. It originates from the sym-
pathetic ganglion and bilateral adrenal glands and has 
the highest morbidity and mortality in infancy [106, 107]. 
Wang et  al. proposed that METTL14 combined with 
WTAP, HNRNPC, YTHDF1, and IGF2BP2 contributed 
to the prognosis of NB and could be used as new targets 
for clinical treatment [107]. Our group first found that 
some SNPs in the METTL14 gene were closely associated 
with the risk of neuroblastoma. METTL14 gene rs298982 
G > A and rs62328061 A > G were significantly associ-
ated with reduced susceptibility to neuroblastoma, while 
rs9884978 G > A and rs4834698 T > C were associated 
with increased susceptibility to neuroblastoma [108].

Glioblastoma
Glioblastoma, which is the most common primary 
brain tumor, involves self-renewing glioblastoma stem 
cells (GSCs). The high mortality rate of glioblastoma is 
largely due to the tumor heterogeneity and therapeutic 
resistance of GSCs [109, 110]. Studies have shown that 
METTL14 gene knockout significantly promotes the gen-
eration and development of GSCs, possibly by affecting 
the enrichment of ADAM19 m6A to promote the expres-
sion of ADAM19, resulting in the self-renewal and tumo-
rigenesis of GSCs [111].

Kidney cancer
Kidney cancer, also known as renal cell carcinoma (RCC), 
is a malignant tumor with the highest mortality rate in 
the genitourinary system, among which the most com-
mon pathological type is clear cell carcinoma of the kid-
ney (ccRCC) [112]. According to statistics, the United 
States reports 73,820 cases a year and an estimated 
14,770 deaths [113]. Compared with normal kidney tis-
sue, the METTL14 mRNA level was significantly reduced 
in ccRCC [114]. Gong et  al. confirmed that knockdown 
of METTL14 reduced m6A levels and increased mRNA 
and protein levels of P2RX6, which then promoted the 
migration and invasion of RCC through the ATP-P2RX6-
Ca2+-P-ERK1/2-MMP9 signaling pathway [115].  Liu 
et al. found that METTL14 inhibited the proliferation and 
migration of renal carcinoma by inhibiting the expression 
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of long noncoding RNA nuclear enriched abundant tran-
script 1_1 (NEAT1_1) by YTHDF2 [116]. METTL14 
may be an independent prognostic indicator of RCC and 
ccRCC in univariate and multivariate Cox regression 
analyses [117–120].  The reduced METTL14 expression 
predicts a poor prognosis of the tumor. Studies have sug-
gested that in RCC, the miRNA/mRNA-hsa-miR-1307- 
3p/METTL14 pathway may regulate the occurrence and 
development of tumors and play an important role in 
clinical applications [121]. In addition, some studies have 
found that METTL14 is positively correlated with PTEN 
[114], which indicates that METTL14 plays an inhibitory 
role in RCC by regulating PTEN. Notably, Zhang et  al. 
revealed that knockdown down of METTL14 enhances 
the stability of bromodomain PHD finger transcription 
factor (BPTF) mRNA and activates downstream targets 
such as enolase 2 and SRC proto-oncogene nonreceptor 
tyrosine kinases, leading to glycolytic reprogramming 
that drives RCC metastasis [122]. This provides a mecha-
nism for the synergistic effect of m6A modification and 
glycolysis.

Papillary thyroid carcinoma
The most common type of thyroid cancer is papillary thy-
roid carcinoma (PTC), with an incidence of more than 
80% and a 5-year survival rate of more than 97% with a 
good prognosis [123]. Zhang et al. demonstrated through 
RIP and RNA pull-down analysis that lncRNA OIP5-AS1 
is a gene downstream of METTL14, and that the over-
expression of METTL14 regulates MEK/ERK and EGFR 
pathways through OIP5-AS1/miR-98/ADAMTS8, thus 
promoting the malignant behavior of PTC cells [124].

Leukemia
Acute myeloid leukemia (AML) is a common and deadly 
tumor of the blood system [125]. Alterations in m6A lev-
els can affect cell fate and differentiation status [126]. Sun 
et al. found that METTL14 levels were decreased in E/R 
positive patients compared with the control group, and 
it was speculated that the downregulation affected m6A 
modification in related cancer cells, thereby promot-
ing the occurrence of AML [127]. A five-center case–
control study found that METTL14 gene rs298982 G/A 
and rs1064034 T/A were significantly associated with a 
reduced risk of ALL in children [128]. METTL14 may be 
a potential biomarker for the prognosis of ALL.

Other cancers
In addition to the abovementioned tumors, METTL14 
also acts as a tumor suppressor in other tumors. In 
lung adenocarcinoma (LUAD), Wang et  al. found that 
METTL14 enhanced the stability of human leukocyte 
antigen complex group11 (HCG11) mRNA and inhibited 

the growth of lung adenocarcinoma via IGF2BP2/LATS1 
[129]. The characteristic expression of the m6A regula-
tory factor in castration-resistant prostate cancer (CRPC) 
and prostate cancer (PCa) was analyzed. METTL14 was 
downregulated and correlated with lymph node metasta-
sis of CRPC and was negatively correlated with the Glea-
son grade in PCa [130]. METTL14 was downregulated in 
triple-negative breast cancer (TNBC) [118], esophageal 
cancer (EC) [131], gastric cancer [132], osteosarcoma 
(OS) [133],Wilms tumor, [134] and oral squamous cell 
carcinoma (OSCC) [135], and low METTL14 expression 
was related to poor prognosis. Notably, it has been con-
firmed that METTL14 knockout can activate Wnt and 
PI3K-Akt signals to promote the growth and invasion 
of gastric cancer cells [132]. Of course, these findings of 
MTTL14 need to be confirmed by subsequent studies.

METTL14 acts as an oncogene
Although many studies have shown an inhibitory effect 
on cancer, METTL14 has also been shown to stimu-
late the development and progression of tumors in 
some cases (Table  2). Wang et  al. reported that m6A 
levels were elevated in most pancreatic cancer sam-
ples and that METTL14 expression was significantly 
associated with survival. METTL14 overexpression 
reduces PERP mRNA and protein levels and promotes 
tumor cell migration and colony formation [136]. The 
CLK1-SRSF5 axis promotes the proliferation, migra-
tion, invasion, and colony formation of pancreatic 
cancer cells by inhibiting METTL14△Exon10+ exon skip-
ping and increasing the m6A level [137].  METTL14 
overexpression regulates the expression of hsa-miR-
146a-5p through m6A modification, thereby promot-
ing breast cancer invasion and migration [138].  Sun 
et  al. found that LINC00942, as an oncogene in the 
occurrence and development of BRCA tumors, pro-
motes METTL14-mediated m6A modification and 
regulates the mRNA stability and protein expression 
of the downstream genes CXCR4 and CYP1B1, thus 
promoting tumor growth and development.  A new 
LINC00942-METTL14-CXCR4/CYP1B1 pathway was 
verified, providing a new approach for the diagno-
sis and treatment of BRCA [139]. Subsequently, Peng 
et  al. found that the oncogene AURKA enhances the 
stability of DROSHA mRNA and promotes the onco-
genic properties of the DROSHA-STC1 axis by inhib-
iting the ubiquitination-mediated degradation of the 
METTL14 protein and improving the recognition abil-
ity of IGF2BP2, leading to the malignant progression of 
breast cancer [140]. Therefore, it is reasonable to spec-
ulate that the upregulation of m6A in peripheral blood 
may be a new biomarker for breast cancer and that the 
upregulation of METTL14 has a better diagnostic role 
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in peripheral blood BC screening [141]. Similarly, Zhao 
et  al. investigated whether m6A RNA methylation-
related proteins can effectively predict the prognosis 
of head and neck squamous cell carcinoma (HNSCC). 
The results showed that the upregulation of METTL14 
and WTAP may have a certain guiding significance for 
prognosis prediction [142].  In addition, Weng et  al. 
reported that METTL14 blocked bone marrow dif-
ferentiation and promoted cell proliferation in nor-
mal hematopoietic stem/progenitor cells (HSPCs) 
and AML.  This occurred because METTL14-medi-
ated m6A modification improves the mRNA stability 
and translation of the downstream target gene MYC/
MYB, whereas METTL14 is negatively regulated by 
SP1. In other words, when SPI1 expression is inhibited, 
METTL14 upregulates MYC/MYB expression, lead-
ing to blocked bone marrow differentiation and cancer 
[18].  In addition, Martin et al. demonstrated that low-
ering METTL14 and METTL3 levels promoted bone 
marrow differentiation [143].  The carcinogenic role of 
METTL14 in leukemia was emphasized (Fig. 4).

Interaction of METTL14 with histone modifications
In a study of embryonic neural stem cells (NSCs), Wang 
et  al. found that knockdown of METTL14 significantly 
increased the level of acetylation of histone H3 at lysine 
27 (H3K27ac), trimethylation of histone H3 at lysine 4 
(H3K4me3), and trimethylation of histone H3 at lysine 
27 (H3K27me3) and reduced the proliferation ability of 
neural stem cells. It was further verified that METTL14 
regulates histone modification by enhancing the stabil-
ity of H3K27ac CBP/p300 mRNA [144]. The interaction 
between m6A and histone modification was revealed 
for the first time.  Chen et  al. reported that lysine-spe-
cific histone demethylation 5C (KDM5C) mediates 
the demethylation of H3K4me3 in the METTL14 pro-
moter in colorectal cancer and inhibits the transcrip-
tion of METTL14 [82]. On this basis, Wang et al. found 
that arginine methylation in the C-terminal region of 
METTL14 promoted the binding of METTL14 to RNA 
substrates, METTL3-14 methyltransferase activity and 
METTL14 interaction with RNA polymerase II  [145]. 
Huang et  al. demonstrated that H3K36me3 can directly 

Table 2  The function of METTL14 as an m6A methyltransferase in human cancer

AML Acute myeloid leukemia, PTC Papillary thyroid carcinoma, LUAD Lung adenocarcinoma, RCC​ Renal cell carcinoma

Role Cancer type Upstream Targets Reader Cellular function

Tumor suppressor Colorectal cancer
Colorectal cancer

MeCP2 miR-375/YAP1
miR-375/SP1
KLF4

IGF2BP2 Growth, migration, and invasion [81]
Proliferation, invasion, and metastasis [82]

Colorectal cancer SOX4 YTHDF2 Invasion and metastasis [83]

Colorectal cancer XIST YTHDF2 Proliferation and metastasis [84]

Liver cancer EGFR Migration, invasion, and EMT [91]

Liver cancer
Liver cancer

miR-126
USP48

Invasion and metastasis [92]
Tumorigenesis [93]

Breast cancer Growth and metastasis [96]

Endometrial cancer PHLPP2/
mTORC2

Proliferation and tumorigenicity [102]

Bladder cancer Notch1 Proliferation, self-renewal metastasis, and 
tumorigenicity [104]

Bladder cancer FOXO3a Vimentin Migration, invasion, and EMT [105]

Glioblastoma ADAM19 Growth, self-renewal, and tumorigenesis [111]

RCC​
RCC​
RCC​

P2RX6
NEAT1_1
BPTF

Migration and invasion [115]
Growth and metastasis [116]
Metastasis and EMT [122]

PTC
LUAD

OIP5-AS1
HCG11

IGF2BP2 Proliferation, migration, and invasion [124]
Growth [129]

Gastric cancer Wnt/PI3K-AKT Proliferation and invasion [132]

Oncogene Skin tumor DDB2 Autophagy [159]

Pancreatic cancer PERP Proliferation and migration [136]

Pancreatic cancer CLK-1-SRSF5 Invasion and metastasis [137]

Breast cancer hsa-miR-146a-5p Migration and invasion [138]

Breast cancer
Breast cancer
AML

LNC942
AURKA
SPI1

CXCR4/
CYP1B1
DROSHA
MYB/MYC

IGF2BP2 Proliferation and growth [139]
Proliferation [140]
Survival and growth [18]
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bind to MTC, and that METTL14 recognizes the core 
region of H3K36me3 and collaborates with RNA poly-
merase II to induce methylation of new RNA [146, 147]. 
In conclusion, the above findings reveal the cross-talk 
between histone modification and m6A modification at 
the level of epigenetic modification, revealing a new gene 
regulation mechanism and a further understanding of the 
recognition mechanism of METTL14.

Potential clinical treatments
By exploring the relationship between the immune 
system and tumorigenesis, immunotherapy has 
become an unprecedented treatment for many can-
cers [148].  Increased RNA methylation in anticancer 
immunotherapy affects immune responses [149].  Wang 
et  al. found that inhibition of m6A mRNA modification 
by deletion of METTL14 and METTL3 enhanced the 
response to programmed cell death-1 (PD-1) therapy 
in colorectal cancer.  The proliferation of CD8+T cells 
and the production of interferon (IFN)-C, CXCL9, and 
CXCL10 were also induced.  It also promotes the accu-
mulation of CD8+ and CD4+ effector T cells, which 
inhibit tumor growth, and enhance the efficacy of immu-
notherapy [150, 151]. In the treatment of AML, all-trans 
retinoic acid/arsenic trioxide (ATO) [152], differen-
tiation inducers (OP9 medium) [153], PMA [154], and 

all-trans retinoic acid (ATRA) [155] have been reported 
to significantly reduce m6A levels and the expression 
of METTL14, thereby promoting myeloid differentia-
tion and inhibiting leukemia growth [156]. In pancreatic 
cancer, knockout of METTL14 enhances the sensitiv-
ity of cancer cells to cisplatin by inducing apoptosis and 
autophagy through the mTOR signaling pathway [157] 
and inhibits the expression of cytidine deaminase (CDA), 
improving the sensitivity of drug-resistant cells to gem-
citabine [158]. These studies demonstrate the importance 
of METTL14 inhibitors in the treatment of tumors.  In 
addition, a recent study found that METTL14 regulates 
DDB2 translation to promote global genomic repair 
(GGR) and inhibits ultraviolet B (UVB) radiation to 
reduce the incidence of skin tumors [159]. Therefore, 
screening for and designing more effective METTL14 
protein inhibitors and activators are expected to provide 
new anticancer drugs, and targeted therapies in combi-
nation with other drugs may become a panacea for con-
trolling many diseases and other forms of cancer (Fig. 5).

Conclusions and prospects
The occurrence and development of cancer are mainly 
caused by abnormal genetic changes and epigenetic 
abnormalities.  Abnormal inheritance includes gene 
mutation, deletion, amplification, and chromosomal 

Fig. 4  The suppressive role of METTL14 in human cancers, including colorectal cancer, liver cancer, endometrial cancer, bladder cancer, 
glioblastoma, renal carcinoma, PTC, gastric cancer, breast cancer, skin tumor, and lung adenocarcinoma
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translocation [40]. Epigenetics includes DNA, RNA, and 
histone modifications [160–163].  m6A methylation is 
the most common internal modification of RNA and is 
of great significance for gene expression regulation [164, 
165]. Changes in m6A-related genes or proteins affect a 
variety of biological processes that involve m6A meth-
ylation, including viral infection [166], stress [167], heat 
shock [15], DNA damage [168], and the occurrence and 
development of cancer. It is worth noting that METTL14 
can function independently of m6A.  For example, Liu 
et  al. found that the METTL3-METTL14 complex pro-
motes transcription of the SASP gene and enhances 
immune surveillance, independent of changes in m6A 
levels [169]. This article reminds us that hotspot proteins 
should be studied from multiple perspectives with inno-
vative perspectives.

In recent years, with an increasing number of studies 
on METTL14, some breakthroughs have been made in 
some aspects, such as mechanisms and pathways of can-
cer and related metabolic processes, but at the same time, 
many problems have been exposed.  First, METTL14 
can recognize the structural support and recognition 
function of METTL3, but the specific structural basis 
and molecular mechanism of this recognition and sup-
port remain unclear.  It is also unclear how METTL14 
interacts with other MTC components during tumor 
development.  Second, the METTL3-14 complex has 

been thought to play a synergistic role. However, studies 
have shown that METTL3 and METTL14 have opposite 
regulatory effects on HCC [170].  We hypothesized that 
METTL3 and METTL14 may have different target pref-
erences and thus trigger different pathway effects.  Of 
course, this requires further experimental verification. In 
addition, the m6A locus of the METTL14 target gene 
has not been mapped in detail in specific studies of the 
METTL14 pathway. Finally, it is particularly emphasized 
that METTL14 has a dual regulatory effect on tumors, 
and attention should be paid to the use of METTL14 
activators or inhibitors to avoid the occurrence of other 
tumors.

In summary, METTL14 plays an important role in a 
variety of tumors, regardless of whether they are depend-
ent on m6A modification. We look forward to further 
studies to optimize a targeted METTL14 treatment and 
enable its use widely in clinical practice.
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