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Abstract

The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear,
especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized

by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowl-
edge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment
(TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the
senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which
enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including
myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contribut-
ing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contrib-
uting to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is
necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summa-
rize the key biological functions mediated by cytokines and intercellular interactions and significant components of
the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize
recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
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Introduction

In the traditional view, tumors cause a disease that is
closely associated with age. However, from the perspec-
tive of cellular function, senescent cells and tumor cells
have diametrically opposite behavior. Senescent cells
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manifest a loss of function or cessation of proliferation,
while tumors manifest hyperproliferation and increased
metabolism rates [1]. Recently, many studies have shown
that aging involves multiple mechanisms, which both
prevent cancer and promote tumorigenesis [2]. There-
fore, the association between aging and tumors needs
to be further explored. In addition, in elderly individu-
als, the cellular microenvironment is changing, which
in turn allows tumors to survive in a unique cytokine,
extracellular matrix (ECM), and vascular environment.
This specific microenvironment contributes to tumor
growth and cancer cell invasion and immune escape [3].
Senescence is a damage-induced cellular response to
cancer treatment. Leonard Hayflick and colleagues first
observed that human diploid fibroblasts undergo a finite
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number of doublings before irreversibly arresting, the
process named senescence [4—6]. Senescence indicates
a conserved response to many different types of external
and internal cellular stress, including telomere shorten-
ing and oncogenic, genotoxic, metabolic, and oxidative
damage, and the instances of all these responses can
increase during cancer therapy [7-9]. Senescence has
been revealed to be a broad physiological response to tis-
sue damage that plays a pleiotropic role in aging, embry-
onic development, wound healing, tissue regeneration,
and, importantly, responses to oncogenesis and cancer
therapy [10-15].

The mechanisms of both cancer and aging are based
on a time-dependent accumulation of cell damage. Pre-
vious studies have shown that many of the hallmarks
of aging, including epigenetic alterations, intracellu-
lar interaction changes, changes in protein homeostasis
(proteostasis), mitochondrial dysfunction and molecular
senescence, are common to cancer [16]. In 2020, cancer
contributed to 18% of all deaths and remained the second
leading cause of death after heart diseases in the USA.
However, it is the leading cause of death among women
aged 40-79 years and men aged 60-79 years. In the USA,
from 2017 to 2019, the probability of developing inva-
sive cancer is 34% in 70 years and older male populations
and 27.2% in female populations. In 2019, there were
approximately 140,690 new cancer cases diagnosed and
103,250 cancer deaths among the “oldest old” (> 85 yr),
also the cancer incidence rates peaked in the oldest men
and women in 1990 although the rates have subsequently
declined. Based on these statistics, a considerable num-
ber of cancer cells acquire aging phenotypes [17-19].
Many studies have highlighted that aging can mark-
edly affect normal cells in the tumor microenvironment
(TME) and thus promote tumor progression and metas-
tasis. Fibroblasts and immune cells are thought to play
necessary roles in this age-related impact [20, 21]. Tumor
progression often requires genetic mutations in growth
pathway genes to drive hyperproliferation, and distinct
mutations trigger senescence biological processes. Aging
is associated with many factors that are involved in the
aforementioned processes, such as enhanced genomic
damage (point mutations, deletions, and translocations),
telomere attrition, epigenetic alternation, impaired pro-
teostasis, and deregulation of nutrient sensing [22, 23].
Many environmental factors, such as ultraviolet radiation
exposure, alcohol, smoking, and pollution, contribute
to the chronic accumulation of DNA damage and other
events associated with cellular aging. Previous stud-
ies suggested that the cellular aging process of somatic
selection is nonautonomous and is, in fact, defined by
TME-imposed increases in positive selection for previ-
ously accumulated genetic and/or phenotypic diverse
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senescent tissues, which is leveraged to ensure that
senescent models can induce cancer across tissues and
species [24]. Many factors involved in senescent tissue
evolution result in the final transformation to malignancy
and hyperplastic growth in self-renewing tissues, which
contribute to growth arrest, apoptosis, and the degrada-
tion of other cells and structural tissue components. With
increasing age, the cancer risk and many degradative fea-
tures within tissues and cells exponentially increase [23].
An increasing number of studies have focused on the
complex interrelationship between an aged local and sys-
tematic TME and its fundamental role in tumor develop-
ment and progression (Fig. 1). In addition, age-induced
reprogramming of stromal components in an established
TME seems to contribute to tumor metastasis and pro-
gression. Interestingly, clear impact of senescent stromal
cells on cancer outcomes is not determined yet or even
contradictory, which suggests that different stromal tis-
sue environments in the body may be reprogrammed
differently during the aging process. This mechanism
ultimately influences tumor growth and progression with
respect to the original tissue [25-27]. In this review, we
will (1) discuss the interactions between tumors and an
aged TME, identifying how TME changes during aging
facilitate the reprogramming of stromal cell populations,
the ECM, and immune cell infiltration to initiate cancer
and progression; (2) then investigate how an aging TME
regulates the potential responses of cancer cells to chem-
otherapy, radiotherapy, targeted therapy, and immuno-
therapies; and (3) summarize recent clinical progress in
geriatric oncology and aging TME. With these foci, we
hope to identify additional tumor therapy methods for
this special population of aging individuals.

Intracellular changes in senescent cells

Increased levels of transcription and protein synthesis in
senescent cells converge to promote a distinct aspect of
senescence, the acquisition of the senescence-associated
secretory phenotype (SASP), which promotes senescent
cells to communicate damage signals with neighboring
cells, including immune cells, fibroblasts, endothelial
cells, and adjacent nontumor epithelial cells in the TME
in a nonautonomous manner in cells [28, 29] (Table 1).
Enhancer regions of hundreds of SASP factors are made
accessible, transcribed by NF-kB and other factors, and
translated in an mTOR-dependent manner, contribut-
ing to the robust secretion of inflammatory cytokines
and chemokines and angiogenic, growth, and ECM-
degrading signals [21]. The SASP is also associated with
the upregulation of cell surface molecules that modulate
the interactions between senescent cells and the immune
system [30, 31]. Notably, hallmarks of senescence are nei-
ther specific nor universal to all types of senescent cells
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and that multiple markers are necessary to distinguish
senescence from other biological outcomes of cancer
therapy [7].

The dynamic nature of the SASP and its ability to mod-
ulate the surrounding tissue TME and immune responses
in different ways is thought to be associated with many
contrasting physiological characteristics of senescence
(Fig. 2 and Table 2). In fact, senescence can lead to anti-
or protumorigenic outcomes depending on the senes-
cence inducer, the duration of the senescent period, the
SASP factors produced, and the tissue and disease con-
text [32, 33]. Biomarkers of cellular senescence have been
thoroughly investigated in precancerous tissues in dif-
ferent solid organs in humans, including the lungs, pros-
tate, pancreas, and skin, and have been found to be lost
during neoplastic progression [15, 34]. Therefore, it has
been postulated that senescence may suppress tumors
and thus block tumor development by preventing the
proliferation of potentially malignant cells. Supporting
this hypothesis, oncogene-induced senescence following
aberrant RAS activation led to the arrest of premalignant

cells and secretion of proinflammatory SASP factors that
promoted innate and adaptive immunity cell clearance of
incipient cancer cells and blocked tumor formation [35].
Similarly, therapy-induced senescence (TIS) has been
shown to inhibit tumor growth and lead to an influx of
cytotoxic CD8+ T cells and natural killer (NK) cells that
promote tumor regression [36, 37]. In contrast, some
evidence has demonstrated that the SASP after chemo-
therapy can promote tumors through the secretion of
immune suppressive factors and attraction of immune
suppressive cells, as well as the production of angiogenic
and other growth factors, which enhance the invasion
and metastasis of adjacent non-senescent tumor cells [38,
39]. Senescence is generally presumed to be neither a per-
manent nor irreversible state and tumor cells that bypass
senescence through the acquisition of genomic instability
(e.g., polyploidy) likely achieve enhanced stemness and
tumorigenic potential that contributes to drug resistance
and tumor relapse [40—43].

During aging, cells undergo a series of intracellu-
lar changes. In the nucleus, during cell division and
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Fig. 2 Differences between young and aged TME and senescence-induced factors. One of the critical factors involved in age-related pathologies
is immunosenescence defined as a significant decline in overall immune function. The subpopulations of effector immune cells including T

cells, NK cells, macrophages, and DCs exhibit a dramatic decrease in cytotoxic activity during the senescence. Age-related immunosenescence
plays a key role in promoting tumor formation and accumulation of SASP-secreting cells; the SASP-related decreases in effector immune cell
function can also induce tissue-specific switching toward more immunosuppressive cell populations. In the elderly, immunosuppressive MDSCs
and Tregs are significantly increased in aged tissue and blood; besides, neutrophils and macrophages appear to switch phenotypically toward
immunosuppressive N2 and M2 states, both of which have been shown to promote tumorigenesis of various cancer types, while more direct
evidence on the involvement in age-related tumorigenesis is warranted. The accumulation of SASP stromal components results in inflammaging
that disrupts acute inflammatory response toward malignant tissue, induces infiltration of immunosuppressive MDSCs and Tregs, and improves
secretion of anti-inflammatory components such as cytokines, chemokines, and inflamma-microRNAs. Inflammaging seems to downregulate
antitumor activity in aged tissues. NK cells, natural killer cells; DCs, dendritic cells; SASP, senescence-associated secretory phenotype; MDSCs,
myeloid-derived suppressor cells; Tregs, regulatory T cells; ARG1, arginase 1; CRP, C-reactive protein; ECM, extracellular matrix; GM-CSF, granulocyte—
macrophage colony-stimulating factor; IFN-y, interferon-y; IL, interleukin; ROS, reactive oxygen species; TGF-@, transforming growth factor-@3; TNF,
tumor necrosis factor (Mainly from https://doi.org/10.1038/541568-019-0222-9 [3])

senescence, telomeres at the ends of DNA sequences are
shortened, resulting in their reduced binding to protec-
tive protein complexes, which protect DNA from DNA
damage response (DDR) factors. Shortened telomeres
and DDR activation may establish connections between
senescent cells and tumor cells [44]. Telomeres act a
necessary role in protecting chromosome ends, pre-
venting DDR, and maintaining genomic stability. There
are two telomere maintenance mechanisms (TMMs)
in human cancer to keep the infinite capacity for tumor
proliferation: one is telomerase-mediated maintenance
(observed in 85%) and the other is alternative lengthen-
ing of telomeres (ALT) (observed in 15%). Unique char-
acteristics of ALT include very long telomeres, telomere
length heterogeneity, abundant extrachromosomal linear
and circular telomere DNA, increased telomere-sister
chromatid exchange (T-SCE) events, and the formation
of ALT-associated promyelocytic leukemia (PML) bod-
ies. It is crucial to understand the molecular mechanism

underlying ALT and its impact on cancer prognosis as
ALT can be therapeutic target [44, 45]. Similarly, with
aging, genetic mutations gradually accumulate, especially
when cells are exposed to tobacco and other chemicals,
ultraviolet rays, ionizing radiation, or exogenous muta-
gens. Mutation ultimately increases the probability of
cancer occurrence. This theory has been verified by can-
cer driver mutations detected in many middle-aged and
older individuals [46]. Moreover, pl6, a tumor suppres-
sor protein that regulates Rb protein phosphorylation,
accumulates with aging in most mammals and ultimately
participates in tumorigenesis [47]. Furthermore, another
classic tumor suppressor, p53, has been shown to induce
senescence by affecting the downstream factor p51 [48].
In addition to changes in DNA and gene expression, the
epigenetic inheritance of senescent cells regulates tumor
formation and progression. The rate of methylation, a
common gene repressive modification, increases with
age. Therefore, methylation of tumor suppressor gene
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Table 2 The role of SASP in tumor microenvironment
Cancer type Senescent cell Senescence inducer Major roles of SASP SASP factors
Protumorigenic SASP  hepatocyte hepatocyte OIS (N-Ras) (1) myeloid cell CCL2
recruitment; (2) MDSC
differentiation
hepatocyte hepatic stellate cell HFD antitumor immunity of  PGE2
CD8+ T cells impair-
ment
lymphocyte lymphocyte TIS (doxorubicin) stemness induction not reported

Antitumorigenic SASP

mammary epithelial cell
mammary epithelial cell

mammary epithelial cell
melanocyte

mesothelial cell
prostate epithelial cell

prostate epithelial cell
thyroid follicular cell
hepatocyte

lymphocyte
melanocyte
melanocyte

osteoblast
pancreatic ductal cell

hepatocyte

mammary epithelial cell
fibroblast

mammary epithelial cell
fibroblast

mesothelial cell
prostate epithelial cell

prostate epithelial cell
thyroid follicular cell
hepatocyte

lymphocyte
melanocyte
melanocyte

osteoblast
pancreatic ductal cell

hepatocyte

TIS (doxorubicin)
DNA damage (bleo-

mycin)

OIS (HER2)

TIS (CDK4/6 inhibitor)
TIS (pemetrexed)

TIS (PTEN loss)

TIS (PTEN loss)
OIS (BRAF)
OIS (N-Ras)

TIS (cyclophosphamide)
TIS (AURKA or CDK4/6
inhibitor)

TIS (Aurora inhibitor)
TIS (radiotherapy)

TIS (MEK and CDK4/6
inhibitors)

OIS (N-Ras)

mitogenic support
cancer invasion promo-
tion

cancer metastasis
promotion

myeloid cell recruit-
ment

(1) EMT induction; (2)
chemoresistance

myeloid cell recruit-
ment

MDSC recruitment
anoikis resistance

immune-related senes-
cent cell clearance

cellular senescence
reinforcement

lymphocyte recruit-
ment

cellular senescence
reinforcement

NKT cell recruitment

(1) vascularization
promotion (2) drug
delivery improvement
(3) endothelial cell acti-
vation (4) CD8+ T-cell
accumulation

(1) myeloid cell recruit-
ment (2) macrophage
differentiation

Eotaxin, CXCL5, Rantes
MMPs

not reported
not reported
not reported
CXCL1, CXCL2

not reported
CXCL12
IL-1a

not reported
CCLS
not reported

IL-6
VEGF, CCL5, CXCL1, IL-6

ccL2

SASP senescence-associated secretory phenotype, OIS oncogene-induced senescence, HFD high-fat diet, TIS therapy-induced senescence, EMT epithelial-
mesenchymal transition, MDSC myeloid-derived suppressor cells, NKT natural killer T cell (Mainly from https://doi.org/10.1002/1878-0261.13268)

promoters, such as the VHL promoter, has been sug-
gested to contribute to angiogenesis, thereby promot-
ing tumors, and hypermethylated cells prefer to undergo
oncogenic transformation [49, 50].

In addition to changes at the genetic level, cytoplasmic
alterations are involved in aging and tumors. Reactive
oxygen species (ROS) are byproducts of mitochondrial
electron transfer in aerobic cells. High levels of ROS lead
to cell damage and increase genomic instability to induce
oncogenic functions [51]. Studies have shown that dur-
ing aging, dysfunctional mitochondria gradually accu-
mulate, and deleterious events, including membrane
potential reduction and proton leakage, eventually lead

to increased ROS levels [7]. Moreover, MAPK, PI3K,
and STAT3 can be regulated by ROS, which promotes
cell proliferation and survival, as has been discovered in
breast cancer, lung cancer, pancreatic cancer, and other
malignant tumors [52]. In addition, changes in mito-
chondria cause corresponding changes in AMP/ATP,
AMP/ATP, and NAD+/NADH ratios, leading to cell
cycle arrest, NF-kB activation, and other changes that are
considered to be important to tumor formation [7]. In
addition, the endoplasmic reticulum is an important sub-
cellular organelle in lipid synthesis and protein synthe-
sis, and the unfolded protein response (UPR) is triggered
when excessive ROS levels cause protein misfolding. In
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normal senescent cells, the UPR drives cell death, but in
breast cancer, the UPR prevents cell death and promotes
cancer cell immortality [53]. In addition, centrosome dys-
function may regulate aging, tumorigenesis, and tumor
immunity [54].

In addition, the role of the cGAS-STING signaling
pathway, constituted by cyclic GMP-AMP synthase
(cGAS) and stimulator of interferon genes (STING),
has been extensively studied. cGAS recognizes DNA in
the cytoplasm and activates IFN expression and NF-kB
through multiple cascade reactions. The effects of
c¢GAS-STING on tumors are diverse. On the one hand,
the interferon produced by short-term cGAS-STING
activation can recruit dendritic cells and CD8+ T cells
and promote their maturation. After tumor cells are
killed, the tumor-associated antigens that are released
are by surrounding DCs, which will further enhance
the immune response, thus forming a positive feedback
mechanism [55]. A positive correlation between cGAS
expression and survival has been reported in human
lung adenocarcinoma patients [56]. On the other hand,
long-term cGAS-STING activation may promote tumo-
rigenesis. cGAS-STING can assist in the formation of the
SASP, ultimately promoting the epithelial-mesenchymal
transition (EMT), tumor progression, and invasion [57].
Another study demonstrated that activation of STING
might disrupt calcium homeostasis in T cells, leading
to cell death [58]. De Cecco found that senescent cells,
loss of the nuclear lamin protein Lamin B1 and chroma-
tin fragments located in the cytoplasm can activate the
cGAS-STING pathway. In the same study, high activity
of long-interspersed element-1 (LINE-1) reverse-tran-
scribes mRNA into ¢cDNA and activates cGAS-STING
[59]. Additionally, infection with various DNA viruses,
such as human cytomegalovirus and hepatitis B virus,
which are common infections in elderly individuals, can
activate the cGAS/STING pathway [60]. This process, in
turn, modulates the tumor microenvironment in elderly
individuals. The aforementioned evidence suggests that
cells engage in unique mechanisms to inhibit tumor for-
mation during the early stages of aging and that when
inactivated or mutated, these mechanisms may in turn
promote tumor formation and progression.

The SASP can reinforce senescent growth arrest and/
or promote immune surveillance to suppress cancer [21].
Oncogene-induced and therapy-induced senescent cells
secrete the inflammatory cytokine IL-1a, which is a cru-
cial SASP initiator and regulator [61]. IL-1« facilitates an
autocrine inflammatory response through the activation
of NF-kB, which leads to the transcription of IL-6 and
IL-8 [61]. Subsequently, these inflammatory cytokines
reinforce senescence-related proliferation arrest through
the increased production of reactive oxygen species and
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a sustained DNA damage response, particularly in onco-
gene-induced senescent cells [61, 62]. In addition, IL-1a
mediates paracrine senescence in neighboring cells to
suppress tumor progression [63], and IL-1a, IL-6, and
IL-8 mediate the recruitment of M1-like macrophages, T
helper 1 cells, and NKs to the TME. Infiltrative immune
cells drive the elimination of senescent tumor cells and
may also eliminate non-senescent cancer cells via a
bystander effect [35, 64]. Some immune cells, such as T
helper 1 cells, can also trigger senescence in cancer cells
through the secretion of inflammatory cytokines [65].
The SASP of senescent cancer cells is thought to initially
suppress tumorigenesis but to be mostly detrimental in
the long term [38, 66]. In an in vivo study, proliferation
and tumorigenesis of both premalignant and malignant
epithelial cells were increased when they were coin-
jected with human senescent fibroblasts into mice [67].
Another study showed that MMPs secreted by senescent
human fibroblasts were critical for promoting tumo-
rigenesis [68]. Prominent SASP factors are involved in
ECM processing and degradation, which can promote
tumor cell proliferation and invasion [69]. Additionally,
MMPs promote the release of many other cytokines and
growth factors supporting tumorigenesis, such as vascu-
lar endothelial growth factor (VEGF), which promotes
tumor-driven angiogenesis [70], and the chemokine
CXCL1, which promotes tumor growth [71].

IL-6 and IL-8, known SASP-associated factors, medi-
ate the protumorigenic effects of senescent cells because
they establish a chronic inflammatory TME that triggers
tumor growth [28, 72]. In addition, IL-6 and IL-8 drive
the transcription of genes encoding MMPs and drive the
epithelial-to-mesenchymal transition, thereby promoting
tumor invasiveness [73-76]. IL-6 also recruits myeloid-
derived suppressor cells (MDSCs) to the TME to mediate
the protumorigenic effects of senescent cells, which block
IL-1a signaling and antagonize senescence in cancer cells
[77, 78]. In addition, MDSCs block immune surveillance
by inhibiting CD84 T cells and NK cells through the
actions of IL-6 and CCL2, respectively [64, 78, 79]. How-
ever, the protumorigenic and antitumorigenic effects of
senescent cancer cells are likely mediated by a compre-
hensive interaction between multiple SASP factors and
the immune TME. Furthermore, the effects of SASP fac-
tors are likely impacted by tissue type, residual immune
cells, inflammatory networks, and senescence inducers.
Therefore, it is difficult to precisely identify whether the
effects of senescent cancer cells are protumorigenic or
antitumorigenic.

Several studies have demonstrated that senescence-
induced therapies are associated with complex repro-
gramming that ultimately drives stemness in both tumor
and normal cells [40, 41]. Moreover, senescent cancer
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cells that are not eliminated by the immune system can
spontaneously resist proliferation arrest under certain
circumstances and reenter the cell cycle [40, 80]. A study
confirmed that oncogene-induced senescent cells entered
the cell cycle, particularly by restoring telomerase activ-
ity through the derepression of the telomerase reverse
transcriptase (TERT) gene [81]. Senescent cells show
WNT-dependent enhanced growth and tumor-initiating
potential to resume growth [40]. This senescence-associ-
ated stemness results in a highly aggressive nature driven
by WNT pathway activation independent of WN'T ligand
binding via the SASP and is enriched in relapsed tumors
[40]. Additionally, the expression of -catenin in pitui-
tary stem cells provokes the acquisition of a senescence
signature and the SASP and induces craniopharyngioma
tumors in a paracrine fashion. Importantly, mice with a
decreased senescent cell burden and an attenuated SASP
response exhibited decreased tumorigenic potential, indi-
cating that the SASP may promote tumor induction [82].
Extracellular vesicles and exosomes, components of the
SASD, have also garnered considerable interest in the field
of senescence, and small vesicles from senescent cells can
promote tumors [83—-85]. The complex and often unpre-
dictable role of senescence-inducing therapies is derived
from the dual role of the SASP. The effect of the SASP
is highly dependent on context and cell type and varies
during different stages of cancer progression [21, 38, 86].
Specifically, SASP-mediated immunosuppression pro-
motes tumor growth in later stages of tumor progression,
while the SASP is a tumor suppressor in the early stages
of tumorigenesis [64]. In addition, TP53 may be involved
in determining whether the senescence-induced inflam-
matory response suppresses or promotes tumorigenesis
[87]. In the long term, the SASP of senescent tumors is
suggested to be primarily detrimental to neoplastic
growth, therapy resistance, immunosuppression, metas-
tasis and angiogenesis [67, 78, 87, 88]. However, senes-
cent cancer cells potentially remain dormant for a long
time, evading therapy and posing a risk for tumor relapse
[15, 89, 90]. It has also been revealed that many genotoxic
chemotherapies lead to debilitating side effects caused by
senescence induced in normal tissues. Normal senescent
cells remain present in the long term and promote local
and systematic inflammation caused by the SASP, which
results in or exacerbates chemotherapy side effects [88].
Accordingly, it may be helpful to combine senescence-
promoting therapy with senolytic therapy in the context
of cancer. In addition to direct targeting of cancer cells
by delivering a one-two punch and decreasing the side
effects of chemoradiotherapies on normal tissues, seno-
lytics may eliminate incipient preneoplastic senescent
cells or other senescent cells in the TME to suppress the
detrimental effects of the SASP [66, 72].
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Changes in cytokines and their receptors

The tumor microenvironment consists of a variety of
cytokines that can affect tumor progression, metastasis,
and the formation of an immunosuppressive microen-
vironment. In aging patients, changes in the crosstalk
between cytokines and immune cells characterize a
unique aging tumor microenvironment [91] (Fig. 3).

Formation of senescence and SASP
Cellular senescence serves as a powerful protective
mechanism against tumorigenesis [15]. The activation
of oncogenes such as HRAS"'? triggers growth arrest,
referred to as oncogene-induced senescence (OIS), which
was first reported in 1997 [10, 13, 92, 93]. In 2005, the
concept of OIS was extended to multiple carcinogen-
esis models, including lymphomas, prostate cancer, lung
adenomas, hyperplastic pituitary gland, and melanocytic
nevi [93-97]. Melanocytic nevi induced by BRAF muta-
tions gradually remain senescent for decades, prevent-
ing their progression into melanoma [95]. Similarly, the
lack of tumor suppressor genes, such as PTEN, can also
induce senescence in the primary prostate epithelium,
referred to as PTEN loss-induced cellular senescence
(PICS) [94]. In older adults, the composition of cytokines
and immune cells changes because of SASP acquisition.
The acquisition of the SASP involves multiple mecha-
nisms and regulators. Time-dependent damage accel-
erates SASP acquisition. Several studies have shown
that 4 transformation of the SASP involves many signal-
ing pathways [3]. The deletion of P53 and the upregulated
expression of RAS aggravate the paracrine activity of the
SASP [28]. Moreover, the three-dimensional structure
of the genome in senescent cells enhances senescence
activation enhancer (SAE) activity through the action
of the transcription factor CCAAT/enhancer-binding
protein a (C/EBPa), thereby promoting the secretion
of SASP factors [98]. DDR-dependent SASP acquisition
is frequently accompanied by chromatin remodeling, in
which histone deacetylase (HDAC) might be involved
[99]. The SASP in senescent cells also damages the DNA
of adjacent cells and induces their senescence, causing
senescence-induced senescence [100, 101]. In addition,
OIS is mediated by activation of the INK4A-RB pathway,
independent of p53 activation and DNA damage signal-
ing [10, 92, 102]. Moreover, senescence can be triggered
by other oncogenic pathways, such as the activated MYC
pathway, which increases the levels of the ARF-encoding
transcript at the CDKN2A locus, resulting in stabilized
p53 [103] and hyperactivated WNT-B-catenin signaling,
leading to the DNA damage response via the p53-p21
pathway [104-108].

Malignant cells can be forced to enter a senescent
state via therapy-induced senescence, and conventional
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Fig. 3 The formation of SASP in senescent cell. The formation of SASP undergoes multiple mechanism and regulator; many time-dependent
damage will accelerate the formation of SASP. Actually, transformation of SASP involves many signaling pathways. The deletion of p53 and the
upregulated expression of RAS aggravate the paracrine activity of SASP. Besides, the three-dimensional structure of the genome in senescent
cells can enhance the SAE activity through the transcription factor C/EBPa/p, thereby promoting the secretion of SASP. DDR-dependent SASP
activation accompanies by chromatin remodeling frequently, in which HDAC might be involved. SAE SASP of senescent cells also damages the
DNA of adjacent cells and induces senescence, thereby forming senescence-induced senescence. The cytoplasm alternation is also involved in
aging and tumors. ROS is a by-product of mitochondrial electron transfer in aerobic cells. High levels of ROS will lead to cell damage and increase
genomic instability to exert oncogenic functions. In the process of aging, dysfunction mitochondria will gradually accumulate, and events including
membrane potential reduction and proton leakage will occur, eventually leading to increased ROS levels. Not only that, changes in mitochondria
will cause corresponding changes in AMP/ATP, AMP/ATP, and NAD + /NADH ratios, thereby leading to cell cycle arrest, NF-kB activation, and
other changes that are considered important to tumor formation. Transcribed by NF-kB and other factors, and translated in an mTOR-dependent
manner contributing to the robust secretion of SASP-related inflammatory cytokines, chemokines, angiogenic growth, and ECM-degrading
signals. SASP, senescence-associated secretory phenotype; DDR, DNA damage response; SAE, senescence activation enhancer; C/EBPa/f3, CCAAT/
enhancer-binding protein a/f3; HDAC, histone deacetylase; ATP, adenosine triphosphate; AMP, adenosine monophosphate

therapeutics such as chemotherapy or radiotherapy
show the ability to induce senescence in cancer cells [9,
36, 37, 109-124] (Table 3). In a chemotherapy-induced
senescent state, apoptosis is induced when higher doses
of drugs are applied [125-127]. Mechanistically, many
chemotherapies cause DNA damage in cancer cells,
which triggers senescence through ATM-CHK2 and
ATR-CHK1 kinase-mediated activation of the intercon-
nected p53-RB pathways [128, 129]. Topoisomerase I and
II inhibitors, such as doxorubicin, have been shown to
dysregulate the re-ligation of DNA strands after supercoil

unwinding, leading to large-scale DNA damage and
increasing expression of p53 and its downstream targets
CDKNI1A and SERPINE], thereby inducing senescence
[130-132]. Platinum-based therapies, including cispl-
atin, carboplatin, and oxaliplatin, induce DNA dam-
age through DNA cross-linking, leading to senescence
induction [133, 134]. Alkylating agents such as temozo-
lomide, dacarbazine, and busulfan cross-link with DNA
by reacting with atoms in DNA, triggering a DNA dam-
age-mediated senescence response [135]. Cell cycle dys-
function caused by microtubule inhibitors (paclitaxel and
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docetaxel) may cause extensive DNA damage and trigger
a p53-p21 pathway-facilitated senescence response [136,
137]. Methotrexate and gemcitabine induce genotoxic
stress by blocking DNA synthesis, thereby inducing cel-
lular senescence [138, 139]. Radiotherapy is widely used
for the treatment of multiple cancer types and can induce
irreparable DNA damage response that activates ATM or
ATR and p53-p21 pathway-mediated apoptosis and cel-
lular senescence [129, 140, 141]. Since radiotherapy is
applied locally, the tissue surrounding a tumor shows an
increase in senescent cell burden that results in immuno-
suppressive effects [38, 78, 142].

Upregulation of cyclin-dependent kinase (CDK) inhibi-
tor proteins such as INK4A and p21 to induce cell cycle
arrest is a hallmark of senescent cells [143]. CDK4/6 are
important for the progression from the G1 phase to the S
phase of the cell cycle and are overexpressed in a number
of human cancers. CDK4/6 mimic the function of INK4A
and induce senescence in various cancer cells [144—151].
A triple CDK2/4/6 inhibitor (PF-06873600) that is still
being investigated for the treatment of breast cancer
has been shown to be a potential senescence inducer
in various cancer models [152, 153]. Inhibition of DNA
replication through small-molecule inhibition of the
kinase CDC7, for example, by XL413 or TAK-931, leads
to senescence induction in liver cancer cells. This senes-
cence response has been observed only in TP53-mutant
tumors, presumably because TP53-mutant tumors retain
the ability to be arrested in the cell cycle upon CDC7
inhibition [124].

Numerous compounds inhibiting telomerase complex
action have been identified as candidates for anticancer
therapy [154], among which BIBR15 and GRN163L are
potent telomerase inhibitors that greatly promote senes-
cence and suppress cancer cell proliferation [155-157].
However, the use of GRN16 for senescence-promoting
therapy should be examined further, as it also induces
apoptosis in pancreatic cancer cells [157]. Vorinostat, a
histone deacetylase inhibitor, upregulates the expression
of multiple tumor suppressor genes, such as CDKN2A
and TP53, and induces senescence via these two major
pathways in various cancer cell lines [158, 159]. In mouse
models, genetic restoration of Trp53 resulted in the
regression of sarcomas and liver carcinomas by inducing
a senescence response, and an apoptotic response was
observed in lymphoma regression [160-162]. Addition-
ally, senescence induction has been shown to be accom-
panied by the acquisition of the SASP and recruitment of
immune cells into tumors, suggesting efficient clearance
of senescent cancer cells [160]. The MDM?2 inhibitors
nutlin-3 and RG7112 interact with p53-MDM2 and show
promising results for inducing senescence in tumors
retaining wild-type TP53 in human cancer cell models
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[163—-165]. Inactivation of PTEN shows the potential for
use in senescence-promoting cancer therapy in vitro and
in mice [166]. The PTEN status in vitro has been shown
to be a crucial determinant of glioma cell fate after ion-
izing radiation exposure; PTEN-mutant cells underwent
premature senescence, while cancer cells expressing
PTEN underwent apoptosis [167]. In addition, the inacti-
vation of PTEN resulted in p53-mediated senescence and
suppression of tumorigenesis in mice [94]. While these
genes are mediators in the senescence response of can-
cer cells, they are not essential for senescence induction
in cancer [86].

Changes in association with immune molecules and cells

The SASP can affect the tumor microenvironment in
many ways (Fig. 4). SASP components include immu-
noregulatory factors, including IL-6, IL-8, and MCP-2;
growth factors, including HGF and IGFBP; and exfoliated
cell survival factors, including ICAMs and UPAR [28]. As
an autocrine proinflammatory factor, Il-1a binds to cell
receptors to form a positive feedback mechanism medi-
ated through the NF-«B pathway, which might main-
tain the SASP and the secretion of IL-1p, IL-6, and IL-8
[168, 169]. A previous study showed that IL-6 functioned
through complex mechanisms. Under oncogenic stress,
IL-6 is an autocrine factor that inhibits cell proliferation
via cell cycle arrest. However, when acting as a paracrine
factor, IL-6 promotes angiogenesis, which contributes
to tumor progression [29]. Other SASP components,
namely, chemokines, function in the tumor microenvi-
ronment. Multiple studies have confirmed that CCL5
inhibits the activation of Th1 cells and cytotoxic T cells
and recruits MDSCs, T-regulatory cells (Tregs), and mes-
enchymal stem cells (MSCs), which reduce the killing
ability of T cells and NK cells [170]. Moreover, CXCL1
induces adjacent cell senescence and immune escape
through paracrine signaling [171]. These secreted immu-
noregulatory factors might lead to chronic inflammation
and contribute to the transformation of an immunosup-
pressive microenvironment by regulating immune sys-
tem cell infiltration [160].

From an overall perspective, aged individuals are often
in a state of chronic inflammation. Obesity, changes in
intestinal microbes, and tissue degradation exacerbate
this chronic inflammation. Compared with those in
young people, the serum levels of IL-1, IL-6, IL-8, and
TNEF-a in aged people are significantly increased [172].
This chronic inflammatory condition and the interrelated
pathways usually exert an immunosuppressive effect and
can increase the risk of cancer [22, 173]. Increased IL-6
and IL-8 levels can promote the EMT and tumor cell
invasion [174]. The specific inflammatory environment
also leads to the accumulation of Treg cells, Th2 cells, and
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Fig. 4 Components and potential effects of senescent cell in tumor. NF-kB signaling is activated in senescent cancer cells and elevates multiple
production of IL-1q, IL-6, IL-8, CCL5, and growth factors like VEGF, FGF, PDGF, HMGB1, and MMP. To be detailed, IL-6, IL-8, CCL5, CXCL1, etc,, help

to recruit MDSCs to the TME to mediate protumorigenic effect of senescent cells, which block IL-1a signaling and antagonize the establishment
of senescence in cancer cells. Simultaneously, MDSCs block immune surveillance by inhibiting CD8+ T cells and NK cells through IL-6 and CCL2,
respectively, while IL-6 and IL-8 can recruit NK cells and T cells to reinforce immune surveillance. The ILs will spread senescence to surrounding
cancer cells in a paracrine fashion, which further mediates tumor growth. The prominent SASP factors are involved in ECM processing and
degradation, which can promote tumor cell proliferation and invasion. IL-6 secreted by senescent cancer cells or released from the ECM by MMPs
recruits MDSCs, leading to an immunosuppressive TME. Moreover, the cleaved ECM components release growth factors such as VEGF, FGF, PDGF,
and ILs that can promote tumor growth and EMT, promoting tumor metastasis. Additionally, MMPs also promote the release of many other
cytokines and growth factors such as VEGF supporting tumorigenesis and chemokine CXCL1 to promote tumor growth. The SASP can stimulate
blood vessel formation and vascular remodeling that contributes to tumor metastasis. Activated TLR4 promotes tumor progression in breast,
prostate, and colon cancers and is associated with poor prognosis, but the antitumor activity is increased in skin cancers. TLR4 also recognizes
HMGB1 and facilitates SASP phenotype formation. NF-kB, nuclear factor-«B; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor;
PDGF, platelet-derived growth factor; MMP, matrix metalloproteinases; IL, interleukin; TME, tumor microenvironment; MDSCs, myeloid-derived
suppressor cells; NK cell, natural killer cell; SASP, senescence-associated secretory phenotype; ECM, extracellular matrix

Angiogenesis and
vascular remodeling

activated B cells, increasing the secretion of IL-4, IL-6,

IL-10, IL-33, and TGEF-p, which are important growth-
promoting factors [175].

In addition to molecular changes, changes in immune
cell receptors, especially T-cell receptors, are important
in the elderly tumor microenvironment. In contrast to
highly expressed suppressing molecules in mice, the lev-
els of PD-1 and TIM-3 in human T cells were not sig-
nificantly changed, but CTLA-4 and LAG-3 were slightly
elevated during senescence [176]. During aging, the

proportion of CD8+ T cells that do not express CD28,
a co-stimulatory molecule, increases, and this increase
is accompanied by the upregulation of CD57 and killer
inhibitor receptor (KIR) [177]. The immunoreceptor
tyrosine-based inhibitory motif (ITIM) domain protein
(TIGIT), which is highly expressed in elderly CD8+ T
cells, can exert an immunosuppressive effect on CD226
by competing with the ligand CD155 [176]. In addition,
the expression and activity of CD38, a key molecule in
NAD + depletion, are upregulated with advancing age.
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Activated CD38 may play an immunomodulatory role
and has been considered a new immune checkpoint
[178]. In addition to the aforementioned CD molecules,
TLRs are involved in aging. The role played by TLR4 is
tissue-specific. Activated TLR4 promotes tumor pro-
gression in breast, prostate, and colon cancers and is
associated with poor prognosis but shows antitumor
activity in skin cancers [179]. TLR4 recognizes HMGB1
and facilitates SASP acquisition [180]. Experiments
have shown that the expression of TLR4 is elevated in
aging mice [181]. This may indicate that TLRs are also
involved in changes in immune cells in the aged tumor
microenvironment.

Changes associated with cell growth

During the aging process, molecules and receptors of
growth factors exhibit significant functions and tissue
specificity in various ways. GDF 15, an important growth
factor in the SASP, promotes epithelial cell proliferation,
migration, and invasion through the MAPK and PI3K
signaling pathways, thereby promoting tumor progres-
sion [182]. In addition, in a family of receptor protein
tyrosine kinases, ErbB receptors directly or indirectly
interact with classical downstream pathways such as
MAPK, PI3K, and JAK [183]. The regulatory effects of
ErbB on tumor cell proliferation, progression, and inva-
sion have been widely studied in colorectal, breast, and
lung cancers [184-186]. Among the ErbB family mem-
bers, ErbB-1 (EGFR) binds to EFG, another SASP com-
ponent, and promotes cell division [187, 188]. Moreover,
clinical trials have revealed that aging is a risk factor
for advanced lung cancer with EGFR mutant subtypes
[189]. In vitro studies have also shown that p53 induces
senescence by downregulating EGFR in multiple cell
lines [190]. This finding is consistent with the opinion
that aging prevents the growth of cells that are at risk of
tumor transformation and thus inhibits tumorigenesis
[191]. In addition, FGFR inhibitors have been reported
to inhibit breast, gastric, and clonal cancers [192-194].
Ota et al. showed that FGFR promotes DNA-associated
senescence, but loss of p53 and dysregulation of c-Myc
reversed this effect and promote tumor transforma-
tion. However, in the same study, activation of FGFR
can downregulate the expression of c-Myc, which may
have suppressed tumor formation [195]. Additionally,
FGER may also act as a negative regulator of mesenchy-
mal stem cell senescence. Reduced expression of FGFR
has been revealed in a variety of aging tissues [196]. By
interacting with RACK1, FGFR promotes the degrada-
tion of p53 in lung squamous cell carcinoma, ultimately
inhibiting tumor cell senescence [197]. By binding to
FGFR, sulfated heparin prevents premature replicative
senescence and ultimately prohibits p53 expression. The
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indirect depletion of surface sulfated heparin leads to cel-
lular senescence in tumors. Therefore, Jung et al. specu-
lated that FGER initiates new tumor defense mechanisms
by regulating premature senescence [198]. The evidence
illustrates a regulatory role and increased complexity of
growth factors in aging and tumorigenesis.

As an upstream and downstream molecule regulated
in vivo, GH regulates the secretion of IGF-1, which con-
stitutes the GH/IGF-1 axis. As the corresponding hor-
mone receptors, GHR and IGFR play important roles in
cell senescence and tumor formation. Most tumor cells
express GH, which may indicate that the autocrine func-
tion of GH on tumor cells activates GHR more than GH
secreted by the pituitary gland, thereby driving cancer
progression [199]. Correspondingly, in patients lack-
ing GHR (Laron syndrome), the concentration of IGF
in the patient’s serum is significantly reduced, but these
patients are free from aging-related disorders and rarely
develop tumors [200]. Similarly, overexpression of IGF-
1R has been observed in various tumors, such as those
in thyroid cancer and breast cancer [201]. Additionally,
these receptors may all be engaged in aging. Strous found
that GH knockout significantly extended the lifespan of
mice and delayed immune system-related aging. In addi-
tion, they observed the downregulation of the GH/IGF-1
axis activity in elderly individuals [199]. Similarly, it has
been confirmed that the lifespan of mice was significantly
prolonged after heterozygous IGF-1R knockout [202].
A similar conclusion suggested that in individuals older
than 100 years, the activity of IGF-1 is reduced, which
may be mediated by IGF-1R mutation, and these individ-
uals exhibit profound anti-inflammatory characteristics.
These two changes both depend on p53, which reduces
the risk of tumor development [203, 204]. The activa-
tion of IGF-1R leads to the activation of PI3K, Ras-Raf,
JAK/STAT3, and other pathways, ultimately upregulating
p21, which promotes cell proliferation, survival, migra-
tion, and adaptation to hypoxia and inhibits autophagy,
apoptosis, and anoikis [205]. Therefore, we speculate that
IGFR may be involved in the forkhead pathway in cellular
senescence and tumor formation. The ultimate fate of a
cell may depend on which of the two states prevails. In
formal theory, in the early phase, aging inhibits tumor
formation by preventing the growth of cells [191]. In this
process, cell surface receptors activate a variety of signal
transduction pathways and engage in crosstalk with each
other, ultimately affecting the activity of p53 and other
key proteins. Intracellular receptors can also sense vari-
ous changes in senescent cells and ultimately participate
in their regulation. All of these factors might reflect con-
stant competition between aging and tumor cells.
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Impact of senescence on the TME

The effects of the ECM
The tumor microenvironment matrix constitutes
endothelial cells, fibroblasts, pericytes, adipocytes,

immune cells, and the ECM, which is composed of col-
lagen, fibronectin, laminin, and elastin [3]. Matrix fibro-
blasts inhibit tumor cell proliferation [206]. The different
cross-linking and arrangements of ECM proteins change
the physical features of the ECM, such as its stiffness
and mechanical force [207]. Moreover, through focally
assembling integrin adhesion complexes, cells can sense
changes in the ECM and regulate the cell cycle and
energy metabolism via the FAK/Src, ILK-PINCH-parvin-
kindlin, and o-actinin-zyxin-VASP signaling pathways
[208]. This molecular and supramolecular heterogeneity
affects the infiltration and migration of cancer cells and
angiogenesis [207]. Moreover, the ECM contains growth
factors, including IGFS, FGFs, TGF-B, and HGF [209].
These stimulating factors can induce adipocytes, mesen-
chymal stem cells, pericytes, and other cells to transform
cancer-associated fibroblasts (CAFs). Similarly, miRNA-
21 induces CAF formation via its inhibition of the Smad7
pathway. These CAFs induce ECM remodeling by secret-
ing matrix metalloproteinase (MMP) [210, 211]. On the
basis of the product levels of unique collagen and other
ECM molecule genes, such as COLIOAI and COL4Al, a
previous study showed that CAFs can be classified into
multiple subtypes. These multiple CAF subtypes increase
the complexity and heterogeneity of the tumor microen-
vironment [212].

Many time-related mutations accelerate normal stro-
mal cells, which are transformed into CAFs, contribut-
ing to immune cell regulation, angiogenesis, and ECM
remodeling. The promotion of CAF activation may be
a result of the impaired function of p53/p21 and CLS/
RBP-Jk, a transcription factor in dermal fibroblasts,
which functionally and physically interacts with p53
in the Notch signaling pathway [213]. Activated CAFs
upregulate the expression of VCAM-1 in adjacent tumor
cells and promote the adhesion of monocytes. Several
studies have shown that activated M2 macrophages
might, in turn, promote the formation of CAFs, thus
participating in crosstalk with malignancy factors in
pancreatic cancer and neuroblastoma [214, 215]. CAFs
also inhibit NK cells activate receptors on the surface of
cells and killer particles [216] and recruit normal DCs
to form IDO-producing regulatory dendritic cells [217].
Moreover, CAF cells stimulate miR21/Toll-like receptors
through lactate to promote CD4+ T-cell polarization
from Th2 to Thl cells and maintain Treg cells [218-220].
The number of CD8+ T cells is reduced by CAF-upregu-
lated immune checkpoint molecules such as PD-1, which
facilitates tumor cell immune escape [221]. Senescent
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fibroblasts express the nonclassical MHC molecule HLA-
E, which inhibits the immune response by interacting
with NKG2A on the surface of NK cells and CD8+ cells
[222].

In the aging tumor microenvironment, change in the
ECM is an important factor. As other secreted SASP
factors, MMP-1, MMP-3, MMP-10, and other MMP
levels are elevated in the aging matrix, which contrib-
utes to ECM remodeling [3]. Through this increased
MMP expression, senescent cells show reduced contact
inhibition, facilitating cancer growth. Under the action
of MMP, the collagen in the ECM undergoes fibrosis,
accompanied by the destruction and reorganization of
the elastin structure, composition alteration of laminin,
and decreased hydration capacity of hyaluronic acid,
eventually resulting in the loss in ECM mass and mois-
ture, increased fibrosis, and tissue dysfunction [223]. A
study demonstrated that fibronectin inhibits tumor cell
proliferation in the tumor microenvironment but plays
the opposite role in the normal stroma. In the aging
ECM, the expression of fibronectin is upregulated; how-
ever, due to hypoxia, mutations, nutritional deficiency,
viral infections, and other adverse factors, structures
often undergo misalignment [224]. The decline in heart
function in old age enhances the chances of ECM [225].
In addition, the decline in NAD+levels in senescent cells
leads to increased stability of HIF-1«, which induces a
pseudohypoxic state [226]. Activation of HIF-la can
mediate cancer cell invasion through the action of
fibronectin [227]. Hypoxia can also change the stiffness
of the ECM mediated through LOX, leading to immune
cell infiltration and tumor cell migration [228-230].

Angiogenesis

In young individuals, angiogenesis vitally contributes
to tumor progression. Previous studies have shown that
solid tumors need enough blood to grow. When solid
tumors are larger than 2 mm in diameter, new blood ves-
sels must be formed to maintain the blood supply; with-
out new vasculature, the tumor undergoes necrosis due
to hypoxia [231]. In addition, angiogenesis is related to
tumor cell invasion, immune cell infiltration, and chronic
systemic inflammation.

In normal tumors, angiogenesis can be initiated in
many ways, including vasculogenesis, sprouting angio-
genesis, and vasculogenic mimicry (VM) [232]. Vascu-
logenesis refers to endothelial progenitor cells (EPCs)
differentiating into endothelial cells and de novo for-
mation of a primary blood vessel network. Sprouting
angiogenesis refers to the proliferation and migration of
existing vascular endothelial cells, which generate new
capillaries, which is the process in embryonic develop-
ment, after birth and during tumor progression [233].
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Moreover, in the tumor microenvironment, a variety
of angiogenic factors, including VEGF, FGF, and PDGE,
promote angiogenesis [234]. In contrast to the two afore-
mentioned methods, VM does not depend on endothe-
lial cells [235]. Many studies have reported that VM is
involved in a variety of tumors [236]. In the VM process,
tumor cells are arranged into tubes and covered by gly-
coproteins to form blood vessels [232]. There is evidence
to suggest that VM may be the blood supply source in
early tumor progression and that these vessels are gradu-
ally replaced via vasculogenesis and sprouting angiogen-
esis in a later stage [237]. Regardless of the mechanism,
angiogenesis is closely related to hypoxia. Under hypoxic
conditions, the content of HIF-la increases. Activated
HIF upregulates the expression of VEGF, TGF, and other
angiogenic factors; IGF, c-Myc, and other proteins asso-
ciated with cell survival and proliferation; and GLUT1,
GLUTS3, and other proteins that change cell metabolism
and enhance adaptability [238]. Moreover, hypoxic con-
ditions can accelerate the EMT of tumor cells and the
secretion of MMP, which leads to an incomplete vascular
matrix that enables cells to migrate, thereby increasing
the aggressiveness of tumor cells [239]. Circulating tumor
cells (CTCs) originating from a primary focal point may
die rapidly after entering the blood due to the shear force
of the blood flow and anoikis [240, 241]. However, CTCs
can interact with blood platelets, macrophages, lympho-
cytes, and other cells to prolong survival and immune
escape [242]. In addition, a study demonstrated that the
microvasculature may be a premetastatic niche formed
by tumor cells before they enter the circulatory system
[243].

In the aging tumor microenvironment, the change in
angiogenesis mechanisms is diverse. A study showed
that SRPX expression is increased in senescent cells
and decreased in tumor cells, and SRPX itself promotes
angiogenesis through the FAK pathway [244]. Thus, cells
acquire the SASP during senescence. Among SASP fac-
tors, VEGF, PDGFA/B, FGEF, and other secreted angio-
genic factors and CCL5, CXCL-1, II-6, and other secreted
proinflammatory factors may promote vascular remod-
eling [37]. Changes in miRNA expression during cell
senescence may promote tumor metastasis. Mir-21 can
inhibit the regeneration of endothelial cells and pro-
mote angiogenesis in vitro and in vivo, and it is secreted
by CAFs in exosomes [210, 245]. In addition, previ-
ous reports have noted that exosomes carrying miRNA
can regulate the microenvironment of a metastatic site,
thereby promoting tumor colonization [211]. In addition,
HDAC, which functions as part of the SASP, also contrib-
utes to vascular endothelial formation. Many studies have
shown that HDAC6, HDAC7, and HDAC9 promote angi-
ogenesis by inducing endothelial cell migration, while
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HDACS5 exerts an antiangiogenic effect in endothelial
cells [99, 246-2438].

Moreover, angiogenesis in the tumor microenviron-
ment can be affected by changes in the aged physiological
state. Previous studies have shown that with advanc-
ing age, the number of small arteries in certain tissues
decreases, which decreases blood flow and in turn leads
to the downregulation of Notch in endothelial cells [249].
As mentioned above, MMP9 is highly expressed in the
heart during aging, causing collagen deposition and
cross-linking [250]. ECM deposition can cause cardiac
insufficiency, reduce angiogenesis and further reduce the
blood supply to the whole body [225]. These mechanisms
together reduce blood flow into the tumor microenviron-
ment, causing hypoxic and nutrient-deficient conditions,
which activate HIF and other signaling pathways. More-
over, studies have shown that molecules including Il-4
and CD163 secreted by M2-polarized macrophages can
induce pathological angiogenesis, which may increase
the blood supply to the tumor microenvironment [251].
In addition, CTCs can be cloaked with platelets, reducing
the effect of the shearing force of the blood. Platelets can
also support CTC adhesion to the vasculature and facili-
tate CTC immune escape [242, 252, 253]. In aging bone
marrow, macrophages promote an increase in platelet
hematopoietic stem cells through the action of Il-1, which
ultimately increases the number of circulating platelets
in mice [254]. These mechanisms together maintain the
material supply to an aged tumor microenvironment.

Stromal population

The stromal TME within tissue is made up of various
components, including fibroblasts, endothelial cells,
pericytes, adipocytes, the ECM, and immune cells, and
plays a major role in TME homeostasis. Fibroblasts are
the most common stromal component; these cells are
required for the synthesis of collagen and for the struc-
tural integrity of connective tissue and play key roles
in wound healing and inflammation [255]. Their pre-
dominant mode in regulating many of these processes
is through the secretion of soluble factors, including
cytokines, chemokines, growth factors, enzymes, and
structural components of the ECM [23, 38]. Given the
complexity of different tissues, the TME plays a specific
role in the regulation of the soluble factors secreted by
fibroblasts along with their migratory and proliferative
characteristics. The fibroblast renewal rate, defined as
the sum of the total number and proliferative capacity
of fibroblasts, greatly varies among different tissues,
with factors such as local temperature, vascularization,
mechanical stress, and hormonal responses contribut-
ing to the renewal rate [256]. Changes in fibroblasts
during aging are likely to be different between organ
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sites and often involve senescence. Senescence is a
classic example of antagonistic pleiotropy, and the
accumulation of senescent cells is a key pathologi-
cal feature associated with aging [257-260]. Cellular
senescence is linked to many of the cellular processes of
aging and can be a direct result of responses to intrin-
sic or extrinsic oncogenic stimuli; notably, many forms
of senescence are not aging-related (e.g., oncogene-,
replication-, stress- and therapy-induced) [261-263]
(Fig. 5).

There are still some disputes on how the accumulation
of senescent cells occurs in elderly individuals. It should
be hypothesized that, as we age, a reduction in immune
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function decreases the recognition and clearance of these
growth-arrested cells, which eventually results in their
accumulation [264]. Typically, the SASP is believed to be
made up of approximately 75 secreted factors, includ-
ing granulocyte—macrophage colony-stimulating fac-
tor (GM-CSF), IL-6, IL-8, and IL-10 [38, 260]. However,
many of these secreted factors were identified in studies
using oncogene-induced senescence models and may not
necessarily reflect true age-induced senescence. While
the mechanisms underlying age-related SASP transfor-
mation are still under investigation, many genetically
engineered mouse models (GEMMs) have been key in
determining their pathological and homeostatic role.
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pl6™K44 activation seems to be one of the important

contributors toward senescence induction in cells [265],
yet the contributions to age-related accumulation of
senescent cells need more description. To be consistent,
when modeled in vivo, its contribution toward senescent
cell accumulation is described as more of a “molecular”
form of aging as opposed to a “chronological” form [265].
The GEMM demonstrates that a dramatic accumulation
of p16™ * _expressing cells occurs across various tissues
throughout the aging process and characterizes the path-
ological changes associated with the age-induced SASP
in peritoneal macrophages, illustrating the potential for
other stromal components. Fibroblasts contribute to
many SASP-related pathologies, and studies have shown
that tumor-associated fibroblasts undergo chromatin
remodeling via histone deacetylase (HDAC) modulation
to achieve a SASP irrespective of DNA damage [99, 266].
Recently, it was shown that LINE-1 retrotransposable ele-
ments are derepressed at the transcriptional level to elicit
a type I IEN response, which contributes to the mainte-
nance of a SASP [59]. These findings further support the
conclusion that dynamic changes within an aged TME
play a key role in reprogramming cells toward a SASP.

Other TME components

Other senescent cell populations, such as endothelial
cells, epithelial cells, immune cells, stem cells, and even
certain tumor cells, play clear roles in modulating the
TME by acquiring the SASP [21, 267]. Many examples
have shown that senescent cell populations can contextu-
ally produce protumorigenic or antitumorigenic effects;
however, direct age-related evidence for these effects
within these cell types remains limited. A recent study
based on a xenograft model with human BPLER triple-
negative breast cancer cells in nude mice found that
tumors showed delayed onset, slower growth kinetics,
and reduced metastasis in aged mice (>10 months old)
than in young mice (8—10 weeks old). Furthermore, a
subset of tumor-infiltrating hematopoietic cells in young
mice showed upregulated CSF1 receptor (CSF1R) expres-
sion and secreted the growth factor granulin to induce
robust tumor growth and metastasis. Importantly, bone
marrow-derived cells from young mice and transplanted
into aged mice were sufficient to activate the tumor-sup-
portive TME and induce tumor progression.

Cellular senescence has been confirmed to be a key
contributor to inflammaging in many age-related malig-
nancies [268, 269]. SASP acquisition in stromal cell
populations results in the persistently increased secre-
tion of multiple inflammatory cytokines that maintain
low adaptive immune response levels. Other age-related
changes to the gut microbiota, obesity, and tissue degra-
dation also appear to drive the inflammaging response
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[22]. In total, these age-related processes appear to drive
chronic inflammation by increasing systemic levels of
IL-1, IL-6, IL-1a, IL-1f, IL-33, GM-CSE, IFN-y, TNF, and
C-reactive protein (CRP). All these factors contribute to
multiple morbidities and mortalities in elderly individu-
als [22, 270]. Similar effects have also been observed with
increased infiltration of immunosuppressive Treg cell
populations in chronic inflammatory mouse models,
mimicking the chronic inflammation that often precedes
and may lead to certain malignancies such as melanoma
and colorectal cancer [271]. Treg cells play a key role in
maintaining tolerance to self-antigens and suppressing
the induction and proliferation of effector T cells (such as
CD4+and CD8+ T cells) via the secretion of cytokines
and enzymes [272]. Another study induced chronic,
tumor-promoting allergic contact dermatitis (ACD) in 6-
to 8-week-old mice by treating them with 1-fluoro-2,4-di-
nitrobenzene (DNFB) and found that IL-33 expression
was key in inducing the transition from acute, tumor-
suppressing inflammation to chronic inflammation [271].
The number of Treg cells was significantly reduced in
DNEFB-treated 1L-33-knockout mice, and knocking out
IL-33R in Treg cells significantly reduced ACD-induced
skin carcinogenesis. Interestingly, in colitis-induced colo-
rectal cancer, the IL-33-Treg cell axis was identified as a
key driver of carcinogenesis. However, more evidence on
the age-related effects of the IL-33-Treg cell axis in tumo-
rigenesis is needed [270, 273, 274].

Several microRNAs (miRNAs) termed identified in
association with many human malignancies are called
“inflamma-miRs” [275]. Age-related increases in miR-
19b, miR-21, miR-126, and miR-146a appear to drive the
progression of many types of cancer, and possibly other
diseases, through inflammaging [276]. miR-21 has been
shown to be overexpressed in many malignancies and to
reduce the expression of the potent anti-inflammatory
factors IL-10 and TGEF-B [277], but when binding to
Toll-like receptor 8 (TLR8), it induces the secretion of
the inflammaging cytokines IL-6 and TNF [278]. Immu-
nosenescence is another contributor to many age-related
pathologies, including cancer. Immunosenescence is
defined as the age-related dysregulation of the immune
system, whereby subpopulations of effector immune cells
and overall immune function decline. This process is a
result of multiple factors, including thymic atrophy [279],
a decrease in the number of naive T cells [280], a reduc-
tion in memory T-cell function [281], and decreased rec-
ognition of diverse antigens by T cells [282, 283]. Along
with T-cell dysfunction, NK cells, macrophages, and den-
dritic cells, all of which play early roles in tumor-immune
recognition and suppression, appear to undergo pheno-
typic decreases in cytotoxic activity as humans age [284—
287]. The key involvement of these processes in cancer
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progression has been identified in a squamous cell carci-
noma (SCC) model of aging [288]. In GEMM models of
conditionally expressed mutant HRAS in keratinocytes,
aged mice (18—22 months) developed SCC more quickly
than young mice (2—4 months). Molecular analyses of the
immune system of the aged mice revealed a shift toward
a protumorigenic T helper 2 cell anti-inflammatory
response, as well as increased expression of inhibitory
programmed cell death ligand 1 (PD-L1) and senescence-
associated P-galactosidase on effector immune cells in
the dermis.

Age-induced immunosenescence is largely mediated
by effector T cells and other immune cell types required
for antitumor immunity (Fig. 6). Changes in these cells
have been hypothesized to induce a shift toward the acti-
vation and infiltration of more immunosuppressive cell
populations in elderly individuals, which is important to
their increased predisposition to cancer cell invasion and

A B
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metastasis [289]. The number of M2 tumor-associated
macrophages (TAMs), which are negatively associated
with tumor immunity, is significantly higher in the spleen
and bone marrow of aged mice (>24-28 months old)
[290]. Additionally, stimulation of macrophages isolated
and cultured from aged mice in mesothelioma or lung
carcinoma cell-derived culture supernatants increased
the levels of the M2-derived immunosuppressive
cytokine IL-4. Stimulation of M2 TAMs toward switch
to an M1 proinflammatory phenotype by treating aged
mice with a combination consisting of an IL-2 agonist
and anti-CD40 therapy reduced immunosuppressive IL-4
and IL-10 expression and inhibited tumor growth [291].
While the binary M1/M2 classification of macrophages
has been hotly debated, a large amount of evidence sug-
gests that M2-like immunosuppressive macrophages
promote tumor progression in an aging context [291].
TAMs have also been demonstrated to play key roles in
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establishing a premetastatic niche in the liver by secreting
CXCL1 and inducing the recruitment of MDSCs, which
are necessary for the efficient formation of colorectal
cancer liver metastases [292]. p16"% and p21™4/!/Cipl
could suppress tumor progression by inducing cellu-
lar senescence, the deletion of p16”** and p21%4!/Cir!
reduces CX3CR1 expression and inhibits monocytic-
MDSCs (Mo-MDSCs) accumulation in tumors express-
ing CX3CR1, hence suppresses the tumor proliferation in
mice model. The regulation of Mo-MDSCs is a valuable
strategy to inhibit tumor progression [293]. More direct
evidence on the systematic effects of M2 TAMs is war-
ranted in the future.

Neutrophils undergo immunosenescence throughout
aging, and they have been confirmed to infiltrate injured
tissue in elderly people [294]. Studies have shown that
neutrophils in aged patients and mice produce more anti-
inflammatory cytokines than their younger counterparts
[295]. Neutrophils are well-characterized regulators that
mediate tumor progression through proinflammatory
effects in tumor models of young mice; however, sub-
populations of anti-inflammatory “N2 tumor-associated
neutrophils (TANs)” have recently been implicated in
many kinds of cancers [296, 297]. Studies conducted
with young mice revealed that the number of immuno-
suppressive N2 TANS is systematically increased in aged
patients and that they exhibit a function similar to that
of MDSCs [298]. Nevertheless, direct age-related investi-
gations into N2 TAN involvement in the TME should be
performed.

Many studies suggest a dramatic increase in Treg cell
numbers and function in age-related pathologies and in
organs such as the lymph nodes and spleen [299-302];
however, other reports showed no change in Treg cell
numbers or function or their reduced contribution to
other aged tissues and cancers [303-305], suggesting
that Treg cells may play a context-specific role in differ-
ent TMEs and cancer environments. Furthermore, Treg
cell recruitment also appears to be a significant factor
in the establishment of the premetastatic niche in many
cancer types [306]. Nevertheless, whether the age-related
increases in the number of Treg cells that is observed sys-
tematically in certain mouse models are directly linked
with increases in age-related metastasis remains unclear.
MDSCs exhibit a consistent increase in human blood
during aging [307] and in the bone marrow and lymphoid
organs of 17- to 19-month-old mice [308, 309]. Regres-
sion within young mice harboring breast cancer corre-
lated with significant effector T-cell infiltration, whereas
aged mice showed significantly increased numbers of
MDSCs in the TME. Importantly, MDSCs are among
the immune cell types most closely associated with the
formation of the premetastatic niche in cancer [310].
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Stromal senescence significantly increased the numbers
of immunosuppressive MDSCs and Treg cells adjacent to
senescent populations in healthy mice, primarily via the
secretion of IL-6 [78]. These studies additionally suggest
that the accumulation of senescent stromal cells is suf-
ficient to establish a tumor-permissive chronic inflam-
matory TME that allows tumors to grow and progress
unabated by the immune system. Age-related increases
in the numbers of systemic MDSCs and acceleration of
other age-related processes, such as inflammaging and
ECM modulation, may directly link MDSCs, Treg cells,
and other immunosuppressive cell subpopulations with
age-related cancer predisposition and premetastatic
niche formation. Details on the roles played by immu-
nosuppressive immune cell types in these processes are
needed. In prostate cancer, effector T cells and proin-
flammatory cytokines appear to contribute to increases
in tumor growth. Prostate fibroblasts cultured from
young (<55 years old) and aged (> 65 years old) healthy
individuals showed that the aged fibroblasts secrete a
greater number of cytokines and interleukins, which
promote the growth of epithelial cells and may affect the
function of immune cells [311]. Another study on pros-
tate cancer showed that CD3+, CD4+, and CD8+ T-cell
infiltration exerts a protumorigenic effect and is associ-
ated with tumor growth [312]. These findings suggest
that effector versus immunosuppressive cell infiltration
in the TME with advancing age depends on the context
and is related to tumor growth and premetastatic niche
formation.

Aging and potential response to therapy

The treatment for cancer in elderly patients is still chal-
lenging because age-related health conditions often
leave clinicians in a dilemma, as it is frequently unclear
whether potentially beneficial therapies can be safely
administered at standard dosages and will improve the
prognosis or whether potential side effects will likely
affect the patient’s quality of life (QoL). Approximately
50% of all cancers are diagnosed in patients over 65 years
old, and this percentage may increase to 70% as life
expectancy continues to increase, but survival data from
clinical trials for patients above this age are relatively rare
[313]. In fact, 40% of patients enrolled in cancer trials
are over 65 and fewer than 10% are older than 75 years;
therefore, more evidence is required to facilitate clinical
management for elderly cancer patients. Recent advances
in understanding the mechanisms of senescence, the aged
TME, and responses to therapy will yield crucial knowl-
edge to allow more efficient targeting and less-intensive
treatment of different cancer types in elderly patients. In
the following section, we provide descriptions of clinical
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therapy for patients presenting with both cellular senes-
cence and cancer.

Chemotherapy

Chemotherapy is a nonspecific, aggressive treatment
that results in the targeting of fast-growing malignant
cells; however, chemotherapy causes many side effects
associated that can often be life-threatening in elderly
individuals. A recent study showed that chemotherapy-
induced senescent fibroblasts within mice caused a con-
sistent inflammaging response, and the elimination of
these fibroblasts significantly decreased both short-term
and long-term side effects of chemotherapy-induced
cytotoxicity, decreased the possibility of cancer recur-
rence and reduced the extent of cancer metastasis [88].
Many similar studies have suggested that chemotherapy
may be initially beneficial; however, in many cases, it
may later contribute to accelerated aging of the TME and
increase residual disease in patients [314]. Chemotherapy
can also induce off-target effects that include stem cell
pluripotency decline and bone marrow exhaustion. Stud-
ies showed that MSCs in 16-month-old mice were much
more sensitive to doxorubicin treatment than those in
1-month-old and 8-month-old young mice [315]. Patients
can undergo stem cell transplantation while receiving
high-dose chemotherapy regimens to prevent off-target
effects; however, stem cell transplantation may induce
toxicity that exceeds the safety threshold in many elderly
individuals, which limits the broad use of this strategy
[315]. In a cohort of patients with different types of can-
cers, including myeloma, lymphoma, and leukemia and
who underwent hematopoietic stem cell transplantation,
the expression of p16™* was significantly increased in
effector T cells. Further analysis of gene expression in
effector T cells from these cancer patients showed clear
signs of immunosenescence and T-cell aging [316]. The
off-target effect associated with stem cell transplanta-
tion and chemotherapy can cause damage to the thymus
by accelerating thymic aging [316]. Overall, there may be
a potential clinical benefit in targeting chemotherapy-
induced acceleration of age-related tumorigenic events
to decrease cytotoxicity and increase survival. There are
many cases where chemotherapy in elderly patients is
tolerated well and prolongs survival irrespective of the
location of the cancer [317]. In any case, the key consid-
eration to determine proper chemotherapeutic regimens
in the elderly should be whether the benefits of treatment
outweigh the side effects. Further research is warranted
to provide more insights into the cytotoxic effects at the
molecular level and the degree of organ function decline
in older patients.
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Targeted therapy

Targeted therapy has been regarded as one of the stand-
ard personalized approaches to target cancer cells or
the TME for specifically inhibiting tumor development
or progression. However, drug resistance and adverse
events are always major concerns for this type of treat-
ment [317, 318]. Targeted therapy often induces fewer
off-target effects than chemotherapy or radiotherapy,
as cancer cells targeted for therapy appear to undergo
more intrinsic changes based on genetic mutations, epi-
genetic alterations, and genomic instability to induce
off-target effects. A recent study illustrated that healthy
aged dermal fibroblasts facilitated increased resistance
to targeted BRAF therapy in allogeneic mouse models
of melanoma by secreting SFRP2 into the TME [319].
Furthermore, using recombinant SFRP2 to treat young
mice led to increased resistance in a formerly sensitive
mouse model [319]. Studies focusing on melanoma have
shown that B-cell infiltration in the TME results in the
secretion of insulin-like growth factor 1 (IGF1), which
promotes drug resistance to BRAF and MEK inhibitors
[320]. Another recent study reported that immunosup-
pressive age-associated B-cell counts are significantly
increased in aged mice (> 24 months old) but that the lev-
els of other B-cell subtypes were reduced [320, 321]. The
number of MDSCs, as previously described, increases
with age, and these cells appear to induce resistance to
antiangiogenic therapies as well as other targeted thera-
pies used in the treatment of multiple myeloma [322],
prostate cancer [323], liver cancer [324] and melanoma
[325]; however, a direct link between MDSC drug resist-
ance and age has not been investigated in these models.
Notably, combination therapy with drugs targeting treat-
ment resistance-promoting components in the stroma
and ECM of the TME may increase the persistence of
targeted therapy effects [326-328]. Given the complex
mechanism by which protumorigenic effects are induced
with age, research on the aging TME, potential premeta-
static niches, and their contributions to targeted therapy
resistance is definitely needed.

Immunotherapy

Immunotherapy has been established to modulate the
immune TME and thus target and eliminate tumor
cells. The efficacy of immunotherapy is considerable;
however, not all cancer patients receive clinical benefits
from immunotherapy [329]. Therefore, investigators
need to identify more-robust biomarkers for this kind
of treatment. Marked changes in immune profiles and
function are found in aging humans, and therapy tar-
geting the immune system within the elderly has shown
considerable clinical implications. However, few stud-
ies have incorporated elderly individuals into trials to
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evaluate the efficacy of immunotherapies in older can-
cer models. The most widely used immunotherapies
that have proven clinical efficacy across a wide range
of cancers are immune checkpoint inhibitors (ICIs)
targeting programmed cell death 1 (PD-1), PD-LI,
cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4) and lymphocyte activation gene-3 (LAG-3). Many
cancer cells and other stromal components upregulate
cell signaling through immune checkpoint pathways to
evade antitumor immune responses. Interestingly, PD-1
surface expression has been suggested to contribute to
the age-dependent functional decline of effector mem-
ory T cells [330]. PD-1 levels are increased on T cells
with age, and anti-PD-1 therapy increases T-cell func-
tion, especially in aged mouse models [331, 332]. Rapa-
mycin, an mTOR inhibitor, has been shown to reduce
age-related increases in PD-1 levels, suggesting a role
of these inhibitors in increasing tumor immunity in
aged tissues [332]. A marked increase in PD-L1 expres-
sion in CD8+ effector T cells of aged mice compared
with young mice has been observed, and anti-PD-L1
immunotherapy reduced cell proliferation in vitro and
antitumor immunity in aged hosts compared with the
effect in young mouse lymphoma models [333]. In
another study, PD-L1 and indoleamine 2,3-dioxyge-
nase 1 (IDO1) levels were increased during aging in
the brains of healthy human adults, while the number
of circulating Treg cells increased and that of CD8+ T
cells decreased during aging [334]. These findings sug-
gest that older patients with cancers such as lymphoma,
glioblastoma and leukemia may be less responsive to
immunotherapy.

Additionally, within the aged mouse model TME,
CD8+ T cells displayed a tendency for exhaustion, and
IEN-y levels were significantly decreased; similarly, in
aged patients with triple-negative breast cancer, IFN-y
gene expression levels were found to be decreased.
Inflammation of the TME mediated by IFN-y in aged
tumor-bearing mice significantly increased the sensitivity
of the mouse responses to ICIs [335]. Considerable high-
quality evidence and substantial published datasets have
confirmed that currently available ICIs show high effi-
cacy in older adults [336-363] (Table 4); however, some
of these findings are controversial and because of a lack
of enrolled aged patients (maybe> 65 years) in clinical
trials, to determine whether the investigated treatments
show clinical benefits or whether toxicity is increased in
elderly patients, more study is needed [305, 364]. Patients
older than 60 years are likely to respond more efficiently
to anti-PD-1 immunotherapy, and the likelihood of elic-
iting a response to anti-PD-1 increases with age. These
findings have been recapitulated in young and aged mela-
noma mouse models.
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Moreover, research on TME immune cell subtypes
revealed that aged mice showed significantly increased
CD8+ T-cell-to-Treg cell ratios, indicating that they car-
ried more immunogenic tumors [305]. The depletion of
Treg cells via anti-CD25 therapy significantly increased
the anti-PD-1 response in young mice [305], and Treg
cell depletion in aged melanoma mouse models was inef-
fective in inducing antitumor immunity but completely
decreased tumor growth in young mice [308]. How-
ever, other studies have shown contradictory findings.
For example, in one study, anti-PD-L1 treatment of B16
melanomas exhibited substantial efficacy only in young
mice, but combination therapy with anti-PD-L1 and anti-
CTLA4 antibodies showed partial efficacy in aged mice
[365]. Some retrospective studies on melanoma [364]
and non-small cell lung cancer (NSCLC) [366] in which
either anti-PD-1 or anti-PD-L1 was administered showed
little difference in overall survival (OS), progression-free
survival (PFS) or toxicity between age groups. Because
the diversity in immune cell profiles, infiltration status,
and activity across various tumor models as well as in the
TME at different tissue sites is large, the immunothera-
peutic response likely differs marked in young versus
aged patients. Genetic and environmental diversity in dif-
ferent populations also limits collective analyses across
various racial and ethnic backgrounds. Given the dis-
crepancy found when targeting one immune checkpoint
compared with another in aged models, tailoring specific
immunotherapeutic treatments to aged patients may be
warranted. Importantly, some groups are focusing on
seeking strategies for recruiting older patients with can-
cer for clinical trials [367]. These strategies, along with
a focus on furthering the understanding of age-related
changes at the molecular level in TMEs and premeta-
static niches, may be critical in efficiently predicting
patient responses across a wide range of cancers. Con-
sidering these possibilities, we may also identify other
avenues for effective cotargeting of tumor-promoting
immune cell subpopulations.

Conclusions and further perspectives

Recent studies have suggested that the aging TME may
exert dramatic effects on tumor progression. Normal
age-related changes in stromal and immune popula-
tions may function together to drive the progression of
tumor cells from an initial or slow-growing state to a
highly aggressive and metastatic disease state. The out-
comes of these changes involve variations in secreted
factors, changes in the biophysical architecture of the
TME, and even changes on a macroscopic level, such as
the breakdown in vasculature integrity [368, 369]. Several
challenges remain that need to be resolved in the future.
(1) There is a lack of drugs that are highly effective in
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inducing senescence in a high proportion of cancer cells.
In addition, drugs need to show a preferential affinity for
cancer cells over normal cells, as inducing senescence in
normal tissues can cause detrimental side effects [88].
(2) We need to establish more gold standard signatures
and biomarkers for identifying the senescent state. No
obvious biomarker can be measured to unambiguously
discriminate between senescence and other growth-
arresting states [86]. There have been several multi-gene
signatures to identify senescence in primary cells. A
panel of cancer cells have been selected to identify the
SENCAN classifier for cancer senescence [86]. In vivo,
investigators should use galacto-conjugated fluorescent
nanoparticles to detect senescent cells. This method has
been tested in models of chemotherapy-induced senes-
cence [370, 371]. The noninvasive imaging system could
be ideal for measuring the efficacy of senescence induc-
tion in cancer cells. Radioactive -gal positron emission
computed tomography (PET) tracer seems to be feasible
[372]; however, -gal-based screening strategy might be
unpowered to detect all senescent cells accurately. On
the one hand, cells from some tissue types do not induce
SA-B-gal activity when they turn to senescent [8], on
the other hand, macrophages may also be able to exhibit
increased SA-B-gal activity [373, 374], consequently, false
positives may result from macrophages inside inflamed
tumor tissues. Other noninvasive methods, for example,
oxylipin biosynthesis may also help to detect clearance
of senescent cells [375]. Furthermore, other biomarkers
that can be potentially used in noninvasive approaches
to detect senescent cancer cells should be similarly estab-
lished [376, 377]. Researchers need to explore whether
these markers can be used to detect senescent cancer
cells in different contexts, such as cells with different
genetic backgrounds, derived from different tissue types
or with senescence induced by different agents [378]. (3)
The next challenge is that there is still no unique senes-
cence-based therapy due to tumor heterogeneity. Intra-
tumoral heterogeneity leads to varying drug responses
that may limit the effectiveness of senescence induction
within tumors. Senescent cells can spread the senescent
phenotype through the SASP to the surrounding non-
senescent cells within tumors [101], which will sensi-
tize non-senescent cancer cells to senolytic treatments.
Additionally, such bystander effects could be fortified
by the local TME shaped by SASP of the senescent cells.
Further efforts to understand senescence-based therapy
outcomes may overcome tumor heterogeneity and guide
the timing of personalized treatments [101, 379]. Most
senolytic drugs were developed with the aim to reverse
the effects of aging and were consequently tested mostly
on primary cells. In a study, the commonly used senolytic
(navitoclax) on a panel of senescent cancer cells showed
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that it has widely variable activity as a senolytic [86].
Beyond identifying absolute biomarkers for the senescent
state, the field is also in need of a druggable and broadly
present vulnerability of senescent cancer cells. Novel
CRISPR-Cas9-based genetic screening platform allows
for the performance of drop-out screens to identify new
senolytic targets on the genome scale. If universal vulner-
abilities of senescent cancer cells exist, unbiased genetic
screens should allow the identification. (4) There is still
no abundant knowledge on how the SASP acquired by
senescent cancer cells impacts the interaction between
senescent cancer cells and immune system cells. Sev-
eral early studies have pinpointed a synergy between
senescence-promoting therapy and checkpoint immu-
notherapy [36, 37]. It is possible that not all pro-senes-
cence therapies and not all cancer types will benefit from
combination checkpoint immunotherapy. This possibil-
ity is supported by the substantial heterogeneity in SASP
factors produced by different types of cells undergoing
senescence [86]. It is important to ascertain when a SASP
provokes an immune response that can be enhanced by
checkpoint immunotherapy and when it does not. It is
possible to use the so-called senomorphic drugs as the
NE-kB-inhibiting drugs apigenin and kaempferol or the
mTOR inhibitor rapamycin [380, 381], which can mod-
ify the SASP of senescent cells to become more respon-
sive to checkpoint therapy clearance [382]. (5) We need
to be significantly cautious in ablating senescent normal
cells via anti-senescence therapies in aged individuals. In
elderly individuals, senescent cells can constitute a high
percentage of the net number of cells in some tissues and
this may jeopardize tissue structural integrity or affect
vascular endothelial cells, leading to blood-tissue barrier
disorder that potentially leads to liver and perivascular
tissue fibrosis and health collapse [383, 384]. This issue
highlights the need for the development of cancer-selec-
tive senolytics.

In this article, we discuss the impact of aging on the
TME from multiple perspectives and review treatments
as well as recent clinical trials with data on elderly indi-
viduals. The effects of aging on tumors are two-sided.
In the early stage of tumor formation, aging is often
associated with tumor suppression. However, once a
tumor progresses past a certain threshold, the tumor-
suppressive mechanisms are exploited by tumors,
which increases their malignancy. To some extent, these
mechanisms exhibit a screening function for tumors. In
addition, in special elderly groups, in addition to age-
associated alterations at the local cellular and molecular
levels, changes in organs may play an important role in
the tumor microenvironment. Therefore, for tumor pre-
vention and treatment in elderly people, in addition to
focusing on existing treatment methods, the influence of
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various organs and biological systems needs to be com-
prehensively considered.

Abbreviations

ACD Allergic contact dermatitis

ALT Alternative lengthening of telomeres
CDK Cyclin-dependent kinase

cGAS Cyclic GMP-AMP synthase

CRP C-reactive protein

CSF1R CSF1 receptor

CTC Circulating tumor cells

CTLA-4 Cytotoxic T lymphocyte-associated antigen 4
C/EBPa CCAAT/enhancer-binding protein a
DDR DNA damage response

DNFB Dinitrobenzene

miRNAs MicroRNAs

ECM Extracellular matrix

EMT Epithelial-mesenchymal transition
EPC Endothelial progenitor cells

GEMMs  Genetically engineered mouse models
GM-CSF  Granulocyte-macrophage colony-stimulating factor
HDAC Histone deacetylase

ICls Immune checkpoint inhibitors

IDO1 Indoleamine 2,3-dioxygenase 1

IGF1 Insulin-like growth factor 1

LAG-3 Lymphocyte activation gene 3

LINE-1 Long-interspersed element-1

MDSCs Myeloid-derived suppressor cells
MSCs Mesenchymal stem cells

Mo-MDSCs Monocytic-MDSCs

NKcells  Natural killer cells

QIS Oncogene-induced senescence

oS Overall survival

PD-1 Programmed cell death 1

PD-L1 Programmed cell death ligand 1

PET Positron emission computed tomography
PFS Progression-free survival

PICS PTEN-loss-induced cellular senescence
PML Promyelocytic leukemia

QoL Quiality of life

ROS Reactive oxygen species

SAE Senescence activation enhancer

SASP Senescence-associated secretory phenotype
SCC Squamous cell carcinoma

STING Stimulator of interferon genes

TAMs Tumor-associated macrophages

TANs Tumor-associated neutrophils

TERT Telomerase reverse transcriptase

TIME Tumor-immune microenvironment

TIS Therapy-induced senescence

TLR8 Toll-like receptor 8

TME Tumor microenvironment

TMMs Telomere maintenance mechanisms
Treg T-regulatory cells

T-SCE Telomere sister chromatid exchange
UPR Unfolded protein response

VEGF Endothelial growth factor

VM Vasculogenic mimicry
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