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Abstract 

Recurrent mutations in TP53, RAS pathway and JAK2 genes were shown to be highly prognostic of allogeneic hemat‑
opoietic cell transplant (alloHCT) outcomes in myelodysplastic syndromes (MDS). However, a significant proportion of 
MDS patients has no such mutations. Whole-genome sequencing (WGS) empowers the discovery of novel prognos‑
tic genetic alterations. We conducted WGS on pre-alloHCT whole-blood samples from 494 MDS patients. To nomi‑
nate genomic candidates and subgroups that are associated with overall survival, we ran genome-wide association 
tests via gene-based, sliding window and cluster-based multivariate proportional hazard models. We used a random 
survival forest (RSF) model with build-in cross-validation to develop a prognostic model from identified genomic 
candidates and subgroups, patient-, disease- and HCT-related clinical factors. Twelve novel regions and three molecu‑
lar signatures were identified with significant associations to overall survival. Mutations in two novel genes, CHD1 and 
DDX11, demonstrated a negative impact on survival in AML/MDS and lymphoid cancer data from the Cancer Genome 
Atlas (TCGA). From unsupervised clustering of recurrent genomic alterations, genomic subgroup with TP53/del5q is 
characterized with the significant association to inferior overall survival and replicated by an independent dataset. 
From supervised clustering of all genomic variants, more molecular signatures related to myeloid malignancies are 
characterized from supervised clustering, including Fc-receptor FCGRs, catenin complex CDHs and B-cell receptor 
regulators MTUS2/RFTN1. The RSF model with genomic candidates and subgroups, and clinical variables achieved 
superior performance compared to models that included only clinical variables.
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To the editor

Myelodysplastic syndromes represent a heterogeneous 
group of myeloid malignancies with increased risk of 
progression to acute myeloid leukemia (AML). Recur-
rent mutations in TP53, RAS, JAK2, TET2, EZH2, ETV6, 
RUNX1, DNMT3A and ASXL1 mutations are associ-
ated with poor survival after alloHCT, the only curative 
therapy for MDS (Additional file  1: Table  S1) [1–6]. To 
overcome the complexity of genomic alterations in MDS, 
several analytic approaches have recently been developed 
with clustering-based or prior knowledge network-based 
models [7]. However, no previous study attempted to 
characterize mutational signatures with clinical relevance 
to post-transplant outcome at a whole-genome level.

Here using multivariable survival models with selected 
clinical variables and artificial intelligence-based mod-
eling approaches on WGS data (Additional file  1: 
Table  S2), we investigated both individual-level and 
subgroup-level impact of genomic mutations on post-
alloHCT survival of MDS patients from CIBMTR regis-
tration. (The details of CIBMTR data and sample source, 
outcome association, clustering and modeling can be 
found in the supplementary methods section.)

Novel somatic mutations are associated 
with post‑transplant overall survival
In genome-wide scanning of somatic nonsynonymous 
coding variants in the whole cohort (n = 494, Addi-
tional file 1: Table S3), variants in HCN2 and TP53 genes 
were associated with inferior OS (Fig.  1A I, Additional 
file  1: Tables S6–S7). In sensitivity analysis among the 
patients who were without recurrent mutations (TP53, 
RAS, JAK2, TET2, EZH2, ETV6, RUNX1, DNMT3A and 
ASXL1) (n = 301) (see Additional file  1: Table  S4), non-
synonymous somatic variants in the DDX11 gene were 
associated with inferior OS (Additional file 1: Fig. S4A I, 
Additional file 1: Tables S6–S7).

In gene-based and sliding window-based analyses of 
all somatic variants, we identified 11 additional regions 
(TP53, EFHC2, ABCA13, DCAF13P1.RNU6.392P, DLX5, 
RASGRF1, SLIT3, ABI3BP, MIR7515, SPAG16 and ARH-
GEF7-AS) that were associated with inferior OS (Fig. 1A 
II-III, Additional file  1: Tables S6–S7). In sensitivity 
analysis among the 301 patients, we identified 7 novel 
genomic regions (CHD1, RN7SKP174.EI24P4, EIF2B2, 

RP11-666E17.1-Metazoa_SRP, RP11-950C14.3, SEC14L3 
and bP-2171C21.3) that were associated with inferior OS 
(Additional file 1: Fig. S4A II-III, Additional file 1: Tables 
S6–S7). The set of genes was significantly enriched in the 
TP53-centered pathway network (Gene set enrichment 
analyses p value: 0.0042, Additional file  1: Fig. S5). In 
addition, a collection of analyses based on external anno-
tations support the clinical impact of most variants and 
genes that were associated with inferior OS in our cohort 
(Additional file  1: Figs. S6-S7, Additional file  1: Tables 
S11-S15).

The impact of novel mutations in DNA repair path-
way genes—DDX11 and CHD1—on OS associations was 
supported among patients with hematologic malignan-
cies whose survival is reported to the TCGA database 
(Additional file  1: Figs. S8-S9). In multivariate analyses 
in our cohort, DDX11 and CHD1 were shown to impact 
OS through an increased risk of both relapse and TRM 
(Additional file  1: Figs. S10-S11). DDX11 dysfunctions 
were linked to myeloid neoplasms via promoting cell pro-
liferation [8], while CHD1 plays a critical role in gating 
transcription landscape of hematopoietic stem and pro-
genitor cells (HSPCs) [9]. A recent study suggested that 
mutant CHD1 might lead to resistance to standard thera-
pies due to attenuated DNA damage responses in AML/
MDS patients [10]. We found that 3 CHD1 noncoding 
mutations map to known enhancer loci or transcription 
binding sites, revealing their regulatory functionalities.

The association of genomic subgroups 
with post‑transplant overall survival
Unsupervised clustering analyses of recurrent somatic 
variants and cytogenetic abnormalities identified four 
distinct clusters. The molecular signatures in these four 
clusters were found to be DNMT3A, STAG2 and ASXL1 
(subgroup 1), TET2 (subgroup 2), RUNX1 (subgroup 3), 
and TP53 and del5q (subgroup 4), respectively (Fig. 1B). 
Compared to the reference subgroup, Cox multivari-
ate models revealed that genomic clusters with TP53 
mutations and the del5q (p < 0.001**) have strong asso-
ciations with post-transplant overall survival outcome in 
both whole cohort and independent replication cohort 
(Fig.  1B, Additional file  1: Fig. S14, Additional file  1: 
Table  S8). To be noted, although genomic subgroup 1 
with DNMT3A, STAG2 and ASXL1 mutations and sub-
group 3 with RUNX1 mutations showed adverse survival 

(See figure on next page.)
Fig. 1  Genomic variants significantly associated with OS among the whole MDS cohort. A Volcano plot for genome-wide scanning of overall 
survival outcome association, respectively, for gene-based test of all nonsynonymous somatic coding variants (left), gene-based test of all somatic 
variants (middle), sliding window test of all somatic variants (right). B Heatmap of MDS genomic subgroups, respectively, using recurrent genomic 
alterations and K-means clustering. The survival curves associations of MDS genomic subgroups, respectively, using recurrent somatic mutations 
and cytogenetic abnormalities. C and D Heatmap and survival curve plots of MDS genomic subgroups using supervised clustering, respectively, for 
all genomic common variants and rare variants
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Fig. 1  (See legend on previous page.)
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risk stratifications (Fig. 1B), the results were not statisti-
cally significant in our MDS cohort and might be of inter-
est in the future studies.

Supervised clustering analyses of all genomic common 
variants identified three distinct clusters. To ensure the 
robustness of genomic clustering, the consistent pro-
files of survival outcome associations are confirmed in 
different k-fold cross-validations of supervised cluster-
ing (Additional file 1: Fig. S12). Additionally, competing 
risk regression and Cox proportional regression analyses 
of the association of genomic signatures from cluster-
ing were conducted and confirmed the associations with 
relapse, OS and DFS (Additional file  1: Fig. S13). The 
main molecular signatures in these three clusters are Fc-
receptor gene FCGR3B and FCGR2B (subgroup 1) and 
microtubule binding protein MTUS2 and RFTN1 (sub-
group 2) (Fig. 1C, Additional file 1: Table S16). Compared 
to the subgroup 3, Cox multivariate models revealed 
that genomic clusters with FCGR3B/ or MTUS2/RFTN1 
mutations have strong associations with post-transplant 
overall survival outcome (Fig.  1C, Additional file  1: 
Table  S16). From supervised clustering analyses of all 
genomic rare variants, the main molecular signatures 
were mostly found to be from long noncoding RNA 
(LncRNA) (Fig. 1D, Additional file 1: Table S16).

Genomic signature‑based prognostic models 
on post‑transplant overall survival
The prediction performance of RSF models that incor-
porated genomic signatures from supervised cluster-
ing analyses was excellent with C-index 0.83 alone and 
0.84 if combined with genomic association candidates 
(Table  1), as well as other survival models (Additional 
file  1: Table  S9). To assess the calibration and clini-
cal usefulness of the clinical prediction model, the 
Brier score for all RSF models has been computed and 
ranged from 0.07 to 0.22, indicating that RSF models 
performed well on both discrimination and calibration 

(Additional file 1: Table S10). In particular, the models 
with genomic components have very low Brier scores 
below 0.10, supporting their clinical usefulness on 
post-HCT overall survival prognosis of MDS patients. 
Comparable C-index were shown when the RSF models 
stratified with different conditioning regimens, as well 
as other outcomes DFS, relapse and TRM (Table  1). 
Indeed, feature importance evaluations supported that 
genomic subgroup from supervised clustering was the 
most important features in the RSF model, and even 
present greater importance than mutational num-
ber uncovered from genomic association candidates 
(Additional file 1: Fig. S16). The results suggested that 
molecular signatures from all genomic mutations could 
potentially provide more prognostic information than 
somatic recurrent mutations.

Even though our models incorporated internal vali-
dation, our results require further validation in another 
independent dataset. Furthermore, the WGS data rep-
resent the genomic landscape at the time of alloHCT 
and lack the comparison to the landscape at diagnosis. 
Lastly, 100% of our subjects were white, and therefore, 
these results are not representative of racially/ethnically 
diverse populations.

Based on the classical IPSS-R model, a recent study 
developed an innovative personalized prognostic 
model—IPSS-Molecular (IPSS-M) model, with improved 
discrimination across all key endpoints [11]. The IPSS-
M model integrates clinical, cytogenetic and molecular 
information. However, the recurrent somatic mutations 
in IPSS-M model were based on targeted gene sequenc-
ing with deeper depth > 200×, which are unavailable in 
our MDS cohort with 60× depth. Although our WGS-
based study may miss extremely small subclones in 
somatic genomics of MDS patients, it does empower the 
discovery of novel genetic biomarkers and could poten-
tially provide additional prognostic stratification infor-
mation to the IPSS-M model. Further investigations 

Table 1  Comparison of the concordance index among RSF models

Base model: IPSS-R

Clinical model: Base model + mdstype + HMA + CHEMO

Genomic model: genomic association candidates + genomic clustering subgroups

Full model: Clinical model + Genomic model

Survival model/concordance (95%CI) OS DFS Relapse TRM

Base model 0.49 (0.44–0.52) 0.48 (0.43–0.50) 0.45 (0.39–0.50) 0.45 (0.37–0.50)

Clinical model 0.54 (0.53–0.60) 0.55 (0.51–0.58) 0.55 (0.50–0.60) 0.54 (0.48–0.59)

Genomic model 0.83 (0.81–0.85) 0.75 (0.73–0.77) 0.80 (0.77–0.82) 0.80 (0.78–0.83)

Full model 0.84 (0.83–0.86) 0.78 (0.76–0.81) 0.73 (0.70–0.77) 0.85 (0.82–0.87)

Full model (regimen = myeloablative) 0.83 (0.80–0.86) 0.79 (0.75–0.83) 0.75 (0.69–0.81) 0.85 (0.80–0.90)

Full model (regimen = reduced intensity) 0.83 (0.80–0.85) 0.79 (0.76–0.81) 0.77 (0.74–0.80) 0.84 (0.82–0.87)
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would be of great clinical value toward developing the 
genomic model combined with WGS -based novel 
genetic biomarkers and IPSS-M.

In summary, our analyses identified novel prognostic 
factors of post-transplant survival that were centered by 
TP53 pathway network, and novel molecular signatures 
involved in multiple immune regulatory pathways. Our 
RSF models have demonstrated the substantial prog-
nostic contribution of these novel genomic candidates 
for alloHCT outcomes in MDS. This study supports the 
key role of WGS in elucidating the prognostic impact 
of genomic alterations in a disease known to be quite 
molecularly heterogeneous, such as MDS. These genomic 
alterations would not be identified with targeted gene 
panels sequencing alone. With the continuous reduction 
in costs of WGS, this technology could be an essential 
tool in future research and perhaps in clinical care, at an 
affordable rate [12].
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