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Abstract

Antibody-drug conjugates (ADCs) represent an important class of cancer therapies that have revolutionized the treat-
ment paradigm of solid tumors. To date, many ongoing studies of ADC combinations with a variety of anticancer
drugs, encompassing chemotherapy, molecularly targeted agents, and immunotherapy, are being rigorously con-
ducted in both preclinical studies and clinical trial settings. Nevertheless, combination therapy does not always
guarantee a synergistic or additive effect and may entail overlapping toxicity risks. Therefore, understanding the cur-
rent status and underlying mechanisms of ADC combination therapy is urgently required. This comprehensive review
analyzes existing evidence concerning the additive or synergistic effect of ADCs with other classes of oncology medi-
cines. Here, we discuss the biological mechanisms of different ADC combination therapy strategies, provide promi-
nent examples, and assess their benefits and challenges. Finally, we discuss future opportunities for ADC combination
therapy in clinical practice.
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Background

In the past decade, antibody-drug conjugates (ADCs)
have emerged as a transformative treatment modality
for a broad spectrum of solid and hematological malig-
nancies [1, 2]. ADCs are antibody-based macromo-
lecular complexes comprising three main constituents:
antibodies, linkers, and payloads. Their mechanism of
action can be summarized as follows: when the antibody
binds to the antigen on the surface of a target cell, the
ADC is internalized, releasing the payload and exerting
cytotoxicity [3] (Fig. 1). Following the initial approval of
ADC:s for solid tumors in 2013 [4], interest in this field
has increased, and numerous such conjugates have been
evaluated across various tumor categories.

Several ADCs have shown potent anti-tumor activi-
ties against treatment-refractory cancers. To date, eight
ADCs have been approved for solid tumors with dif-
ferent indications (Table 1). Nevertheless, even for tar-
get-positive tumor types, most patients do not achieve
long-lasting disease control and develop resistance to
ADC:s. Thus, for many tumor types, a single treatment
is insufficient and many ADCs are undergoing clinical
trials with more responsive regimens.
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In the realm of cancer treatment, it is widely acknowl-
edged that the likelihood of achieving complete remission
and cure is often heightened by combining therapeutic
agents that operate through diverse mechanisms of action,
particularly when dealing with the complexities of tumor
heterogeneity [5]. The primary approach for address-
ing resistance and/or enhancing ADC therapies involves
the integration of ADCs with different therapeutic strate-
gies. Synergy is commonly defined as the effect of two or
more agents working in combination that is greater than
the expected additive effect. An additive effect is gener-
ally considered as the baseline effect for synergy detection
methods. Consequently, active research is exploring the
combination of ADCs with various other types of anti-
cancer medications, such as chemotherapy, radiother-
apy, endocrine therapy, targeted molecular agents, and
immunotherapy, both in preclinical models and clinical tri-
als. There is an interest in developing rational combinations
that could prolong survival compared to monotherapies.

In this review, we discuss the mechanisms of differ-
ent ADC combination therapies and review the ongoing
clinical trials for their selection and evaluation. Finally,
we outline and examine key translational, statistical, and
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Fig. 1 Structure and mechanism of action of conventional ADCs. ADCs consist of three essential components: a monoclonal antibody that binds
to an antigen primarily expressed on the surface of tumor cells, providing specificity in targeting tumor cells; a linker that prevents premature
release of the payload in the bloodstream but instead releases it in the tumor cells; and a cytotoxic payload that triggers tumor cell death

by targeting critical components such as DNA, microtubules, and topoisomerase. ADC cytotoxicity involves a series of sequential stages: D

binding of the antibody to the antigen, @ internalization of the ADC-antigen complex, @ degradation of the ADC in the lysosomes, @ release

of the payload in the cytoplasm, ® its interaction with the target; ® possible discharge of a fraction of the payload into the extracellular milieu,
(@ subsequent occurrence of the bystander effect where it is internalized by neighboring cells in the tumor microenvironment. Abbreviation: TME,
tumor microenvironment
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regulatory considerations from a combination perspec-
tive, highlighting the current progress and significant
challenges yet to be addressed.

ADCs combined with chemotherapy

Integrating different forms of chemotherapy with ADC
has proven to be a well-accepted strategy for overcom-
ing drug resistance and achieving favorable treatment
outcomes in preclinical and clinical studies [6]. Exploring
the most effective combination regimen requires a com-
prehensive understanding of how ADC antibodies and
payloads work synergistically with chemotherapy drugs
to affect the cell cycle and alter the presence of surface
antigens. However, to date, many ADCs have been added
to commonly used chemotherapeutic regimens merely
as carriers for the delivery of toxic payloads without con-
sidering their synergistic effects, leading to mixed results
in both preclinical and clinical research. This highlights
the significant and unmet need for continued efforts in
designing clinical trials for ADCs combined with chemo-
therapy. Table 2 presents a list of such trials.

Mechanism of ADCs combined with chemotherapy
According to reported findings, chemotherapy and ADCs
act synergistically in ways that include targeting different
phases of the cell cycle or modulating tumor cell surface
antigen expression.

Cell cycle phase blockers

Many chemotherapeutic drugs are DNA-damaging
agents, such as antimetabolites, platinum-based com-
pounds, and topoisomerase inhibitors that target the S
phase of the cell cycle and induce G2/M arrest, which can
be effectively combined with ADC containing microtu-
bule-disrupting payloads that target the G2/M phase of
the cell cycle. This concept has been illustrated through
the effective combination of carboplatin with mirvetuxi-
mab soravtansine (targeting folate receptor a with DM4),
anetumab ravtansine (targeting mesothelin with DM4),
or luveltamab tazevibulin (targeting folate receptor o
with SC239) in ovarian cancer preclinically [7-9]. Dur-
ing early phase trials investigating the synergistic effects
of ravtansine-based ADCs in combination with car-
boplatin or doxorubicin, positive treatment responses
were observed in both platinum-sensitive and -resistant
patients with ovarian cancer [10-14].

Improved surface-antigen expression

The choice of chemotherapeutic companion may affect
the levels of surface antigens targeted by ADCs. For
instance, gemcitabine can upregulate HER2 expression
on pancreatic adenocarcinoma cells by 14.81 folds,
predominantly within the G2/M phase. Thus, the effect
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of gemcitabine on DNA synthesis renders it effective
against G1 and early S phase cells, whereas G2/M phase
cells are more resistant. The enhanced HER2 expression
in G2/M cells implies a greater likelihood of gemcitabine
effectively binding with trastuzumab emtansine (T-DM1,
HER?2 targeted with DM1 payload), which contributes to
the improved efficacy of the combination on pancreatic
ductal adenocarcinoma cells [15]. Thus, gemcitabine
generate synergistic effects in combination with T-DM1
through their ability to enhance antigen availability.
However, it remains uncertain whether this observation
holds true for other ADC-chemotherapy combinations
with different targets, and whether the increased antigen
expression levels are directly related to the actual
available antigenic epitopes for ADC binding or even to
the efficacy of ADCs.

Coordination of different drugs

The timing of administration is a significant factor to
consider when designing ADC combinations, as most
conjugates must be internalized by tumor cells to be
effective, which involves systemic transport and cell
entry processes. For example, induction of G2/M phase
arrest by DNA damage requires at least 15 h for micro-
tubule disruptors to act [16]. Wahl et al. elegantly dem-
onstrated this concept in preclinical models of colon,
lung, and breast cancers. They observed that sequential
management of SGN-15 (a construct targeting the Lewis
Y antigen with a doxorubicin payload) followed by pacli-
taxel resulted in greater DNA fragmentation than simul-
taneous treatment [17].This observation suggests that the
sequence of drug administration may be taken into con-
sideration when combined chemotherapy with ADCs.
However, these concepts await clinical trial assessment
and should be explored in light of the recognized rates of
ADC internalization and cell cycle progression in indi-
vidual tumor types.

Safety profile of the ADC-chemotherapy combination

Notably, the combination of ADCs and chemotherapy pre-
sents challenges related to overlapping toxicities. Substan-
tial insights in this regard have been gained from clinical
trials. For example, a study evaluating T-DM1 in combi-
nation with docetaxel (with or without pertuzumab) for
HER2-positive breast cancer demonstrated dose-limiting
toxicities (DLTs) and grade >3 adverse events in approxi-
mately 80% patients with metastatic breast cancer [18].
These adverse effects included neutropenia, fatigue,
epistaxis, stomatitis, nausea, and diarrhea. Similarly,
the combination of T-DM1 with capecitabine resulted
in increased discontinuation rates without a significant
improvement in response rates [19]. The combination
of trastuzumab deruxtecan (T-DXd) with 5-fluorouracil
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Table 2 Summary of clinical trials investigating the combination of ADCs and chemotherapy

Target  NCT number Other Drug Partner drugs Partnerdrug Phase Start Treatment Efficacy
names category setting
(target)
HER2 NCT01702558 [19]  TRAXHER2  T-DM1 Capecitabine cT I 2012 mBC, mGC Negative
NCT02073916 [20] STELA T-DM1 Lapatinib+Abrax-  EGFR/HER2 I 2013 mBC Positive
ane TKI+CT
NCT02073487 [21] TEAL T-DM1 Lapatinib+Abrax-  EGFR/HER2 Il 2014 Neoadjuvant, Positive
ane TKI+CT BC
NCT02562378 [22] THELMA T-DM1 Non-pegylated cT | 2015  mBC Negative
Liposomal Doxo-
rubicin
NCT03190967 [23]  NA T-DM1 ™Z cT il 2017 mBC Termi-
nated
NCT04686305 [24] DLO3 T-DXd Durvalumab IO+CT b 2020  mNSCLC NA
and Cisplatin
Durvalumab IO+CT NA
and Carboplatin
Durvalumab I0+CT NA
and Pemetrexed
Durvalumab I0O+CT NA
and Cisplatin
Durvalumab I0+CT NA
and Carboplatin
Durvalumab I0+CT NA
and Pemetrexed
Durvalumab 10 NA
TROP2 NCT05687266 AVANZAR Datopotamab Durvalumab+Car- 10+CT Il 2022 mNSCLC NA
(recruiting) deruxtecan boplatin
Nectin-4 NCT03288545 [25] EV-103 Enfortumab Pembrolizumab 10 I/l 2017 muUC Positive
vedotin Cisplatin cT NA
Carboplatin cT NA
Gemcitabine cT NA
Platinum +Pem- IO+CT NA
brolizumab
Pembrolizumab 10 MIBC NA
TF NCT03485209 [26] InnovaTV Tisotumab Pembroli- [0O+CT Il 2018  Advanced NA
207 Vedotin zumab + (Carbopl- solid tumors
atin or DDP)
Pembrolizumab 10 NA
EGFR NCT02573324 [27] Intellancel  Depatuxizumab  TMZ and Radiation CT+Radiation Il 2015  GBM Positive
Mafodotin
NaPi2b  NCT04907968 UPGRADE Upifitamab Carboplatin cT | 2021  High grade Termi-
(active, not recruit- Rilsodotin serous ovarian nated
ing) cancer
FRa NCT02606305 [28] NA Mirvetuximab Bevacizumab Anti-VEGF mAb  Ib/Il 2022  High-grade Positive
Soravtansine Carboplatin T epithe\ial NA
) ovarian,
Pegylated LIpO?O- cT primary NA
mal Doxorubicin peritoneal,
Pembrolizumab 10 or fallopian NA
Bevaci- CT+Anti-VEGF tube cancers  \a
zumab + Carbo- mAb
platin

T-DM1, Ado-trastuzumab emtansine; T-DXd, fam-trastuzumab deruxtecan; HER2, human epidermal growth factor receptor 2; TROP2, trophoblast cell surface

antigen 2; TF, tissue factor; mBC, metastatic breast cancer; mTNBC, metastatic triple negative breast cancer; mUC, metastatic urothelial cancer; CT, chemotherapy; IO,
Immunotherapy; TKI, Tyrosine kinase inhibitor; mGC, metastatic gastric cancer; TMZ, temozolomide; 5-FU,5-fluorouracil; FRa, folate receptor alpha; GBM, glioblastoma;
MIBC, muscle invasive bladder cancer; EGFR, epidermal growth factor receptor; mNSCLC, metastatic non-small cell lung cancer; mAb, monoclonal antibodies; DDP,
cisplatin; NA, not applicable
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(5-FU) or capecitabine resulted in notable toxicities in
patients with metastatic HER2-positive gastric cancer,
with dose-limiting stomatitis and a high incidence of
grade >3 adverse events in DESTINYGastric03 trial [14].

Datopotamab deruxtecan (Dato-DXd) in combina-
tion with platinum-based chemotherapy and pembroli-
zumab resulted in substantial grade>3 toxicities in a
significant proportion of patients, characterized by the
common occurrence of nausea, anemia, fatigue, and sto-
matitis [13]. In addition, the combination of mirvetuxi-
mab soravtansine with carboplatin in a Phase Ib trial
resulted in notable toxicities including nausea, vomiting,
diarrhea, eye problems, fatigue, and cytopenia [10].

In summary, the results of these studies suggested a
notable increase in toxicity when ADCs were combined
with conventional chemotherapy. This is likely due to the
overlap of toxicities resulting from the off-target and off-
tumor effects of the ADC payloads.

ADCs combined with endocrine therapy

Endocrine therapy is a widely used therapeutic approach
for hormone-sensitive cancers (e.g., breast and prostate
cancers). It works either by blocking hormone synthesis
or interfering with hormones that stimulate the growth
of tumor cells. Both ADCs and endocrine therapy drugs
can induce cellular effects that jointly impede tumor cell
survival and proliferation. Combination therapy reduces
the likelihood of tumor cells developing resistance by
employing multiple drugs with distinct mechanisms of
action. There have been some clinical trials related to
ADC combined with endocrine therapy (Table 3), while
basic research to explore the mechanism of combined
action is lacking.

Safety profile of the ADC-endocrine therapy combination
The side effects of endocrine therapy are minimal [29].
This gives clinicians more confidence in adding ADC
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drugs to endocrine therapy, as demonstrated in the
KATHERINE phase III clinical trial. In this trial, the
adjuvant utilization of T-DM1 was compared with that
of trastuzumab in patients with HER2-positive breast
cancer with residual disease who had undergone neo-
adjuvant HER2-targeted therapy. Both treatment arms
were permitted to include concurrent adjuvant endocrine
therapy. Patients administered T-DM1 with or without
endocrine therapy exhibited comparable toxicity rates of
any grade. Similarly, no significant differences between
the two groups were observed in terms of grade>3
adverse events (26.0% versus 24.9%), serious adverse
events (12.9% versus 12.2%), and events that resulted in a
T-DM1 dosage reduction (11.0% versus 15.0%) [30].

The possibility of combining endocrine therapy with
T-DXd has been investigated in patients with HER2-low
breast cancer at both early and advanced stages. The
TALENT study is a randomized phase II trial evaluating
the administration of neoadjuvant T-DXd, with or with-
out anastrozole, in patients with early breast cancer and
low HER2 expression. Interestingly, this study showed
that both treatment arms exhibited similar toxicity pro-
files, highlighting the feasibility of this combination
approach [31]. Similarly, the Phase Ib study, DESTINY-
Breast08, revealed that adding anastrozole or fulvestrant
to T-DXd did not result in any DLTs. This combination
approach was observed to maintain a toxicity profile akin
to that of the solitary administration of T-DXd in individ-
uals diagnosed with metastatic HER2 low breast cancer.

In general, the co-administration of ADCs and
endocrine therapy does not appear to result in increased
toxicity. This observation is consistent with the distinct
patterns of adverse effects exhibited by each agent when
administered independently. This is also consistent with
the favorable safety profiles of most endocrine therapies
compared to other systemic cancer treatments.

Table 3 Summary of clinical trials investigating the combination of ADCs and endocrine therapy

Target NCT number Other names Drug Partner drugs Partner Phase Start Treatmentsetting Efficacy
drug
category
HER2  NCT01772472 [30] KATHERINE T-DM1 Unspecified ET 1l 2013 Adjuvant, BC Positive
NCT04556773 (active, DB-08 T-DXd Anastrozole ET b 2020 mBC NA
not recruiting) or Fulvestrant
NCT04553770 [31] NA T-DXd Anastrozole ET I 2020 Neoadjuvant, BC NA
HER3  NCT05569811 (active, VALENTINE Patritumab  Letrozole ET Il 2022 Neoadjuvant, BC NA
not recruiting) deruxtecan

T-DM1, Ado-trastuzumab emtansine; T-DXd, fam-trastuzumab deruxtecan; HER2, human epidermal growth factor receptor 2; HER3, human epidermal growth factor

receptor 3; mBC, metastatic breast cancer; ET, endocrine therapy; NA, not applicable
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ADCs combined with radiotherapy

The combination of radiotherapy and ADC includes
external radiation therapy combined with ADC and radi-
onuclide antibody conjugates (RACs). RACs, also known
as radioimmunoconjugates, radioimmunotherapy, or
targeted radiotherapy, are a type of medical treatment
that uses specific monoclonal antibodies labelled with
radioactive isotopes (radionuclides, generally beta emit-
ters), as described in a review by Mattes [32]. Therefore,
RAC is not discussed in the present review. Based on
the timing of radiotherapy and ADC administration, the
combination is either concomitant or sequential. Con-
comitant radiotherapy involves simultaneous administra-
tion of ADC and radiotherapy. However, the definition of
sequential ADC administration varies across studies: the
temporal span ranges from 77 to 131 days when ADC is
administered before radiotherapy and 420 to 1426 days
when administered after radiotherapy [33]. The fractiona-
tion regimens include conventional fractionated radio-
therapy and stereotactic radiosurgery (SRS)/stereotactic
body radiotherapy (SBRT). The clinical studies on ADCs
combined with radiotherapy are shown in Table 4.

Mechanism of ADCs combined with radiotherapy

The synergistic mechanisms of the combined application
of radiotherapy and ADC include the regulation of
surface antigen expression in tumor cells by radiotherapy;,
an increase in radiation sensitivity of tumor cells by
ADC, and other potential mechanisms, such as affecting
the tumor microenvironment (TME) and vascular
permeability.

Radiation induces generation of (neo)antigens

Ionizing radiation (IR) induces morphological and func-
tional alterations in tissues [44]. Tumor cells are more
prone to survival and propagation when “stress-regulated
proteins” are highly upregulated by external stimuli.
(Neo-) antigens expressed on the surface of cancer cells
after IR exposure provide opportunities to develop can-
cer-targeted therapeutics. Cell adhesion molecules were
the first IR-inducible proteins identified [45, 46]. How-
ever, these inducible proteins are expressed on micro-
vascular endothelial cells rather than on tumor cells, and
some are shed from the cell surface. Glucose-regulated
protein 78 (GRP78) is a radiation-induced endoplasmic
reticulum stress response protein that plays an impor-
tant role in radioresistance, enhancement of tumor cell
proliferation, protection against apoptosis, and promo-
tion of tumor angiogenesis [47, 48]. The effectiveness of
combining GRP78 antibodies with radiotherapy has been
studied previously [49, 50]. The researchers discovered
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that antibodies targeting the functional domain of GRP78
disrupt its interactions with its binding partners. Con-
sequently, this reduces tumor cell viability and enhances
radiosensitization. Tax interacting protein 1 (TIP-1),
another radiation-induced tumor-specific target, trans-
locates to the cell plasma membrane after exposure to IR
[51]. Based on this finding, Lewis et al. conjugated a high-
affinity anti-TIP-1 antibody (7H5) to a payload such as
monomethyl auristatin E (MMAE) with a valine-citrulline
(Ve) linker to form a radiosensitizer (7H5-VcMMAE) [52].
The use of 7H5-Vc-MMAE in combination with radio-
therapy resulted in a prolonged delay in tumor growth
and improved the survival of A549 and H1299 non-small
cell lung cancer (NSCLC) animal models. To date, the tar-
geting of radiation-inducible antigens using ADCs com-
bined with radiotherapy has not been explored in clinical
trials. The new clinical paradigm of using IR to guide drug
delivery merits further investigation in preclinical and
clinical trials involving patients with radiation-resistant
cancers.

ADCs increase the sensitivity of tumor cells to radiotherapy
The cell cycle phase plays an important role in determin-
ing the relative radiosensitivity of cells [53]. Cells are most
sensitive to IR during the G2/M phase, display intermedi-
ate sensitivity in the G1 phase, and exhibit the lowest sen-
sitivity in the later stages of the S phase. Based on these
findings, many radiosensitizing drugs have been devel-
oped to increase the anti-tumor activity and optimize
patient outcomes. However, in practice, the clinical utility
of radiosensitizing drugs is substantially curtailed due to
unintended off-target side effects. To address this critical
challenge, radiation-sensitizing payloads (e.g, MMAE,
MMAEF, and DM1) have been conjugated to antibodies to
selectively radiosensitize tumors based on antigen over-
expression. These radiosensitizer-ADCs are capable of
increasing radiosensitizer delivery to tumors, enhancing
radiation-induced cytotoxicity, and improving tumor con-
trol [54, 55]. Furthermore, in combination with radiother-
apy, radiosensitizer-ADCs have been shown to enhance
the effectiveness of radiation and improve survival in pre-
clinical tumor models of the lung, head and neck, oesoph-
ageal, breast, and pancreatic cancers [52, 54—58].

Other potential mechanisms

Radiotherapy not only directly acts on tumor cells but
also affects the TME in a complex and dynamic man-
ner. Several radiation-induced molecules within tumor
blood vessels, including ICAM-1, E-selectin, P-selectin,
and 3 integrin, reportedly have the potential to serve as
therapeutic targets [59, 60]. Moreover, there is mounting
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evidence that the interplay between radiotherapy and the
TME could be utilized to enhance the accumulation and
intratumoral distribution of nanoparticles and liposome
formulations mediated by changes in the vasculature and
stroma, with secondary effects on hypoxia, interstitial
fluid pressure, solid tissue pressure, and the recruitment
and activation of bone marrow-derived myeloid cells
[61-63]. A previous study found that vascular perme-
ability in tumors significantly increased 24 h after irradia-
tion at doses higher than 400 cGy, resulting in increased
antibody uptake following radiation [64]. In addition to
affecting the tumor blood vessels, radiotherapy also has
a direct impact on blood-brain barrier permeability.
Nakata et al. found that a single large dose of 20-40 Gy
promoted the extravasation of serum albumin in the rat
brain tissue preclinically [65]. Nevertheless, whether con-
ventional fractionated radiotherapy, routinely used in
clinics, can promote ADC penetration of the blood—brain
barrier remains unknown and the underlying mechanism
remains elusive. Finally, the effect of radiotherapy on the
distribution of antibodies and the payload of linker-cleav-
able ADCs in tumors is yet to be investigated.

In summary, multiple potential synergistic benefits
and underlying mechanisms of the combination of
radiotherapy and ADCs deserve further exploration at
both the preclinical and clinical stages.

Safety profile of the ADC-radiotherapy combination

The clinical applications of radiosensitizer-ADCs have
also been evaluated. For non-CNS tumors, there is insuf-
ficient robust evidence regarding the safety profile and
efficacy of ADCs in combination with different radio-
therapy segmentations. Available data mainly focus on
breast cancer treatments [33, 66]. The KATHERINE
trial evaluated the effectiveness of adjuvant T-DM1 in
patients with HER2-positive breast cancer and residual
disease after neoadjuvant chemotherapy with anti-HER2
therapy [35]. The results demonstrated that adjuvant
T-DM1 treatment reduces the risk of disease recurrence
and death (50%). In this clinical trial, patients who under-
went breast-conserving surgery and those who had locally
advanced disease following mastectomy (clinical TN/
T,N, /TN, ; disease) were administered radiation within
60 days of surgery. However, a subgroup analysis specific
to patients undergoing radiation was not conducted to
assess the safety profile of the combined treatment. An
increase in >3 grade toxicities was noted among the irra-
diation group in comparison to the non-irradiated group
(27.4% vs. 16.2%). Comparable incidences of radiation-
related cutaneous complications were observed, affecting
25.4% and 27.6% patients in the T-DM1 and trastuzumab
groups, respectively. Patients who were administered
T-DM1 showed a modest increase in the occurrence of
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radiation-induced pneumonitis and pulmonary radia-
tion injury rates (1.5% and 0.1%, respectively), in contrast
to those administered trastuzumab (0.7% and 0%) [30].
Considering the potential risk of cardiotoxicity associ-
ated with trastuzumab, a study was conducted to inves-
tigate the cardiac safety and feasibility of radiotherapy
in combination with T-DM1 in a group of 116 patients
(Meoncurrent = 39 Msequential=77) [34]. Roughly 95% patients
receiving T-DM1 plus radiotherapy successfully adhered
to>95% of the planned radiotherapy dosage with a
delay of <5 days. No protocol-prespecified cardiac side
effects or instances of heart failure were reported follow-
ing T-DM1. However, Zolcsak et al. presented the ini-
tial safety profile associated with the concurrent use of
T-DM1 and radiotherapy in a group of 14 patients diag-
nosed with residual invasive HER2-positive breast cancer.
A dosage of 50 Gy delivered in 25 fractions was adminis-
tered for adjuvant irradiation of the breast or chest wall.
A reversible grade 2 decrease in left ventricular ejection
fraction (LVEF) was observed in two patients [42]. Con-
sidering the mechanism of T-DMI’s action involving
radiosensitization through microtubule inhibitors and in
the absence of solid safety data, the delivery of concur-
rent radiation should be approached with caution. Recent
clinical studies have revealed that T-DXd improved
both progression-free survival (PFS) and overall survival
(OS) compared to T-DM1, but information concerning
the combined use of T-DXd and radiotherapy is scarce.
T-DXd exhibited an increased incidence of drug-related
interstitial lung disease (ILD) or pneumonitis (10.5% vs.
1.9%), and gastrointestinal toxicities were more frequently
reported with T-DXd treatment. The combination of
T-Dxd with thoracic or abdominal radiotherapy requires
extreme caution. In a metastatic breast cancer setting, a
case-series study assessed the toxicity of concurrent palli-
ative radiotherapy and T-DM1 in three patients with bone
metastases [39]. The radiotherapy field involved the tho-
racic vertebrae, sacrum, and shoulder, with a prescribed
dose of 15 Gy delivered in five fractions or 8 Gy delivered
in one fraction. All patients experienced substantial pain
relief, and no documented adverse reactions associated
with the concomitant use of radiotherapy and T-DM1
were reported. Furthermore, approximately 50% of HER2-
positive metastatic breast cancer cases are associated with
brain metastases [67]. In terms of CNS metastatic tumors,
high-level data on the effectiveness and tolerance of con-
current administration of ADCs and brain radiation ther-
apy are insufficient. Evidence gleaned from case reports or
a small series of patients indicates that the combination of
T-DM1 and concomitant whole-brain radiation therapy
is manageable, without severe side effects or any increase
in clinically significant toxicity [40]. However, prudence is
needed when considering concurrent or sequential SRS as
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several cases of complications have been documented in
the literature [36, 41, 43, 68, 69]. The case series presented
by Carlson et al. showed that four out of seven (57.1%)
patients who underwent SRS after T-DM1 administra-
tion developed radiation brain necrosis [36]. This elevated
rate of clinical radiation brain necrosis is clearly unaccep-
table. In another study involving 45 patients diagnosed
with CNS metastases from breast cancer, Stumpf et al.
observed a 13.5-fold rise in the risk of radiation necrosis
when T-DM1 was administered in conjunction with SRS
[68]. The DEBBRAH phase II study demonstrated the fea-
sibility of combining intracranial treatment with T-Dxd
and radiation, showing manageable toxicity in patients
with HER2-positive and HER2-low breast cancer who
underwent whole-brain radiation therapy and/or SRS.
However, the authors did not mention the timing between
irradiation and the sequential administration of T-DXd
[70]. Notably, significant heterogeneity was observed
among these studies. Regarding primary CNS tumors,
there are already some data on the effectiveness and safety
outcomes of the combination of ADC and radiation treat-
ment. An anti-EGFR antibody conjugated to MMAEF,
Depatuxizumab-mafodotin (Depatux-M), was admin-
istered to patients with glioblastoma (GBM) receiving
standard treatment with radiotherapy plus temozolomide
[37]. The safety profile of Depatux-M combined with radi-
otherapy and temozolomide for the treatment of newly
diagnosed GBM is acceptable. However, interim analysis
revealed that Depatux-M did not yield an OS benefit for
the treatment of newly diagnosed EGFR-amplification
GBM, notwithstanding the longer PFS. The study was
terminated at the early stage. The potential reasons for
these negative results are as follows: 1. Depatux-M may be
ineffective in treating GBM; 2. there is a probability that
Depatux-M effectively eliminated EGFR-amplification
(and particularly EGFRvIII-mutant) tumor cells, improv-
ing PFES; however, resistant clones emerged and voided
any OS benefit, a hypothesis supported by results from
patient-derived xenografts [71]; 3. heterogeneous deliv-
ery across the blood-brain barrier limits the efficacy of
Depatux-M in CNS tumors [71], and non-cleavable link-
ers are detrimental to drug diffusion within the tumors.

In summary, radiosensitizer-ADCs combined with
radiation are a promising treatment strategy; however,
there is an urgent need for high-level evidence regarding
their safety.

ADCs combined with molecular targeted cancer
therapy

Targeted therapies, including monoclonal antibodies,
tyrosine kinase inhibitors (TKIs), and anti-angiogenic
agents, have been used in clinical practice for decades to
treat tumors with specific mutations, overexpression, and
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amplification, with clinically proven safety and efficacy.
However, the efficacy of these treatments in combination
with ADC remains poorly understood. In this section,
we focus on the treatment strategies that combine ADCs
with targeted therapeutics and discuss their potential
synergistic effects and safety profiles. The corresponding
clinical trials are shown in Table 5.

Mechanism of ADCs combined with targeted therapy

The combined effects of molecular-targeted drugs
(including antibodies) and ADCs synergistically involve
multiple mechanisms, such as improving intratumoral
drug delivery by targeting tumor blood vessels, regulating
tumor cell surface antigen expression, overcoming intra-
tumoral heterogeneity and tumor drug resistance, and
synthetic lethality.

Enhanced cellular uptake and anti-tumor activity

The macromolecular size of ADCs limits extravasation
and leads to impaired distribution of ADCs in tumor
tissues, ultimately resulting in unsatisfactory efficacy
[88]. Two types of barriers affecting ADC delivery have
been identified: the blood-tumor barrier, a physical bar-
rier, and the binding-site barrier (BSB), a biological one.
Within the blood-tumor barrier microenvironment,
blood vessels present in solid tumors are composed of
many immature and disorganized vessels, resulting in
poor blood flow and hypoxia [89]. Meanwhile, high inter-
stitial oncotic pressure collapses the tumor blood ves-
sels, thus limiting the convective transport of ADCs from
the blood into the tumor interstitial fluid [90]. The pri-
mary method for altering the tumor vasculature involves
modulating angiogenesis and vessel porosity using agents
such as anti-vascular endothelial growth factor antibod-
ies such as bevacizumab. Jose F Ponte et al. showed that
co-treatment with mirvetuximab soravtansine (an FRa-
targeting ADC) and bevacizumab induced swift disrup-
tion of tumor microvasculature and extensive necrosis,
and improved the efficacy in platinum-resistant epithelial
ovarian cancer (EOC) models, emphasizing the superior
bioactivity profile of the combination [9]. Another pre-
clinical study showed that the combination of anetumab
ravtansine (a mesothelin-targeting ADC) with bevaci-
zumab improved the anti-tumor activity in ST081 and
OVCAR-3 human ovarian cancer models [8]. Two studies
that investigated the safety and efficacy of mirvetuximab
soravtansine in combination with bevacizumab in treat-
ing advanced ovarian cancer showed that co-treatment
with mirvetuximab soravtansine (6 mg/kg adjusted ideal
body weight) and bevacizumab (15 mg/kg), administered
intravenously once every three weeks, was well toler-
ated and presented encouraging efficacy in patients with



Page 13 of 32

(2024) 17:1

Wei et al. Journal of Hematology & Oncology

Dgw 13 JUeIISIAINS
ogw J01gIyul Y qruaseade)
80 (buninidal jou
VN ogu 0¢0c¢ 79l iE| 9|0zonseuy pXa-L  iseaig AunsaQ '9AIDE) €//9G5S5¥01DON
Jonqiyul zy3H qlunesn|
ol gewnjeaing
1D [oxel|oed
L0
VN ogu 0¢0C /gl qQyw Zy3IH gewnzniad PXQ-L  1seaigAunseQ [18] T#/8€SYOLDON
(S860AS)
Sujzeulledonp
siouwny gewnznisel}
VYN PIOS padueApy 00t | JoNqIYul dyvd quedenN (-210) VN (p2191dwi0d) LOLSETHOLON
SAINISOd onw 0¢0c 179l Ol (L00Sf) gewljeduoyl 87Dd VN [08] 9€6%9CF01DN
VN ogul 610C Il JoNgIyul ZYIH qlunesn| LWNQ-L  20-9WINDCHIH [6/] £¥95/6€01DN
YN DIDSNW R Dgw 610C I ol gewnzijolquisd pxa-L VN [841 10£Z¥0¥0LDN
9ANISOd JNW R Sgul 810¢ | Ol GeWwN|OAIN pXa-L VN [£/1T/S€CSE01DN
(a91-v) 1s1uobe
Jo1dadal Alore)
VN ogul £10C | -NWRS-03 93 | gewnjiuioin LNG-L VN (p212|dwW02) 81€9EE0L DN
101
oAnebaN ogu 910C ll/ar -1qiyur9/yMadds qlpPRogly LNQ-L VN [9/] €¥€/59C01DN
o4 1D+DiL
SAINSOd JueAn(peoan 710¢ Il C43H/¥4D3  suexelqy +qiunedeT LWN@-L vaL [L2] /8%€/0C01DN
9ARISOd ogul 710¢ | JoNgIYul B)Eld (qisijadie) 61/71A8 LW@-L VN [S/]10108€0COLDON
SAINISOd ogul ¥710¢ al Jouqiyul ¢d3H glunesnj LNG-L VN [7/] 10S€86101DN
1D+DiL
SAINISOd ogul €10¢ | C43H/44D3  suexelqy +qiunede] LWN@-L V131S [02] 916€£0C01DN
EIBLEIEIN DYdw cloe Il Qv gd3H-nuy gewnznlad LNQ-L SIDVHIH [€/] £€65TCE0LDN
1D auexe|
9ANISOd ogul 0Loc Il 9yW gg3H-huy gewnznlad LNQ-L INNVIHVYWN [¢/1¥810ZLLOLDN CYIH
(196ae1)
bunes K10b633ed
foeoy)3 jusweas) 1els aseyd  Bnupisuried sbnip Jaulied bnig  ssweu.tdayiQ Jaquinu JDN 19b1e]

Adeiay) pa1abie) pue sHJY JO UOIIRUIGUIOD dY3 BulebisaAUl s|ell [BI1UlD JO Alewwing § ajqel



Page 14 of 32

(2024) 17:1

Wei et al. Journal of Hematology & Oncology

(bui
VN ogw ceoc 171 ML g9.13-ued qiunoifg 100109 VN -1InJ33l 10U '9AN2E) £085/5S01DN
siowny 151U
VN PlIOS paoueApy Leoe | -obewe |-DW 914655 BY VN (BunnIda1) £6/9005010N
Joygiyutl
VN ogw Leoe | SEld DYidads qisijadyy BY 13SSv (BUINId3Y) 672X LSOLON
1s1uobeyue
J01d3d3i auls
-ouape |eng 1ueURpRWINIG
Ol +1siuobejue
103dadal auls qew!|21a9 (bul
VN Dddow 0¢0¢ 171 -Ouspe [eng  -WiZ+3iueuspewniy BY YN -HNI23J 10U SAIE) 7€818EYOL DN
SAIISOd ogw 610¢ /1 10NgIyul d4vd quedozeje| 5S VN [€8] 0£Z6E0¥0LDN ¢dOdL
ure104d UoISNy
VN ogw [4di4 | Buppolg-/+ad 8YLXIV pXd-L |d-AdS-I-34d (bunINId31) 9Z¢898501ON
Dg ‘quea
VN -nlpeoaN 444 M1 gqi3-ued quunoid 88/X4VY VN (Buninida1) 98497#S0LON
siowny 101
VN PlIOS paoueApy eoe | -IQIyul Y3 ued qlunessN pXa-L VN (BUINId3) #197/ES01DON
101
VN BELY Lcoc | -1qiyul ¢/1-ddvd quede|0 pXa-L VN (BuINId31) 856585701 ON
Dg ‘quea
VN -nfpeoaN Leoe Il M1 ggi3-ued S1e3e qIUNoIAd 88/X4VY VN (BumINId3) 1Z1£86%01ON
sjowny
VN PlOS paoueApy Leoe I Jonqryuldly 8€/9Q2zY pXa-L HSvd (BumINId31) 199¥0/701ON
45D-WD wnsoweibies
4SD-WD+3ud wnsow
VN Dg ueAnlpy 0¢0¢ Il -OBA ZHAH -eib1eS+00LAIdL LWa-L VN (buinidal) £89/61%01ON
VN ogw 0¢0¢ Il Jouqiyul ¢d3H gluieon| pPXd-L  ¥O-gWINDCYIH [¢8] 8€66ES¥01DON
(39b4e)
bumss K10633ed
£f>eoyy3 juswieal| Hels aseyd Bnup Jaulied sbnap sauyied bniq  saweuaylQ Jquinu JHN 19b61e)

(Panunuod) g a|qel



Page 15 of 32

(2024) 17:1

Wei et al. Journal of Hematology & Oncology

9|qedsijdde jou ‘yN ‘D ulngojbounwwi ‘Hb| :Apogiue jeuopouow ‘qyw ‘Apognue bunabiel-ai Auuyje-jenp ‘1 Yyq ‘gewnzideasg ‘A3g 4aoued a1e1soid JUr1SISaI 91L11SED D11RISEIdW ‘DdYDW L101dR) UuoiIsuel] [ellpyuda
0] |PWAYDUSSIW-IR|N|[3D ‘L JIA “10NgIYul 9SBUD| SUISOIA) [y “401dada1 Jo1oe) Yimoib 1se|qoiqy ‘Y4D4 4adued Bunj [[9d |jews-uou dneiselsw ‘“)1ISNW ‘eydie 101dedal 91e|0) ‘DY L3dUED [Bl9Y104N J[1RISeISW DNW H4Sdued
15e3.q D[1eISeIdW ‘W 10128} dNssi] 4] ‘z uabliue adepns |19 1sejqoydoil ‘7dOYL ‘palejdi-cQyy pue eise1daibue|al eIxele Y]y ‘19ouUed [elIdWOopUS dl1el1selaw ‘HJw ‘1oldey burejnwiis-Auojod sbeydoidew-a14>0nuelb
‘4SD-ND ‘101dad31 10108} YImolb [ewuspids ‘gqi3 ‘uiload € bojowoy /g ‘cH-/g ‘Adesayrounwiwi ‘O] ‘Adesaylowayd ‘1) {UIIOPIA (RWNIOSH ‘AL ‘UIIOPSA GEWNLIOJUS ‘AJ ‘UBIDYIA0D gewnznyides ‘DS ‘19oued Jappe|q dAlS
-eAUl 32sNW “Dg|N ‘Adeiayl suldopus ‘| 3 ‘g 101dada1 10128} Yimolb jewspids uewny ‘ey3H ‘g 4101dadai 101k yimolb [ewsspida uewny ‘gygH ULI3IXNISP qewnznisesl-wey ‘pxd-1 ‘Duisuels qewnznises-opy ‘LNG-1

sjowny 14va
VN PI[OS pasueApy e | ¥9bIoyDadsig qewiabuoT] 8LODOW VN (BUINIDR) 967€6ZS0LON €H-/9
unopaA
ogul £10¢ | Qv gyg3H-nuy gewnznijsel]  geulnznielipe’ VN [£8] €79696101DON L-AI
siowny oydadsiq
VN PI[OS pasueApy ceoe I ML {493 quuILIBWISO ¢656d7Y 13493 (BUINId3) 771 /F9S0LDON 13W2-4493
on1ebaN ol gewn|oAIN VN
9ANISOd siowny qQyWw Zy3IH QIUIoHI  _nagy) czoﬁmwm VN
VN PI[OS pasueApy ¥10¢ ql/l DIREDE QiUIBWISO  gqewnznos|iol VN [98] 850660C01DON 13N
A3g+auige
(s19oue) ayw -pade) 1o
[eaUO3Ied 493A-BUY +1D AJF+AT+NS-S VN
Atewid 10 3gn| JOUQIUUL  SOESAZY +qRwn[eA
ueidoyje4 bul Lddvd +Ol -InQ VSO0
-pnpoul) J2dued
UBLIBAQ [B1I2Y) JoNqiyul L ddvd S0€sazy QUISUBIARIOS VN
VYN -1d3 paduenpy ceoc Il QvW 453A-huy AJ9 qewlixnisAIN VN (buniniz3l) 8//5¥¥S0LON
(Slodue)
|eaU0IIS
Aleulld 1o agn|
ueidojjeq bul
-pn|puy) Jeoued
ueeAQ [ellRYy3
VYN -1d3 paduerpy ceoe [ Qvw 493A-huY Bl ¢00-OY1S VN [$8] #9€00CS0LDON DY
120Ued I3p
VN -Pe|q dneiseisiy Leoe | J0oUgIyul Y45 qiungep.3 A VN [S7] (Buminidal) €51€9610LON
ML LM pue
24493A YIN (uoisiap Josuods 0}
VN onw 810¢ Il XV 'E0UAL qluierenls N VN 9NP Pa1eulual) 7/ 1909€01DN
ML LM-> pue
‘€174 24493
VN onw Lc0C | XV 13Y 1AW glunuezoged N VN (buninidal) 6208/8701ON
VN onw Leoe I oay BN N VN [¥8] 810V /¥01DN P-UndeN
(39b4e)
bunies K10b633ed
£>eoyy3 juswieal] Mels aseyd  bBnip Jsuned sbnip Jaulieq bnig  saweuaylQ Jaquwinu JON 19b1e]

(panunuod) g ajqey



Wei et al. Journal of Hematology & Oncology (2024) 17:1

recurrent epithelial ovarian, fallopian tube, or primary
peritoneal cancers [11, 91]. However, there is not just one
opinion when it comes to ADC combined with anti-angi-
ogenesis therapy [92-95]. Arjaans et al. reported that the
normalization of tumor blood vessels triggered by beva-
cizumab hampers antibody uptake [92]. The timeframe
spanning from normalization to excessive pruning is
dependent on both the dose of the anti-angiogenic agent
and the duration following administration, which has
proven challenging [93]. Importantly, grade 1-2 pneumo-
nitis was detected in six patients (9%) when bevacizumab
was introduced alongside mirvetuximab soravtansine,
whereas no instances of pneumonitis were observed with
the single use of mirvetuximab soravtansine. Therefore,
there is an urgent need to rigorously design preclinical
and clinical trials to explore the underlying mechanisms
of this combination therapy-induced pneumonitis. Co-
treatment with ADCs and bevacizumab in a non-clinical
trial setting must be performed with caution because of a
possible reduction in tumoral accumulation of ADCs that
may be caused by bevacizumab.

The BSB is a biological barrier in tumor vasculature
regions, which constrains the efficacy of high-affinity anti-
bodies because of the successful binding of antibodies to
cellular antigens at the point of extravasation, resulting in
antibody sequestration and suboptimal tumor exposure
[96]. Many factors, including elevated antigen expression
and rapid antigen internalization combined with sluggish
tumor uptake and slow interstitial diffusion of therapeu-
tic antibodies, result in poor antibody penetration into the
tumor. Transient competitive inhibition, which improves
antibody distribution in solid tumors, is one strategy for
overcoming BSB. The combined utilization of T-DM1 and
pertuzumab showed synergistic activity in cell culture
models and had an acceptable safety profile in phase Ib
and II studies [97, 98]. Bordeau et al. [99] found that the
co-administration of an anti-trastuzumab single domain
antibody (1HE) with trastuzumab significantly increased
both the penetration of trastuzumab from the vascula-
ture and the percentage of tumor area that stained posi-
tive for trastuzumab. 1HE co-administered with a single
dose of T-DM1 to NCI-N87 xenograft-bearing mice sig-
nificantly enhanced T-DM1 efficacy and increased the
median survival. However, results from multiple phase III
clinical trials (MARIANNE, KRISTINE, and KAITLIN)
have shown that the T-DM1 combined with pertuzumab
(T-DM1+DP) regimen reduced grade>3 adverse events
and ensured a better quality of life and the this regimen
resulted in a higher chance of event-free survival and
invasive disease-free survival than regimens of chemo-
therapy combined with trastuzumab and pertuzumab
[72, 100-102]. However, Although monoclonal antibody
combined with ADCs could overcome BSB, improve the
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distribution and anti-tumor efficacy of ADCs in tumor
cells, and reduce toxicity, ADC is still not a replacement
for standard chemotherapy.

In summary, the dose and time window of ADCs com-
bined with anti-angiogenesis therapy should be further
explored in future studies. The establishment of a rea-
sonable model is crucial. Current data show that naked
antibodies combined with ADC can overcome BSB to
increase tumor penetration and anti-tumor tumor effects;
however, they are still unable to replace traditional chem-
otherapy in clinical settings.

Upregulation of surface antigens and overcoming
intratumor heterogeneity and drug resistance
Intratumor heterogeneity is a key factor contributing
to therapeutic failure. Furthermore, the appearance
of compensatory pathways in tumor therapy is one of
the mechanisms of drug resistance, which is frequently
accompanied by the downregulation of surface antigens
[103]. Tumor heterogeneity and drug resistance are
major challenges in cancer treatment and research. The
different sites of action of monoclonal antibodies and
TKI make combination therapy a potential strategy for
overcoming these difficulties. The addition of a TKI to
a combinational target blockade may provide greater
selectivity, with a potentially improved therapeutic index.
Data on TKI that can overcome ADC resistance are
scarce. Recently, a preclinical study on T-DM1 resist-
ance was reported. PLK1, a key cell cycle regulator, was
upregulated in both acquired and primary T-DM1 resist-
ance models. And inhibition of PLK1 using volasertib led
to T-DM1 re-sensitization both in vitro and in vivo [104].
ADCs may also be effective companions for modulat-
ing resistance mechanisms of targeted drugs [105-107].
Patients with NSCLC frequently develop acquired drug
resistance to EGFR TKIs [108]. HER3 is a unique pseu-
dokinase member of the ERBB family. It dimerizes with
other ERBB family members (EGFR and HER2) and is
frequently overexpressed in EGFR-mutant NSCLC [109].
Haikala et al. reported that EGFR inhibition by osimer-
tinib leads to increased HER3 membrane expression
and promotes HER3-DXd ADC internalization and effi-
cacy, supporting the clinical development of an EGFR
inhibitor/HER3-DXd combination in EGFR-mutant lung
cancer preclinically [106]. Another example is the co-
administration of the EGFR-TKI osimertinib and T-DM1,
which contributed to an synergistic anti-tumor effect,
where T-DM1 was able to delay or overcome osimerti-
nib resistance in EGFR-mutant NSCLC models [105]. In
melanomas, AXL-high cells are resistant to MAPK path-
way inhibitors, whereas AXL-low cells are sensitive to
them. Heterogeneous tumors show partial therapeutic
responses, allowing for the emergence of drug-resistant
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clones that often express high levels of the receptor tyros-
ine kinase AXL [110]. Boshuizen et al. [111] found that
AXL-107-MMAE and MAPK pathway inhibitors coop-
eratively inhibited tumor growth by eliminating distinct
populations in heterogeneous melanoma cell pools in a
preclinical study. Furthermore, the BRAF/MEK inhibitors
potentiated the efficacy of AXL-107-MMAE by inducing
AXL transcription [111]. In acute myeloid leukemia, a
preclinical study found a promising and potent anti-leu-
kemic strategy involving the co-administration of midos-
taurin (a TKI that inhibits the FLT3 pathway) and a novel
FLT3-targeting ADC [112]. The mechanisms behind TKI
inducing drug resistance and regulating surface anti-
body expression are complicated and vary with differ-
ent drugs. HER2-targeting TKIs (lapatinib, neratinib,
tucatinib, and poziotinib) have been shown to increase
the efficacy of T-DM1. However, while lapatinib enhances
HER2 abundance via robust transcriptional upregulation
and reduced ubiquitination, neratinib downregulates sur-
face HER2 abundance by stimulating internalization and
endocytosis. The effectiveness of tucatinib on cell surface
HER?2 is still intricate, and poziotinib upregulates the exon
20 mutant, but not wild-type HER2, suggesting synergis-
tic mechanisms independent of HER2 surface density [21,
113-119].

Several clinical trials have explored the use of TKI in
combination with ADCs. The TEAL study showed that
employing a combination of T-DM1, lapatinib, and nab-
paclitaxel for the neoadjuvant treatment of patients with
HER2-positive breast cancer yielded improved responses
compared to the standard paclitaxel, trastuzumab, and
pertuzumab combination, which was accentuated in the
traditionally challenging hormone receptor-positive sub-
set [21]. The combination regimen of T-DM1/T-DXd and
tucatinib for advanced breast cancer progression with
prior taxane and trastuzumab showed acceptable toxic-
ity and preliminary anti-tumor activity in patients with
ERBB2/HER2-positive metastatic breast cancer with and
without brain metastases [74, 79, 120]. Moreover, phase
II trials testing T-DM1 or T-DXd with tucatinib (HER-
2CLIMB-02 and HER2CLIMB-04) are ongoing [79, 120],
and we look forward to their deterministic results.

Synthetic lethality and combined targeting

Synthetic lethality is a promising and clinically effective
therapeutic strategy for tumors with defects in DNA
homologous recombination repair pathways. Given the
recent focus on DNA damage response (DDR) pathways
in cancer therapy, several DDR proteins, including ATR,
ATM, DNA-PK, CHK1, CHK2, Weel, and PARP, have
been extensively explored as promising synthetic lethal-
ity targets for anticancer drug development [121-123].
While PARP inhibitors first achieved clinical approval in
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2014, inhibitors targeting other DDR proteins are cur-
rently under intense clinical investigation.

A subset of ADCs incorporates topoisomerase I
(TOPO 1) inhibitors as payloads. For instance, TOPO
1, an enzyme, initiates the cleavage of one strand of
double-stranded DNA, resulting in partial unwinding
and subsequent reannealing of the strand to relieve
tension. Camptothecin and its derivatives bind to
the TOPO 1/DNA complex and prevent proper
reannealing. This disruption can lead to cell death
owing to the accumulation of partially cleaved DNA.
SN38, a semi-synthetic derivative of camptothecin, is
the active component of irinotecan and has been used
in sacituzumab govitecan, a clinically approved TROP2-
targeting ADC [124]. Another camptothecin derivative,
DXd, is a derivative of exatecan that is approximately
10 times more potent than SN38, with an IC50 value
of 310 nM. This potent compound is used as a payload
in HER2-targeting (DS-820la) and TROP2-targeting
(DS1062) ADCs.

PARP-1, the most abundant member of the PARP pro-
tein family, has been observed to co-localizes with Topo
I throughout the cell cycle. However, when DNA dam-
age occurs, PARP-1 dissociates from Topo I, leading to
decreased enzymatic activity [125]. Combining a TOPO
I inhibitor with a PARP inhibitor (PARPi) results in the
accumulation of double-stranded DNA breaks (DSBs) by
retarding the homologous recombination repair pathways
that effectively and precisely repair DNA damage. This
DSB accumulation ultimately triggers apoptosis and cell
death. In addition, in cells lacking functional BRCA1/2
genes or those deficient in the homologous recombina-
tion repair mechanism, an alternative but less precise
DNA damage repair pathway known as non-homologous
end-joining emerges. This more error-prone pathway
further compromises cells toward irreparable DNA dam-
age and apoptosis [126]. Recent research has also shown
that combining CPT-11 (the prodrug of SN-38) and
PARPi achieved synergistic inhibition in both BRCA1
wild-type and BRCA1 mutant triple-negative breast can-
cer (TNBC) cell lines in vitro [127]. Concurrently, saci-
tuzumab govitecan combined with olaparib, rucaparib,
or talazoparib also synergistically inhibited tumor cell
growth and increased DSBs in HCC1806 TNBC tumors
harboring mutations in the BRCA1/2 genes, as well as in
those with wild-type counterparts [128].

Safety profile of ADCs combined with targeted therapies

Among the 15 types of ADC currently approved, the
combination of T-DM1 and targeted agents has the
greatest evidence of efficacy and safety. A phase Ib
trial evaluated the combination of T-DM1 and the
HER2 TKI, tucatinib. Although this combination is
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well-tolerated, it is associated with frequent gastro-
intestinal and hepatic toxicities. In particular, 37% of
the patients experienced at least one clinically signifi-
cant adverse event, and 56% required discontinuation
of tucatinib [74]. More information is expected from
the ongoing phase III HER2CLIMB-02 trial evaluat-
ing T-DM1 with tucatinib. Compared with T-DM1
alone, these results may provide more insight into the
additional toxicity associated with this combination.
Another Ib study evaluated the combination of inter-
mittent inhibition of T-DM1 and CDK4/6 using ribo-
flavin; however, no DLTs were observed. However,
ribociclib dose reductions were required in 58% of
the patients due to thrombocytopenia or neutropenia,
and one patient experienced grade 2 QTcF prolonga-
tion [129]. In a phase Ib study involving patients with
metastatic TNBC, sacituzumab govitecan was adminis-
tered in combination with talazoparib, a PARP inhibi-
tor. This study demonstrated several DLTs primarily
caused by severe myelosuppression, as described in
the initial study results. In particular, the majority of
enrolled patients experienced febrile neutropenia [83].
Finally, a phase Ib study evaluated the effects of adding
bevacizumab to mirvetuximab soravtansine. This study
included patients with platinum-resistant ovarian can-
cer [11]. The combination resulted in a toxicity profile
similar to that of ADC alone [130]. However, it is worth
noting that grade 1-2 pneumonitis was observed in six
patients (9%) with the addition of bevacizumab. This
was in contrast to the absence of pneumonitis when
mirvetuximab soravtansine was administered alone.

In summary, although we observed promising results
from combining TKIs and ADCs in preclinical models
and clinical trials, the underlying molecular interplay
is still far from being completely understood. A better
mechanistic understanding is helpful for the selection of
drug combinations and the management of potential side
effects.

ADCs combined with immunotherapy

Accumulating evidence suggests that ADCs are sensi-
tive to the effectiveness of immunotherapeutic agents
[131]. Combining immunotherapy with ADCs is a cur-
rent trend in clinical practice, with a number of preclin-
ical studies and initial findings from early-stage clinical
trials showing improved anti-tumor effects [131]. The
clinical trials are listed in Table 6. We still await the
outcomes of large-cohort randomized phase III clinical
trials to demonstrate the determinant evidence of this
combination’s efficacy compared with that of conven-
tional treatments.
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Mechanism of ADCs combined with immunotherapy

The underlying mechanisms are diverse and encom-
pass Fc-mediated effector functions, initiation of immu-
nogenic cell death (ICD), maturation of dendritic cells
(DCs), enhancement of T cell infiltration, reinforcement
of immunological memory, and expression of immu-
nomodulatory proteins such as programmed death ligand
1 (PD-L1) and major histocompatibility complex (MHC)
[132-136]. Multiple studies have revealed that ADCs
exert a stronger effect in immunocompetent animal mod-
els than in immunodeficient models, indicating their sig-
nificant immunomodulatory capabilities [137, 138]. These
findings provide a basis for devising clinical trials that
incorporate low doses of ADCs as immunostimulants to
improve the efficacy of immunotherapy without causing
adverse effects.

Fc-mediated effector functions

In the design of an ADC, the antibody component plays
a multifaceted role, instead of solely delivering cytotoxic
agents to cancer cells. Its unique Y-shaped structure
has many additional functions, including regulation of
innate immune responses. While the antigen-binding
fragments of an antibody are responsible for recognizing
the target antigen and determining its specificity, the
crystallizable fragment (Fc) interacts with immune cells
and regulates the duration of the antibody’s circulation
in the bloodstream. The Fc region, in fact, plays key roles
in several vital functions, including antibody-dependent
cell-mediated cytotoxicity (ADCC), antibody-dependent
cell-mediated phagocytosis, and complement-dependent
cytotoxicity. The effectiveness of the initial two actions
relies on Fcy receptors (FcyRs), which are present on
natural killer cells, macrophages, and various other
immune cells. Conversely, complement-dependent
cytotoxicity is triggered by Clq protein.

The IgG antibody family consists of IgG1, 1gG2, 1gG3,
and IgG4 subclasses, each of which exert different
effects on factors such as antibody solubility, half-life,
interaction with the Clq protein, and binding strength
to FcyRs. The IgG1 subclass of antibodies is most com-
monly used in the 15 clinically approved types of ADCs
[166]. The reason for selecting IgG1 as the backbone of
ADC is because it has a long half-life of approximately
21 days, similar to IgG2 and IgG4, but is characterized
by its enhanced ability to activate the complement sys-
tem and bind to FcyRs. In contrast, IgG2 and IgG4 have
limited efficacy in triggering effector functions, and are
used strategically in antibody design when eliciting an
immune response is not the primary goal [167]. In con-
trast, IgG3 is the most immunogenic subclass capable of
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eliciting an immune response. However, these antibodies
are typically bypassed in the design of ADCs because of
their short half-lives (approximately seven days).

In preclinical models, both T-DXd and T-DM1 exhibit
the ability to maintain functions inherent to unconjugated
trastuzumab, including triggering ADCC associated with
the IgG1 isotype [137, 168]. In addition to these therapeutic
benefits, Fc-mediated effector functions give rise to unde-
sirable side effects. For instance, T-DM1 is internalized
by megakaryocytes through its interaction with FcyRIIA,
which could potentially lead to the development of throm-
bocytopenia, a known side effect of this agent [169].

Modulating the ability of an ADC to engage the immune
system may involve engineering the Fc region. One
approach is to produce afucosylated IgGs, which enhance
ADCC by increasing the binding affinity for FcyRIIIa [170,
171]. Conversely, the Fc region can be modified by intro-
ducing mutations that impact effector functions, yielding
what is known as "Fc silent antibodies" [138]. MEDI4276,
for instance, employs this strategy with three mutations in
its Fc domain to curtail FcyR binding, aiming to minimize
thrombocytopenia as observed with T-DM1 [172].

Another approach that involves the interaction
between Fc and FcyRs takes place in the TME, in which
the tumor-associated macrophages (TAMs) constitute
a significant proportion. In preclinical models, non-tar-
geted ADCs have been shown to be effectively engulfed
by TAMs. Through the engagement of FcyRs, TAMs
internalize and process these ADCs, resulting in the
release of the cytotoxic payloads within the TME. This
results in the killing of neighboring tumor cells which is
called “bystander effect” This mechanism may enhance
the efficacy of ADCs against tumors that exhibit hetero-
geneity or low levels of target antigens [173].

However, it is important to recognize that this
mechanism of antigen-independent ADC uptake into
non-malignant cells within the TME could exacerbate
the toxicity of ADCs. For instance, it could potentially
lead to more rapid clearance of ADCs and reduced
overall efficacy. Another theoretical concern related to
the release of cytotoxic payload within the TME and the
subsequent bystander effect is the potential destruction
of local T cells, which can negatively affect the efficacy of
immune checkpoint inhibitors (ICIs).

In summary, while the interaction of Fc and FcyRs
between ADCs and the TME represents a potential
avenue for enhancing ADC activity against tumors with
challenging characteristics, careful consideration must
be given to balance efficacy with potential drawbacks
such as increased toxicity and interference with immune
checkpoint inhibition.
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Immunogenic cell death

Based on the initial stimulus, cancer cell death can either
activate the immune system (immunogenic) or go unno-
ticed by it (non-immunogenic). ICD is a regulatory pro-
cess characterized by the induction of stress within the
endoplasmic reticulum and cellular structures. This pro-
cess is accompanied by changes in the cell surface com-
position and the subsequent release of soluble mediators,
which follow a precise spatiotemporal sequence and ulti-
mately lead to cell death [174, 175].

The ability of a drug to induce ICD and establish an
immunological memory is often predicted by its ability to
induce damage-associated molecular patterns (DAMPs)
in vitro [176, 177]. A wide array of anticancer therapeu-
tics, including traditional chemotherapy, radiotherapy,
and targeted anticancer agents, has demonstrated the
potential to induce DAMPs [178-180]. Only a small
fraction (<10%) of all chemotherapeutic agents, such as
anthracyclines [181, 182] and oxaliplatin [183], are clas-
sified as ICD-inducing drugs. The majority of cytotoxic
payloads employed in ADCs exhibit the ability to activate
immune cells both in the laboratory and in living organ-
isms, which not only improves their anti-tumor tumor
efficacy, but also synergistically enhances the effect of
ICIs in preclinical models [184].

In mouse models, ADCs with payloads such as maytan-
sine, pyrrolobenzodiazepine, and tubulysin have shown
the ability to induce ICD [135] trigger immune modula-
tion, and establish immune memory. These ADCs not
only exhibit potent cytotoxicity but also synergize with
various ICIs. Notably, these ADCs exhibited significantly
greater anti-tumor activity in immunocompetent mice
than in immunocompromised mice, highlighting the role
of the immune system in their efficacy. Similarly, a newly
developed anti-HER2 ADC containing a potent anthra-
cycline derivative payload (T-PNU) increased DAMP
expression and enhanced efficacy when combined with
an anti-PD-1 drug in a breast cancer model that devel-
oped resistance to other HER2-targeted therapies. Nota-
bly, the efficacy of T-PNU was significantly reduced when
CD8+T cells were depleted, confirming the critical role
of the adaptive immune system in regulating the anti-
cancer activity of T-PNU. In addition, T-PNU appeared
to promote the formation of an immunological memory
in tumor-bearing animals, resulting in protection against
tumor rechallenge [132]. Such an ICD-induced intrin-
sic inflammatory response has also been observed with
brentuximab vedotin [185], ladiratuzumab vedotin [186],
and enapotamab vedotin [136], which are three ADCs
that share the same MMAE payload. This unique prop-
erty further enhances the efficacy of IClIs.
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Direct activation and maturation of dendritic cells

Mature DCs play a pivotal role in tumor immunity by act-
ing as antigen-presenting cells capable of activating anti-
tumor T cell responses through the MHC class II complex
[187]. However, cancer cells often develop immunosup-
pression by inhibiting DC maturation or causing them
to become dysfunctional, ultimately resulting in immune
evasion [188]. Overcoming these barriers is essential for
improving immunotherapy outcomes in clinical practice.

Previous research has shown that compounds that
destabilize microtubules are capable of inducing the phe-
notypic and functional maturation of DCs, which was
not observed with microtubule-stabilizing compounds
such as taxanes [189]. This phenomenon appears to be
a common feature of this class of compounds, indicat-
ing their potential use as "immunostimulatory" agents.
This immunostimulatory effect was first reported in vin-
blastine [190] and subsequently in many other micro-
tubule-disrupting agents, such as maytansinoids (e.g.,
ansamitocin P3 and its synthetic derivative DM1) and
dolastatins (from which auristatins are derived), which
are frequently used as payloads in ADCs [133, 191]. In
preclinical models, these payloads have been demon-
strated to directly trigger DC activation and maturation.
Importantly, these potent immunoregulatory effects were
observed even without cancer cell death, indicating an
independent binary mode of action. The complete thera-
peutic efficacy of these ADCs includes payload cytotox-
icity and immunoregulatory functions; the latter strongly
depends on an intact host immune system, which is sig-
nificantly diminished in immunocompromised mouse
models.

Preclinical studies combining tubule inhibitor-based
ADCs with ICIs have confirmed that these two types
of treatment modalities can work synergistically to
increase therapeutic efficacy rather than have additive
effects [134, 191]. In cases where tumors responded
completely to the combination treatment, mice showed
protection upon rechallenge with the same tumor,
indicating the successful establishment of immunological
memory. Notably, an analysis of paired samples from
28 patients with breast cancer who underwent short-
term preoperative treatment with T-DM1 as part of the
WSG-ADAPT protocol sub-trial revealed significant
increases in the number and density of tumor-infiltrating
T cells [168]. There is evidence that topoisomerase
I inhibitors can also act as immunomodulators by
activating DCs [192], as exemplified by T-DXd, an HER2-
targeted ADC that carries the exatecan derivative DXd,
a topoisomerase I inhibitor, as payload. T-DXd has been
found to significantly increase the presence of tumor-
infiltrating DCs and the expression of markers indicative
of maturation and activation, leading to an increase in
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tumor-infiltrating CD8+T cells, along with increased
expression of PD-L1 and MHC class I on tumor cells.
Notably, in a CT26-HER2 tumor model, the combination
of T-DXd with an anti-PD-1 agent proved to be more
effective than either treatment alone, possibly because
of the immunomodulatory changes induced by T-DXd
[134]. It is worth noting that the T-DXd payload possesses
a tenfold more potent topoisomerase I inhibitor activity
compared to SN-38, which may contribute to a more
robust immunologic effect compared to other agents in
the same class [168].

Combining ADCs and ICls

Currently, HER2-targeted ADCs are under intense
clinical investigation for their synergistic effects in
combination with ICIs; however, many trials are still
ongoing, and determinant evidence is very limited
[137, 193, 194]. The only published randomized trial
evaluating the combination of an ADC and ICI is the
KATE2 trial. This study evaluated the efficacy of T-DM1
plus atezolizumab and compared it with T-DM1 plus
placebo. The study was conducted in patients who had
previously been treated for HER2-positive breast cancer
and, disappointingly, the combination therapy did not
result in a statistically significant improvement in PES
in the overall patient population, with a median PFS of
8.2 months in the combination arm and 6.2 months in
the control arm (P=0.33). However, a trend suggesting
potential benefit in a specific subset of patients with
positive PD-L1 expression was observed, where median
PFS was 8.5 months for the combination arm and
4.1 months for the control arm (P=0.099). This indicated
that adding an ICI to HER2-targeted treatment for
HER2+breast cancer may be particularly beneficial in
the PD-L1-positive subset [77, 195-204]. Most cancer
patients enrolled in published studies had not previously
received treatment with an ICI. Thus, we are uncertain
about the synergistic benefits that ADC may provide
when combined with ICIs in tumor types that are known
to respond well to immunotherapy. However, currently
available clinical data suggest significantly improved
response rates, as shown by a comparison with the
historical efficacy results achieved with standalone
immunotherapy in these specific tumor types [132, 133,
135, 136, 184—-190].

After witnessing remarkable improvements in efficacy
in specific cancer contexts, certain combinations will
likely be adopted as new standards of care, potentially
replacing traditional cytotoxic treatment approaches.
To illustrate this theory, the combination of enfor-
tumab vedotin, an ADC targeting nectin 4, and pem-
brolizumab has been evaluated as a first-line treatment
option for individuals diagnosed with locally advanced
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or metastatic urothelial cancer (as demonstrated in the
EV-103/KEYNOTE-869 study; ClinicalTrials.gov identi-
fier: NCT03288545) [184]. In this patient population, the
combination achieved an impressive objective response
rate of 73% and extended the PFS to 12.3 months. This
result led to a breakthrough designation granted by the
US EDA, specifically for patients ineligible for cisplatin-
based therapy. Moreover, other cancers, including cer-
vical cancer, triple-negative breast cancer, Hodgkin’s
lymphoma, and primary mediastinal large B cell lym-
phoma, have shown encouraging results when treated
with a combination of anti-PD-1 antibodies and ADCs
targeting specific markers, such as tissue factor, TROP2,
and CD30 [205]. This novel strategy of combination
therapy holds great promise, particularly for older and
frail patients who are at an increased risk of experienc-
ing severe side effects from traditional chemotherapy
regimens [187, 188, 190, 206—208]. In the coming months
and years, we expect to see more trial results that employ
various immunotherapeutic agents to enhance ADC
activity.

Safety profile of ADCs combined with immunotherapy

In the phase III KATE2 trial, a significant increase in
adverse events, including one treatment-related death,
was observed in the combination arm that combined
atezolizumab and T-DM1 in patients with previously
treated HER2-positive metastatic breast cancer. The fre-
quencies of clinically significant adverse events (33% vs.
19%) and most adverse reactions, particularly fever (35%
vs. 16%, including several hospitalizations), increased
after the introduction of atezolizumab [140]. Similarly,
randomized data are now available for enfortumab vedo-
tin, with and without pembrolizumab, in 149 patients
with advanced-stage urothelial carcinoma. The introduc-
tion of pembrolizumab resulted in a higher occurrence
of clinically significant (23.7% vs. 15.1%) and fatal (3.9%
vs. 2.7%) adverse events, and an overall increase in the
incidence of all adverse events. Notably, an increase in
serious skin reactions was observed [209]. Nevertheless,
the combination received accelerated approval from the
FDA in April 2023 for patients with locally advanced or
metastatic urothelial carcinoma, particularly those who
could not receive cisplatin-based chemotherapy. This
approval was based on the efficacy of the combination.
However, the lack of a randomized design in most other
studies on ADC and ICI combination therapies makes
it difficult to reach definitive conclusions regarding the
many unanswered questions. To date, there have been no
alarming signs of increased toxicity induced by ICIs in
combination with T-DXd [77, 210, 211], Dato-DXd [204],
or sacituzumab-govitecan [212], all of which have addi-
tive toxicity profiles. These safety profiles include similar
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rates and intensities of ILD, which frequently occurs with
DXd-based ADC treatments. Interestingly, the addition
of ICIs does not appear to increase the incidence of ILD
associated with ADCs [141, 175, 177, 213]. Ongoing ran-
domized phase III trials (NCT05629585, NCT05382286,
and NCT05633654) are expected to offer additional
insights into this domain. These trials may further clarify
the toxicity patterns of treatment approaches that com-
bine ICIs with ADCs beyond T-DML1.

Conclusions

Monotherapy with ADCs has exhibited transformative
anti-tumor efficacy across a broad spectrum of solid and
hematological malignancies. The present landscape is
characterized by substantial efforts from both the aca-
demic and industrial sectors focused on advancing the
understanding of ADC combination therapy, which
entails the progress of next-generation ADCs by identify-
ing novel tumor targets and clarifying their pharmacolog-
ical properties.

Notably, the combination of ADCs with chemotherapy
or chemoimmunotherapy regimens, excluding ICIs, has
yielded demonstrable survival advantages over the estab-
lished standard regimens in randomized investigations of
hematological malignancies. Although the combination
of ADCs with ICIs has exhibited encouraging outcomes,
as exemplified by the FDA breakthrough designations
of enfortumab vedotin and pembrolizumab for cispl-
atin-ineligible urothelial cancer, the envisioned survival
improvements and underlying biological mechanisms for
solid tumors remain elusive within the context of rand-
omized controlled trials.

Furthermore, ADC combinations with targeted agents,
particularly inhibitors targeting the HER2 and DDR path-
ways, hold substantial promise, although their poten-
tial is contingent upon validation through more mature
datasets. The constrained success witnessed thus far in
combination therapy with first-generation ADCs (e.g.
T-DM1) can be attributed to many factors that encom-
pass the indiscriminate expression of target molecules,
resulting in off-tumor side effects on normal tissues,
overlapping toxicities, limited efficacy, and unclear pro-
cedures conferring resistance. The landscape of ADC-
based combination therapies remains dynamic, with
current challenges underscoring the complexities of tar-
get expression, tumor heterogeneity, and the intricate
interplay of therapeutic modalities.

In addition to understanding the pharmacological prop-
erties (e.g. DAR and bystander effect) to improve ADC
efficacy, there is also a strong need to stratify patients
with high response rates and detect relevant predictive
biomarker profiles. Exploring preclinical experiments in
carefully characterized patient-derived xenograft models
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and conducting clinical trials in window-of-opportunity
contexts could facilitate the identification of promising
ADC-based combinations in clinical practice. More stra-
tegic methodologies are required to effectively identify
suitable ADC-based combination approaches for selected
patient cohorts and tumor types. This will not only capi-
talize on the refinement of ADC design and properties,
but also leverage well-informed patient selection strate-
gies to optimize therapeutic outcomes.
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