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Abstract

Antibody—-drug conjugates (ADCs) have emerged as a novel therapeutic strategy that has successfully reached
patient treatment in different clinical scenarios. ADCs are formed by an antibody against a specific tumor-associated
antigen (TAA), a cytotoxic payload, and a chemical linker that binds both. To this regard, most efforts have been
focused on target identification, antibody design and linker optimization, but other relevant aspects for clinical
development have not received the necessary attention. In this article using data from approved ADCs, we evaluated
all characteristics of these agents, including payload physicochemical properties, in vitro potency, drug antibody ratio
(DAR), exposure-response relationships, and clinical development strategies. We suggest that compounds with best
options for clinical development include those with optimal payload physicochemical properties and cleavable
linkers that would lead to a bystander effect. These modalities can facilitate the development of ADCs in indications
with low expression of the TAA. Early clinical development strategies including changes in the schedule of administra-
tion with more frequent doses are also discussed in the context of an efficient strategy. In conclusion, we highlight
relevant aspects that are needed for the optimal development of ADCs in cancer, proposing options for improvement.

Introduction
The use of monoclonal antibodies (mAbs) as a therapeu-
tic modality has gained momentum as several of these
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specifically against the interacting-ligand domain, as was
the case for pertuzumab, did not demonstrate enhanced
activity, compared with antibodies against other extracel-
lular regions, or compared with biparatopic antibodies
with enhanced activity [7]. This suggested the impor-
tance for an efficient internalization and endocytosis of
the receptor as the principal mechanisms of action.

Much more recently, antibodies have been used to
guide cytotoxic compounds, or payloads, that were
attached to the antibody by a chemical linker [8]. This
family of agents has been termed antibody-drug con-
jugates (ADCs), and at this moment more than eleven
agents have demonstrated meaningful clinical activity
and therefore have received regulatory approval [5]. In
addition, more than one hundred are currently in clinical
development in the USA, Asia and Europe [9].

ADCs are three-component structures, whose three
different elements must function correctly to deliver the
full potential of their mechanism of action. The selectivity
and specificity of the antibody is crucial, as it is expected
to act only on the tumor-associated antigen (TAA). In
this context, the TAA would preferentially be expressed
in tumoral cells in a homogenous manner [10]. The linker
should efficiently deliver the payload (by releasing it or
not), and finally the drug payload should have proper
physicochemical and antitumoral characteristics [6, 11].
For this last component, most of them have historically
been chemotherapy drugs, either DNA-damaging agents,
or agents that induce cell cycle arrest, and mainly act at
very low concentrations due to its intrinsic toxicity [11].
In this article, using data from approved ADCs, we have
performed a detailed analysis of the characteristics of
each component, to understand current limitations and
suggest future modifications that could improve clinical
development. The methodology and data used for the
analysis provided in this article are available in as Addi-
tional file 1.

Tumor-associated antigen (TAA) expression of approved
ADCs across different indications

Selective expression of the TAA in tumoral cells is key
to avoid on-target off-tumor toxicities. In this context,
using transcriptomic data, we mapped the expression of
all the TAA for which ADCs has been approved. We first
evaluated the expression of each target at a transcrip-
tomic level in normal tissue versus tumors. As can be
seen in Fig. la those targets belonging to hematological
malignancies were mainly expressed in tumors and not in
other tissues, including CD33, CD19 and CD22, among
others. By contrast, for solid malignancies, the expres-
sion of TAA in normal tissue was more evident including
targets like FR-alpha, Trop2, Nectin-4 or TF, among oth-
ers (Fig. 1a). As TAA can also play an oncogenic role, we
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evaluated which of the evaluated targets was considered
as a common essential gene. As can be seen in Fig. 1b,
CD19, CD79% and HER2 were considered as strongly
selective genes in several cell lines.

Type of linker

All approved ADCs except two, belantamab mafodotin
(Blenrep) and trastuzumab emtansine (Kadcyla), have
used linkers with cleavable structures. Among all the
cleavable linkers, most of them were associated with
enzymatic activity and only two were pH dependent
(Table 1).

There are three types of cleavable linkers. The hydra-
zone-based linkers experience hydrolysis when exposed
to acidic pH, a circumstance that typically occurs when
the ADC is transported through endosomes or lysosomes
with a pH of 5-6 and 4.8, respectively [12]. The Cathepsin
B-sensitive linker is a protease-based linker that is active
in the lysosomes [13]. It recognizes certain sequences
that can be used as ADC linkers, so the cleavage takes
place once the ADC has been internalized inside de lyso-
some [14]. Finally, disulfide linkers are sensitive to reduc-
tive cleavage by glutathione. Indeed, glutathione and
other reducing molecules have higher concentrations in
the cytoplasm than in the extracellular domain [15]. On
the other hand, non-cleavable linkers allow the scission
of the linker-payload from the mAb, through a direct
degradation of the protein. If this degradation is not com-
pleted successfully, some parts of the mAb can remain
associated with the linker and payload after the release,
impairing the diffusion through the lysosomal and cyto-
plasmic membranes [16].

Payload characteristics
Cytotoxic-approved payloads are mainly DNA-damaging
agents and tubulin inhibitors. DNA-damaging agents
include those that act inducing double-strand breaks
like the calicheamicin derivative ozogamicin or the DNA
intercalating/crosslinking compounds: SN-38 and DXd
(Topoisomerase I inhibitors), or tesirine (Pyrrolobenzo-
diazepines (PBD) [17]. Tubulin inhibitors include tubulin
polymerization promoters such as auristatin derivatives
monomethyl auristatin E and F (MMAE and MMAF) and
tubulin polymerization blockers like the maytansinoid
derivatives, emtansine (DM1) and DM4 (8, 18] (Table 1).
Regarding the payload activity, Calicheamicin (10—
60 pM), the maytansinoid DM4 (30-60 pM) and the
auristatin MMAE (70 pM-3.1 nM), all of them showed
pM potency in sensitive cell lines. Next, several oth-
ers fall in the subnanomolar or low nanomolar range,
as is the case for the maytansinoid DM1 (0.79-7.2 nM),
the topoisomerase inhibitor deruxtecan (1.7-9.0 nM)
and the PBD dimer SG3199 (0.15—1 nM). There are two
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Fig. 1 Tumor-associated antigen (TAA) expression of approved ADCs across different indications; a expression of normal and tumoral tissue
expressed in transcript per million (TPM) (GEPIA2), b effect on cell viability by CRISPR silencing in different cell lines (DepMap)

payloads whose activity for cell lines is in the submicro-
molar range, like the auristatin MMAF (100-200 nM)
and the topoisomerase inhibitor SN-38 (13-700 nM),
which is the active metabolite of the clinically used drug
irinotecan.

The potency of the ADC in vitro against panels of cell
lines does not necessarily correlate to that of the free
payloads. In sensitive cell lines, all ADC potency data
were reported below nM levels, many in the single pM
potency range (2-9 pM): gemtuzumab ozogamicin
(Mylotarg), inotuzumab ozogamicin (Besponsa), Bren-
tuximab vedotin (Adcetris), Enfortumab vedotin (Pad-
cev) and Loncastuximab tesirine (Zynlonta). Except the
calicheamicin-based ADCs, for the other three, it rep-
resented an improvement in IC50 of about one order of
magnitude (almost two orders in the case of Loncastuxi-
mab tesirine (Zynlonta)). The next range in potency was
represented by three ADCs with double-digit pM activity
(10-70 pM): Tisotumab vedotin (Tivdak), trastuzumab
deruxtecan (Enhertu) and polatuzumab vedotin (Polivy).

In this group the ratio of improvement varies, Polivy had
the same IC50 as the payload, Tivdak was about 7 times
more potent than the payload and trastuzumab derux-
tecan (Enhertu) showed a significant improvement of 40
times over the payload.

The least active ADCs as judged by their in vitro
activity were sacituzumab govitecan (Trodelvy) and
Tz-emtansine (Kadcyla) both at 200 nM and, finally, mir-
vetuximab soravtansine (Elahere), at 500 nM. In all cases
the improvement in the IC50 does not reach one order
of magnitude, and indeed for mirvetuximab soravtansine
(Elahere) the most recently approved ADC, the IC50 of
the ADC is higher than that of the payload [19].

The activity of an ADC can also depend on other char-
acteristics like the drug/antibody ratio (DAR). As can
be seen in Table 1, this can range between 2 and 8 [20].
The conjugation connects accessible lysine or cysteine
residues with the linker. However, since lysine residues
provide a limited number of linking sites and a particu-
lar reactivity, cysteine-based conjugation is preferable, to
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Table 1 Antibody drug conjugate (ADC) characteristics: linker class, payload and payload mechanism of action, drug antibody ratio
(DAR), potency of the payload and of the ADC (IC50, nM) expressed as a range in sensitive and non-sensitive cell lines and ratio of IC50

ADC/payload in sensitive cells only

ADC Linker Payload Type of payload DAR IC50range IC50range ADC, IC50 ration ADC/
payload, nM payload-sensitive
nM cell lines

Belantamab mafo-  Non-cleavable MMAF, Auristatin Tubulin polymeri- 4 100-200 -

dotin (Bienrep) linkers zation promoters

Brentuximab vedo-  Cathepsin B-sensi-  MMAE, Auristatin Tubulin polymeri- 4 0.07-3.1 0.003-0.125 0.042 (24 xmore

tin (Adcetris) tive linker zation promoters potent)

Enfortumab vedo-  Cathepsin B-sensi-  MMAE, Auristatin Tubulin polymeri- 3.8 0.07-3.1 0.008-0.28 0.11 (9xmore

tin (Padcev) tive linker zation promoters potent)

Gemtuzumab ozo-  Hydrazone linker/  Ozogamicin, Cali- DNA double-strand 2-3  0.01-0.06 0.003—0.084 0.3 (3xXmore potent)

gamicin (Mylotarg)  pH-sensitive linker  cheamicin breaking

Inotuzumab ozo- Disulfide linker/ Ozogamicin, Cali- DNA double-strand 6 0.01-0.06 0.009-0.43 0.9 (as potent

gamicin (Besponsa) glutathione-sensi-  cheamicin breaking as the payload)

tive linker

Loncastuximab Cathepsin B-sensi-  SG3199, PBD dimer  DNA crosslinking 2-3 0.15-1 0.002—0.0036 0.013 (77 xmore

tesirine (Zynlonta)  tive linker potent)

Mirvetuximab Disulfide linker/ DM4, Maytansinoid = Tubulin polimeriza- 3.5  0.03-0.06 0.5—24 16X less potent

soravtansine glutathione sensi- tion blockers

(Elahere) tive linker

Polatuzumab vedo- Cathepsin B-sensi- ~ MMAE, Auristatin Tubulin polymeri- 3.5 0.07-3.1 0.07 1 (as potent

tin (Polivy) tive linker zation promoters as the payload)

Sacituzumab Hydrazone linker/  SN-38, Topoisomer- DNA intercalation 7.6 13-700 02-03 0.015 (66 xmore

govitecan pH-sensitive linker  ase inhibitor potent)

(Trodelvy)

Tisotumab vedotin ~ Cathepsin B-sensi- ~ MMAE, Auristatin Tubulin polymeri- 4 0.07-3.1 0.01-38 0.14 (7 x more

(Tivdak) tive linker zation promoters potent)

Trastuzumab Der- Cathepsin B-sensi-  DXd, Topoisomer-  DNA intercalation 8 1.7-9.0 0.04—0.16 0.023 (43 xmore

uxtecan (Enhertu) tive linker ase inhibitor potent)

Trastuzumab Non-cleavable DMI, Maytansinoid ~ Tubulin polimeriza- 3.5 0.79-7.2 0.2—29 0.25 (4 xmore

linker

tion blockers

Emtansine (Kadcyla)

potent)

provide a more controlled DAR [2-8] and stability [21].
It must be remarked that, although a high DAR is related
to a high ADC potency, the best DAR is yet to be estab-
lished [22].

Physicochemical characteristics of ADC-approved payloads
For decades, the impact that certain physicochemical
properties such as lipophilicity have on the biological
activity of a drug has been known [23]. These principles
can also be applied to the payload of the ADCs, since at
some point in their mechanism of action that payload
will be released. In this context, the physicochemical
characteristics of the different payloads were evaluated to
determine their possible impact on the efficiency of each
ADC.

As can be seen in Table 2 all compounds except
trastuzumab deruxtecan (Enhertu) and sacituzumab
govitecan (Trodelvy) violated one or several parameters
of the Lipinski rules, mainly due to the high molecular
weight of the payloads, and their high number of hydro-
gen bond acceptors. All the other payloads had at least

two violations, and two ADCs based on calicheamicin
(gemtuzumab ozogamicin (Mylotarg) and inotuzumab
ozogamicin (Besponsa), showed up to three viola-
tions of the rules, since they also exceed the number of
hydrogen bond donors.

This behavior is maintained if we use other calcula-
tions that estimate the drug potential of the molecules,
such as the Ghose, Veber, Egan or Muegge rules, the
prediction of Leadlikeness violations, gastrointestinal
(GI) absorption or the Bioavailability Score (Additional
file 1: Table S1) [24—30]. Similar findings were observed
considering the AB-MPS score, which in all cases
exceeds the threshold of 14, but in the cases of Mir-
vetuximab soravtansine (Elahere), Sacituzumab govite-
can (Trodelvy) and Trastuzumab deruxtecan (Enhertu)
the values were relatively close to this limit (in the cases
where the calculation could be performed). Taking this
data into consideration, it can be concluded that some
of the selected payloads used for approved ADCs have
inappropriate physicochemical characteristics that
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could limit their activity by reducing the diffusion of
the compound through cellular membranes.

Pharmacokinetic data and schedule of administration
Most of the approved ADCs have used a schedule of
administration based on a Q3W regimen. These include
belantamab mafodotin (Blenrep), brentuximab vedo-
tin (Adcetris), loncastuximab tesirine (Zynlonta), mir-
vetuximab soravtansine (Elahere), polatuzumab vedotin
(Polivy), tisotumab vedotin (Tivdak), trastuzumab emtan-
sine (Kadcyla) and trastuzumab deruxtecan (Enhertu).
ADCs with a more frequent administration, mainly
D1, D8 every 21 days or D1, D8 and D15 every 28 days,
include enfortumab vedotin (Padcev), gemtuzumab ozo-
gamicin (Mylotarg), inotuzumab ozogamicin (Besponsa)
and sacituzumab govitecan (Trodelvy) (Table 3). Enfor-
tumab vedotin (Padvec) and Sacituzumab govitecan
(Trodelvy) are administered in solid tumors and gem-
tuzumab ozogamicin (Mylotarg) and inotuzumab ozo-
gamicin (Besponsa) in hematological malignancies. The
more frequent administration of the compound could be,
in some cases, due to issues related to target-mediated
drug disposition (TMDD) secondary to a high expression
of the TAA in normal tissue, so a higher proportion of the
antibody is needed to saturate the TAA in normal tissue.
As can be seen in Fig. 1, this could be the case for enfor-
tumab vedotin (Padcev) that targets Nectin-4 or saci-
tuzumab govitecan (Trodelvy) for Trop-2. However, in
hematological malignancies the high tumor burden could
be also the reason, like for gemtuzumab ozogamicin
(Mylotarg) and inotuzumab ozogamicin (Besponsa).

Another interesting observation is the fact that the
half-life of the ADC does not cover the schedule of
administration. For most ADCs the half-life is around
one week, although the administration is given Q3Ws.
Remarkable, one ADC, Sacituzumab govitecan, shows a
half-life as short as 16 h although the agent is dosed at D1
and D8 every 21 days.

Clinical efficacy
Up to twelve ADC have been approved by the FDA by
2023, although one of them, belantamab mafodotin
(Blenrep), has recently been withdrawn from the US mar-
ket upon sponsor request to the FDA. Five of them have
been developed and approved for the treatment of solid
tumors, while the other eight have been granted approval
for the treatment of hematological malignancies. How-
ever, it must be noted that, while most of the older ADC
have phase III clinical trials supporting their use, some
of the recent ADC approvals are based on phase 1II trials
(Table 4).

Gemtuzumab ozogamicin (Mylotarg), brentuximab
vedotin (Adcetris), trastuzumab emtansine (Kadcyla),
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inotuzumab ozogamicin (Besponsa), enfortumab vedo-
tin (Padcev), trastuzumab deruxtecan (Enhertu), sacitu-
zumab govitecan (Trodelvy) and polatuzumab vedotin
(Polivy) have been approved based on phase III stud-
ies. Consequently, the endpoints used to demonstrate
clinical activity were mainly OS, PFES, EFS and iDFS. In
specific indications, the approval of trastuzumab derux-
tecan (Enhertu) has been based on data from phase II
trials with ORR as their primary endpoint like in gastric
and NSCLC [31, 32] Belantamab mafodotin (Blenrep),
loncastuximab tesirine (Zynlonta), tisotumab vedotin
(Tivdak) and mirvetuximab soravtansine (Elahere) have
been approved with data from phase II studies, using
ORR and DOR, as primary endpoints. Those accelerated
approvals are pending to be confirmed in further phase
III registrational studies.

As previously stated, it must be noted that belan-
tamab mafodotin (Blenrep) was granted approval based
on the phase II DREAMMS-2 trial that had ORR as its
primary endpoint. The phase III DREAMM-3 trial
(NCT04162210), that compared belantamab versus
pomalidomide and dexamethasone, with PES as its pri-
mary endpoint, resulted to be negative. Therefore, on
November 22, 2022, the sponsor announced the with-
drawal of the compound following the FDA request [33].

On the contrary, polatuzumab vedotin (Polivy) was
granted approval in pretreated DLBCL in 2019. Its
approval was based on a phase Ib/II trial that had CR
rate as its primary endpoint. Recently, this drug has
confirmed its activity in a phase III trial in pretreated
patients [34], and the FDA has granted full approval in
adults who have previously been untreated with diffuse
large B-cell lymphoma (DLBCL), not otherwise specified
(NOS), or high-grade B-cell lymphoma (HGBL) and who
have an International Prognostic Index (IPI) score of 2 or
greater[35].

Discussion
In the present article, we analyze the components present
in the structure of ADCs that should be taken into con-
sideration when exploring activity and safety of this fam-
ily of agents.

We have first recognized that the number of TAAs
exploited for approved ADCs is limited, and that the
differential expression between tumoral areas and nor-
mal tissues is narrow in most solid tumors compared
to hematological malignancies. This observation sug-
gests two important implications: The first one is that a
huge differential expression between the TAA in tumor
and normal tissue, while desirable for safer therapeutic
index, is not a mandatory requirement for the develop-
ment of a specific ADCs. The second implication is that
the identification of novel TAAs is necessary to widen the
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therapeutic spectrum against different cancers. Beyond
this work, other recent articles have focused on poten-
tial therapeutic opportunities for clinical development of
approved ADCs in indications not yet exploited [9].

We observed that most of the approved ADCs used
cleavable linkers that release the payload under cer-
tain conditions. Among them, most were dependent on
enzymatic activity and only two were related to pH con-
ditions. An important observation from those that use
a cleavable linker, for the payload to be released, is that
they need to be degraded by proteases or by the change
of pH within the lysosomes. In this context, changes in
the lysosome pH that induces an abnormal protein deg-
radation can affect the diffusion of the payload through
the lysosome membrane leading to the development of
resistance [10, 36]. Consequently, it would be preferable
to develop cleavable linkers that would release a free pay-
load. However, it is unclear which type of cleavable linker
would be superior.

Payload characteristics have not been taken into con-
sideration when evaluating the activity of the ADCs. In
our analysis, we have evaluated the physicochemical
characteristics of ADC-approved payloads identifying
that only two of them, DXd and SN-38, qualified for these
rules. This finding suggests that some of the payloads will
have limitations when diffusing through biological mem-
branes, therefore reducing the amount of compound that
will bind to the target. The development of future ADCs
should take into consideration the physicochemical char-
acteristics of the payloads beyond the mere evaluation
of the mechanism of action and potency. In this context,
some recent articles have reported ADCs with optimized
payloads with more potent antitumoral activity [37].

The action of an ADC is not exclusively produced by
the internalization of the payload in the cell, but also to
the subsequent diffusion of the molecule through mem-
branes leading to the induction of a bystander effect or
bystander killing [38]. For this reason, physicochemical
characteristics of the molecules, such as their solubility,
lipophilicity or size (parameters considered in the differ-
ent Leadlike rules), largely determine the possibility of
diffusion and transport from one cell to another through
nearby membranes [39].

The bystander effect is the ability of a certain ADC to
exert its cytotoxic activity in cells that do not express
the target antigen. It requires the payload to cross the
targeted-cell membrane to act upon non-target express-
ing neighboring cells. It requires the payload to be hydro-
phobic and non-polar. A cleavable linker is also preferred
since the linker-payload structure is less likely to be able
to cross cell barriers [40, 41]. In a similar manner a pay-
load with adequate physicochemical characteristics can
facilitate this process. An adequate example of an ADC
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with bystander effect is Trastuzumab deruxtecan, that
has been approved in indications with low target expres-
sion, as shown in Table 4. Other appropriate examples
include Sacituzumab govitecan, with SN-38 as a payload.

Future ADCs should be designed to produce a
bystander effect targeting indications with overexpres-
sion but also mid to low expression of the TAA. To this
regard some ADCs are exploring their effect in ultra-
low TAA expression tumors, particularly for those with
bystander effect [42].

We also evaluated the in vitro potency and the DAR
of all the approved ADCs, identifying that these param-
eters are not a key factor alone for the development of
this type of agents. However, it is of note that those pay-
loads compliant with Lipinski rules (and others) pose a
limit in the achievable DAR, since hydrophobicity of the
payload could promote aggregation and affects stability
of the ADC. Indeed, trastuzumab deruxtecan (Enhertu)
and sacituzumab govitecan (Trodelvy) harbor the highest
DAR (around 8). Another interesting observation is the
increase in potency of the ADC compared with the pay-
load for some compounds including sacituzumab govite-
can, trastuzumab deruxtecan or loncastuximab tesirine
(Table 3). These three agents have a cleavable linker, and
sacituzumab govitecan and trastuzumab deruxtecan have
a payload with favorable physicochemical characteristics
and a high DAR. These data align with recent publica-
tions discussing the therapeutic index of ADCs and ways
to optimize their administration to improve tolerability
[43, 44]

In line with this, another important aspect is the
schedule of administration to achieve and maintain tar-
get engagement and biological activity. As described in
Table 3, two interesting observations can be made. The
first one is that a more frequent schedule of administra-
tion could be secondary to a TMDD. However, this is not
exclusive, as can be seen also for targets highly expressed
in the tumor like those in hematologic malignancies. Sec-
ondly, the schedule of administration does not match the
ADC half-life, which suggests that the biological activity
could be optimized with more frequent administrations
of the compound. A very nice analysis of the pharma-
cokinetic properties of approved ADCs suggests that a
more frequent administration can increase systemic pay-
load concentrations for some of the ADCs [45]. These
two observations provide insights into the best way to
develop novel ADCs and reinforce the suggestions pro-
moted by the Optimus project [46]. In this context,
exposure—response relationships for efficacy should be
optimized aiming to use the minimum biological active
dose.

Finally, when exploring the clinical efficacy data, we
observed that some compounds were approved based on
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a non-time to event endpoints using single-arm phase
IT studies. These approvals were performed following a
FDA-accelerated path that requires subsequent confir-
mation with full registrational phase III studies. Although
most of the studies met the endpoints for full registra-
tion, some did not and were withdrawn, as described in
the result section, for belantamab mafodotin (Blenrep).
Of note, the recently released FDA guidelines for acceler-
ated approval suggest that randomized studies with time
to event endpoints should be performed if aiming for an
accelerated approval [47, 48]. Therefore, future develop-
ment of this type of agents should be executed in a differ-
ent manner as it has been done in recent times.

Our study has limitations. For the evaluation of the
presence of TAA, we used genomic data and not pro-
teomic data. In addition, this information was obtained
from publicly available genomic datasets. Of note, we are
not considering in this article antibody characteristics
like specificity, affinity, antibody-receptor internalization,
or recycling, among others [4, 10, 49, 50]. In addition, the
mechanism of action of the payload in relation with the
tumor sensibility has not been evaluated, as no data to
perform such analysis exist (since the MoA for currently
approved ADCs is typically unspecific). ADCs using
targeted small molecules are currently in early clinical
development but are not the scope of this article.

Taking into consideration all the data provided here we
could suggest that the best-case scenario for the develop-
ment of an ADCs should match the following character-
istics: (1) the selection of a specific TAA only expressed
in tumoral tissue, (2) the use of a cleavable linker and (3)
the use of a payload with adequate physicochemical char-
acteristics. Our suggestion for the best-case scenario is a
payload with good physicochemical characteristics, in an
ADC with a moderate to high DAR, independently of the
in vitro potency of the payload, like is the case for saci-
tuzumab govitecan. From a clinical point of view consid-
eration should be given for novel FDA guidelines for dose
optimization and an accelerated approval path [48]. In
line with this, optimization of the schedule of administra-
tion using a more frequent one could improve the thera-
peutic index leading to the presence of higher amounts of
free payload in the systemic circulation.

In summary, by evaluating currently approved ADCs,
we provide novel ideas to be considered for the design of
next-generation ADCs for cancer.
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