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Abstract

Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living
cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual mol-
ecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities.

The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis,
the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we
comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer
processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have
also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS

from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further
guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
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Background

The spatial and temporal coordination of biochemi-
cal reactions is crucial for cellular physiology [1]. While
membrane-bound organelles are essential for spatially
organized cellular processes, the discovery of membrane-
less organelles (MLOs) has shed light on new mecha-
nisms for tightly controlling processes within cells [2].
MLOs, as known as biomolecular condensates (BMCs),
include the nucleolus [2], Cajal bodies [3], nucleoli [4],
stress granules (SGs) [5-7], and super-enhancers (SEs)
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[8-10] etc. These structures typically range from 0.1 to
3 pm [11]and play key roles in facilitating or modulat-
ing specific cellular processes. BMCs and MLOs are both
formed by the process of phase separation, and in most
scenarios, these two concepts are equivalent.

Until the emergence of the concept of liquid-liquid
phase separation (LLPS), the formation and organiza-
tion of MLOs remained unclear [12]. Thus, LLPS pro-
vides a reasonable framework to explain the formation
mechanism of MLOs and BMCs. This dynamic process
involves the transition of biomolecules from a homoge-
neous environment to sparse and dense phases [11, 13,
14], aiming to reach the lowest-entropy state. Notably,
LLPS occurs when multivalent biopolymers instantane-
ously interact with each other [15-17], forming liquid-
like entities such as bodies, puncta, granules, droplets,
and condensates [18].
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Normal BMCs ensure basic cellular functions, whereas
their aberrant forms result in cellular dysfunction and
possible tumorigenesis. Studies have demonstrated that
LLPS are crucial in the regulation of tumor onset, pro-
gression [19], including promoting cancer cells pro-
liferations and metastasis. Further, the hallmarks and
enabling characteristics of cancer in the 2022 version
provide a framework for further oncological studies[20].
However, understanding of the regarding phase separa-
tion processes involved in each hallmark is still limited.
Therefore, unveiling a novel dimension of its biological
functions is in need.

In this review, we include all cutting-edge and typi-
cal articles related to liquid-liquid separation in oncol-
ogy. Firstly, we describe the methods used to investigate
LLPS, followed by their role in promoting the formation
of BMCs/MLOs. Subsequently, we examine the current
understanding of how LLPS influences tumorigenesis,
progression and their emerging role in cancer treatment.
Finally, we comprehensively summarize the latest insights
into methods to interfere with aberrant forms of BMCs.

Mechanisms and methods associated

with the phenomenon of LLPS

Concepts and mechanisms

Phase separation is defined as the spontaneous aggrega-
tion of molecules when their concentration exceeds a
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certain threshold, thus forming a membrane-less com-
partment [21]. Typically, the interactions between mac-
romolecules in LLPS are typically non-covalent and of
low affinity [22, 23]. This process is often driven by the
modification of intrinsically disordered regions (IDRs)
within proteins [24, 25]. The concept of LLPS was first
introduced in the biochemical field of biochemistry in
2009 by Hyman and colleagues with various milestone
events followed subsequently (Fig. 1), offering a novel
perspective on various MLOs distributed in cells (Fig. 2)
[26]. Although several in silico tools help forecast the
potential of phase-separated molecules (Table 1), com-
prehensive summaries of the characteristics and condi-
tions that induce LLPS are limited.

Structural characteristics and critical components

that triggers LLPS

The concept of a driver (or scaffold)/client is widely
accepted. Proteins, DNA, and RNA can also be used as
scaffolds. With multiple binding sites, these macromol-
ecules facilitate weak interactions and trigger LLPS. The
detailed structures are summarized below.

Multi-foldable domains

One of the most common structural features that facili-
tates LLPS is multivalency, which involves the interac-
tion of various macromolecules (Figs. 3A-C). By using
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Fig. 2 Intra-cellular MLOs within a eukaryotic cell. MLOs are distributed in the nucleus, nuclear membrane, cytoplasm, and plasma membranes

of cells. Nucleolus, perinucleolar compartments, paraspeckles, Cajal bodies, transcription condensates, Gems, DNA repair foci, nuclear stress
bodies, PcG bodies, histone locusbody, PML bodies, DNA replication bodies, polycombs, SPOP/DAXX bodies, super enhancers, heterochromatin,
and amyloid bodies (located in nucleolus) are located in the nuclear by the LLPS. Whereas some MLOs are distributed in the nuclear membrane
(Babliani bodies), cytoplasm (such as sec bodies, cGAS-DNA condensates, ER associated TIS granules, autophagosome cargo condensates, stress
granule, P granules, U bodies, Virus factories, Numb/pon complex, RNA transport granules, centrosome, inclusion bodies, siganling puncta, GW
bodies, germ granules, transport RNP, and proteosome bodies, metabolic granules, keratin granules), and cell plasma membrane (such as immune
synapse densities, Numb/pon complex, Nephrin adhesion complexes/ signaling clusters, T cell microclusters, and ZO mediated tight junction)

multiple, similar domains to mediate the interactions,
these macromolecules effectively trigger LLPS and
attract client molecules to form condensates. For exam-
ple, the proline-rich motif (PRM) domain characteris-
tic of the neural Wiskott-Aldrich syndrome (N-WASP)
interacts with the SH3 domain of NCK, thereby induc-
ing LLPS [53]. A similar principle applies to the nephrin/
Nck/N-WASP system, wherein the phosphotyrosines of
nephrin interact with the SH2 and SH3 domains of NCK
to bind to the PRMs (Fig. 3D) [54]. Similarly, higher-
order polymerized structures are formed via the tan-
dem dimerization domains of the speckled POZ protein
(SPOP) and its interaction with cullin-3-RING ubiquitin
ligase and other substrates, promoting its localization
in nuclear speckles[55] (Fig. 3E). Dimerization or oli-
gomerization of proteins can also contribute to LLPS. For

example, when the dimerization of HP1a is disrupted, the
mobility of the droplets increases, hindering the matura-
tion of heterochromatin formations (Fig. 3F)[56].

IDR/low-complexity domains contribute to LLPS

IDRs are distinctive features of certain proteins of the
condensates, accounting for 33—-55% of eukaryotic pro-
teomes [57, 58]. Like IDRs, low-complexity domains
(LCDs) are also distinctive features of proteins comprised
by highly biased amino acid compositions [59]. IDRs
and LCDs lack stable tertiary structures and have flex-
ible conformations, making them prone to undergo LLPS
[11, 60-62]. B sheets in TDP34/FUS (Fig. 3G), coiled-coil
domains in YAP/TAZ (Fig. 3H) and alpha-helix in TDP43
(Fig. 3I), exemplify the role of LCDs in LLPS [63-69].
While IDR interactions involve pi-pi interactions, salt
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Table 1 Overview of databases related to liquid-liquid phase separation (LLPS)
Category Database Availability Details of databases References
Prediction of LLPS related SGnn http://sgnn.ppmclab.com Proteins bearing prion-like domains [27]
proteins (PrLDs)
PhaSepDB http://db.phasep.pro/ Phase-separation related proteins [28]
D%p? https://d2p2.pro/search Phase-separation related proteins [29]
PLAAC http://plaac.wimit.edu/ Prion-Like Amino Acid Composition [30]
DrLLPS http://llps.biocuckoo.cn/ Proteins in this database are classified [31]
as drivers,
regulators and potential Clients
PhaSePro https://phasepro.elte.hu A manually curated database of LLPS [32]
driver proteins in various organisms,
with emphasis on the biophysical prop-
erties that govern phase separation.
BioGRID https://thebiogrid.org/ Database of Protein, Genetic [33]
and Chemical Interactions
LLPSDB http://biocomp.ucas.ac.cn/llpsdb/ A database of proteins undergoing [34]
home.aspx LLPS in vitro
HUMAN CELL MAP  https://cell-map.org/ or https:// Summarizes for each compartment [35]
humancellmap.org/ the enrichment of expected domains
and motifs as well as GO-terms
Provides channels to analyze spati-
otemporal correlations between pro-
teins in different organelles
MLOsMetaDB http://mlos.leloirorg.ar/ Unified resource of MLOs and LLPS (36]
associated proteins
catGRANULE http://startaglialab.com/ A website good at predicting LLPS pro-  [37]
pensity of dosage-sensitive proteins
PScore https://github.com/haocai1992/ A machine learning algorithm that pre-  [38]
PScore-online#pscore-online dicts the likelihood of phase separated
proteins
Prediction of LLPS related RNAs  RPS http://rps.renlab.org/#/Home A comprehensive database of RNAs [39]
involved in liquid-liquid phase separa-
tion
RNAPhaSep http://www.rnaphasep.cn/#/Home A resource of RNAs undergoing phase  [40]
separation
RNA granule data- http://rnagranuledb.lunenfeld.ca/ A database containing RNA granules [41]
base
Integreation of LLPS related DisPhaseDB http://disphasedb.leloirorg.ar An integrative database of diseases [42]
diseases related variations in liquid-liquid phase
separation proteins
Prediction of specific structures |UPred2A https://iupred2a.elte.hu/ Combination of the iupred database [43]
or features of LLPS and the ANCHOR database, which can
predict the disordered and disordered
binding regions of proteins
PONDR http://www.pondr.com Predictor of natural disordered regions  [44]
MobiDB https://mobidb.org Provides information about intrinsically  [45]
disordered regions and related features
CIDER http://pappulab.wustl.edu/CIDER/ Calculation of many different parame-  [46]
ters associated with disordered protein
sequences
ZipperDB https://services.mbi.ucla.edu/zippe Predictions of fibril-forming segments  [47]
rdb/ within protein
Metadisorder http://iimcb.genesilico.pl/metadisord  Prediction of protein disorder (48]
er/
DisMeta https://montelionelab.chem.rpi.edu/  Prediction of protein disorder [49]

dismeta/
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Table 1 (continued)
Category Database Availability Details of databases References
Expasy https://web.expasy.org/compute_pi/  Computation of the theoretical pl [50]
(isoelectric point) and Mw (molecular
weight)
AMYCO http://bioinf.uab.es/amycov04/ Evaluation of mutation impact [51]
on prion-like proteins aggregation
propensity
MFDp2 http://biomine.ece.ualberta.ca/ Accurate sequence-based prediction [52]
MFDp2/ of protein disorder which also outputs
well-described sequence-derived infor-
mation that allows profiling the pre-
dicted disorder
Interaction between macromolecules Sequence variations
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Fig. 3 Basic condensates promoting features. A-C Interactions between macromolecules that facilitate phase separation. D The SH2 domain

of NCK binds to Nephrin, and NCK possesses three SH3 domains that can bind the proline-rich motifs (PRMs) of N-WASP, showing a typical repetitive
molecular domain (RMD) that contributes to LLPS. E Oligomerization of SPOP and its interactions with substrates can induce phase separation. F
Dimerization of HP1a promotes LLPS. G-I Several classic IDRs, which consist of LCDs. J-N Fundamental interacting force between IDRs. O Formation
of BMCs, from dissociation to assembly. P-S Four types of sequence variations that drive phase separation
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bridges between opposing charge residues, pi-cation
interactions, dipole-dipole interactions (Van der Waals
forces), and hydrophobic forces (Figs. 3]-N) represent
different forms of LLPS [70].

Nucleic acids regulate LLPS

Nucleic acids, especially the single-stranded nucleic
acids, tend to aggregate to form droplets, whereas dou-
ble-stranded nucleic acids tend to form gel-like aggre-
gates [71]. Via electrostatic interactions and the pairing of
repeating molecules, certain RNAs achieve polyvalency,
effectively inducing LLPS in combination with proteins, as
observed in the RG/RGG-rich domains of the SERPINE1
mRNA-binding protein 1 (SERBP1) system [72]. In con-
trast, the RNA concentration does not show a strong posi-
tive correlation with the phase transition ability [73]. RNA
modifications and non-coding RNAs can also induce LLPS
spontaneously [74] or by attaching to proteins, facilitating
clients recruitment for the condensate assembly [75-77].

Head-to-tail polymerization

Occasionally, stable structural domains in proteins, such
as SAM and DIX, retain their ability to trigger local
condensation [78, 79]. Among the dishevelled and axin
components of the Wnt signaling, the DIX domain can
assemble in a head-to-tail manner and promote Wnt
signaling [80, 81]. The SAM domain of the tankyrase
protein forms similar puncta in a head-to-tail manner
to bind and ribosylate poly ADP AXIN, thus promoting
Wnt signaling [82]. These structural conditions facilitate
the formation of condensates (Fig. 30).

Sequence variations at the gene levels

Disease-related genomic changes regulate LLPS. The
NUP98 fusion protein in leukemia, carrying IDRs, serves as
a good model for gene fusion [83] (Fig. 3P). Similar results
have been obtained with anaplastic lymphoma kinase
(ALK) and BCR-ABLI fusions [84, 85]. Linear motifs that
modulate ligand recognition within IDRs control the func-
tion of alternatively spliced (AS) proteins [86, 87] and mod-
ulate their assemblies (Fig. 3Q). On the contrary, repetitive
motifs can induce pathogenic repeat expansions (Fig. 3R).
Missense mutations in IDRs and polymerization/modular
domains may influence the phase transition status bilater-
ally (Fig. 3S). For instance, F291S and Y283S mutations in
the heterogeneous nuclear ribonucleoprotein A2 scarcely
affect the aggregation, whereas D290V and P298L muta-
tions improve the condensation [88].

External conditions and physicochemical properties affect
LLPS

In this section, we focus on the conditions and the post-
translational modifications (PTMs) which play a crucial
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role in regulating the dynamic transitions of molecules
within the cell.

The interplay of various intracellular conditions, such
as the concentration of proteins, pH level, and changes
of the cellular milieu, alter the strength of polyvalent
interactions. These conditions are key regulators of tran-
sitions within the cell. Furthermore, the concentrations
of macromolecules are critical. When the concentration
exceeds a critical threshold, the interaction between
these macromolecules outweighs the forces that main-
tain homogeneity of the system, making the solution
susceptible to phase separation. Conversely, when the
concentrations are below this threshold, the compo-
nents remain evenly distributed [89, 90]. The alterations
of pH value can significantly impact LLPS by chang-
ing the surface charges of amino acids, the a-carbonyl
groups, and the a-amino terminal protonation status.
pH alterations affect the stability of specific proteins and
change the secondary structure from ordered to disor-
dered. Altering the protonation of amino acids directly
influences the chemical properties of macromolecules,
further altering their intermolecular interactions and
triggering LLPS. For example, the decreased cytoplas-
mic pH, induced by external stimuli, can promote LLPS
of naturally disordered proteins, as observed with Sup35
in yeast cells [91]. The increase in salt concentration and
the addition of substances such as PEG3000 and glyc-
erol can also modulate LLPS [73, 92]. Additionally, weak
electrostatic interactions, driven by IDRs, are highly
sensitive to changes in pH and ionic strength, poten-
tially explaining LLPS induction due to environmental
changes [17, 93]. In addition, temperature and stress
levels can also trigger or disrupt LLPS by affecting the
solubility of macromolecules [11]. Moreover, prion-like
domains in proteins can sense pressure, influencing the
solubility and phase behavior [94, 95].

The PTMs are crucial in the regulation of phase transi-
tions by altering molecular interactions or directly modi-
fying the potency of BMCs [96-98]. PTMs can induce
changes of biomolecules in the spatial structures and
state of proteins [96, 99]. PTMs of RNA-binding proteins
(RBPs) can directly weaken or enhance the interactions
between components, contributing to the formation of
RNP granules, serving as an example of an MLO that is
composed of RBP and RNA [96]. PTMs can promote or
inhibit polyvalent interactions by influencing the condi-
tion of proteins, thus affecting the occurrence of LLPS
[100]. Notably, the Lys residues within the IDRs are par-
ticularly prone to get SUMOylation, a modification that
significantly contributes to the formation of the promye-
locytic leukemia nuclear bodies (NBs). De-SUMOylation
can lead to the release of a constituent protein and the
separation of NBs during mitosis [101, 102].
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Table 2 Summary of cancer-related PTMs involved in LLPS
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PTM Disease association Participants Biological role Regulation of LLPS References
Ubiquitination ~ Non-small-cell lung cancer USP42 Drives nuclear speckle mrna Promotion [8]
splicing and promote tumori-
genesis
Multiple cancer types p62 Promotes tumor cell survival Promotion [103]

Multiple cancer types

Phosphorylation Multiple cancer types

Methylation Leukaemia

Multiple cancer types

Sumoylation Colon cancer

Acetylation Multiple cancer types

Neddylation Acute promyelocytic leukemia
(APL)

by upregulating p62 liquid
droplet formation and degra-

dation

SPOP/DAXX Co-localizes with DAXX Promotion [104]
in Liquid Nuclear Organelles
and facilitates DAXX Ubiquit-

ination

TAZ Formation of transcription Promotion [68]

compartment to promote

gene expression

YTHDC1-m6A condensates  Facilitates a phase-separated Promotion [105]
nuclear body and suppresses
myeloid leukemica differentia-

tion

UTX (namely KDM6A) Involved in chromatin- Promotion [106]
regulatory activity in tumour

suppression

RNF168 Genomic instability and DNA  Promotion [107]
damage repair

KAT8-IRF1 KAT8-IRF1 condensate forma-  Promotion [108]
tion boosts PD-L1 transcription

PML/RARa Induce abberent LLPS and dis-  Inhibition [109]

rupt function of PML nuclear

bodies to drive APL

Given the complexity of physicochemical conditions,
the manipulation of PTMs is an intriguing approach to
influence LLPS. Thus, it is pivotal to understand the pos-
sible mechanisms in cancer-related PTMs associated
with LLPS (Table 2).

Table 3 Oncogenic signaling assosciated condensates that were involved in LLPS

Deregulated phase separation in cancer
Emerging evidence has robustly revealed that aber-
rant BMCs are involved in various biochemical pro-
cesses in human diseases and various oncogenic

Signaling Pathway

Cancer type

Biomolecule/ condensate

Biological role

Ref

EGFR/RAS signaling

KRAS signaling

JAK-STAT3 signaling

PI3K-AKT-mTOR signaling
pathway

Lung cancer

Lung cancer

Lung cancer

Lung cancer

EGFR condensates

EML4-ALK condensates

EZH2/STAT3

stress granule

Regulating pro-tumor activation
of Ras

Modulating the KRAS signaling
pathway, amplifying the oncogenic
potential of this cascade, ultimately
leading to dysregu- lated cellular
proliferation and survival

Myristoylation modification of EZH2
enables its phase separation, com-
partmentalize STAT3 within the con-
densates and leads to the sustained
activation and enhanced transcrip-
tional activity of STAT3

dynamically interacting with a key
component of lung oncogenic
pathway, mTOR and its regulators,
influencing its localization, activity,
and downstream signaling

[110,111]

[112,113]

[113]

[114]
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Table 3 (continued)
Signaling Pathway Cancer type Biomolecule/ condensate Biological role Ref
Hippo signaling pathway Pan-cancer YAP, TAZ, TEAD Undergoing LLPS, accumulat- [68,115]
ing in the nucleus coregulator
with increased activity in various
cancers
Hepatocellular carcinoma  G6PC (glycogen compartments) YAP signaling activation [116]
Hepatocellular carcinoma  YAP/TEAD transcriptional conden-  Acting as signaling hubs [117]
sates for the tumor microenvironment
Hepatocellular carcinoma  Laforin-Mst1/2 condensates Increasing hepatocarcinogenesis [116]
p53 signaling Pan-cancer p53, 53BP1 53BP1 can form phase separa- [118,119]
tion droplets, which enrich tumor
suppressor protein p53. Cancer-
associated mutation of p53 can
accelerate the protein aggregation
and amyloid formation by destroy-
ing the folding of p53 core domain
Wnt/B-catenin signaling Breast and prostate cancer DACT1 WNT signaling inhibition [120]
TGF-B signaling Colorectal cancer SMAD3 forming nuclear foci when the sign-  [121]
aling pathway is activated
cAMP/PKA signaling Atypical liver cancer DnaJB1-PKAcat fusion Tumorigenic cAMP signaling [122]
fibrolamellar carcinoma
Hepatocellular carcinoma  Rla condensates Promoting cell proliferation [122]
and transformation
RAS signaling Pan-cancer EML4-ALK fusion RAS signaling overactivation [123,124]
Pan-cancer CCDC6-RET fusion RAS signaling overactivation [123,124]
Pan-cancer LAT, GRB2, SOS Activating Ras in tumour develop-  [125]
ment
MAPK signaling RTK-driven human cancer  SHP2 Stimulation of downstream MAPK [126]
signaling pathways and ERK1/2
activation
Wnt/B-Catenin signaling Colorectal cancer Destruction complex Regulating development [127]
and stemness
NRF2/NF-kB signaling Lung cancer p62 bodies Accelerating cancer development [128]
NF-kB pathway signaling Virus-associated cancer p65/inclusion body The trapped p65 (subunit of NF-kB) ~ [129]
by phase separation of viral replica-
tion machinery cannot translo-
cate into the nucleus to activate
the downstream transcription
of proinflammatory cytokine genes
and other antiviral genes
CcGAS-STING signaling Pan-cancer NF2m-IRF3 condensates Regulating tumor immunity [130,131]
IL-6/STAT3 signaling Hepatocellular carcinoma  Paraspeckles IL-6/STAT3 signaling promotes par-  [132]

aspeckles formation, which favors
overactivation of STAT3

(See figure on next page.)

Fig. 4 Summary of deregulated phase separations in cancer. A RTK granule formations activate RTK/MAPK signaling pathways to promote tumor
proliferation. B DDX21phase separation activates MCM5, facilitating EMT signaling and modulating metastasis of colon cancer. C LLPS of 53BP1

diminish downstream targets of p53 to evade growth suppressions. D The accumulation of 53BP1 in the nuclear foci is enhanced after DNA

damage, activating p53 and regulating cellular senescence. E SUMO ALT-associated PML bodies on the telomeres facilitate the replicative
immortality of cancer cells. F Nuclear condensates (nYACs) generated through the LLPS of YTHDC1 (binding with m6A-mRNA) are significantly

increased in AML cells. G Mutations in the FERM domain of NF2 (NF2m) robustly inhibited STING-initiated antitumor immunity by forming
NF2m-IRF3 condensates. H PML nuclear bodies (NBs) serve as comprehensive ROS sensors associated with antioxidative pathways. | EBNA2
becomes part of BMCs and regulates EBV gene transcriptions. J BRD4 forms condensates with SEs to regulate angiogenesis. K NUP98-HOXA9 fusion
proteins attenuate aberrant chromatin organizations. L m°®A-modified androgen receptor (AR) mRNA phase separated with YTHDF3 responds to AR
pathway inhibition (ARPI) stress in prostate cancers. M LLPS of GIRGL-CAPRIN1-GLST mRNA suppresses GLS1 translation and adapts to an adverse
glutamine-deficient environment. N icFSP1 induces FSP1 condensates to trigger ferroptosis in the dedifferentiation of cancer cells
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signaling pathways [19] (Table 3). Next, we review
the role of LLPS in tumors based on several hallmarks

(Fig. 4).

LLPS promotes the proliferation of cancer cells
Cancer cells can undergo unrestricted division [20,

133-136], which can occur through gene mutations that
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activate oncogenic receptor tyrosine kinases (RTKs) and
the downstream MAPK signaling involving RAS proteins.

Adaptor proteins involved in RTK and RAS signaling,
such as LAT, GRB2 and SOS, undergo phase separation
during RTK activation [137]. This phenomenon increases
the interaction time between SOS and RTK/RAS, provid-
ing a mechanism for kinetic proofreading during RTK
activation [125, 138] and preventing the spontaneous
membrane localization of SOS, and the downstream acti-
vation of RAS. Interestingly, carcinogenic RTK mutations
resulting from chromosomal rearrangements cause the
loss of membrane localization but not its ability to stimu-
late downstream pathways. Mechanically, these conden-
sates can assemble the RAS-activating complex GRB2/
SOS1, which activates the RAS-MAPK signaling in a
membrane-independent manner [123]. Moreover, RTK
fusion oncoprotein granules enable the activation of RTK
signaling [123, 139]. The close binding to RTK oncopro-
tein condensates allows GRB2 to concentrate key down-
stream molecules, achieving the constitutive activation of
RAS-MAPK signaling in cancer cells (Fig. 4A). Therefore,
BMC:s provide a new method for modulating cancer-pro-
moting signaling in a spatially restricted manner.

LLPS promotes the metastasis of tumors

The ability to invade and metastasize allows the tumors to
develop distantly, and the epithelial-mesenchymal transi-
tion (EMT) programs are commonly involved [140]. Acti-
vated by EMT, the transcription coactivators YAP and
TAZ facilitate metastasis [141, 142]. Hu et al. found that
YAP fusion proteins undergo LLPS in the nucleus and
that the IDR provided by the partner of YAP is required
for assembly. This aggregation promotes the YAP/TAZ-
specific transcriptions and attenuates metastasis [68].
Similarly, another study revealed that the phase separa-
tion of DDX21 activates MCMS5, thus triggering EMT
signaling and modulating the colon cancer metastasis
(Fig. 4B)[143]. Besides, SGs are also involved in malig-
nant invasion and metastasis. EMT markers Cadherin,
Vimentin, Snail and Slug are suppressed under SG core
component G3BP1 depletion, implying the role of G3BP1
in tumor metastasis [144]. Moreover, G3BP modulates
mRNA stability under stress conditions and facilitates the
invasion of cancer cells [145]. These carcinogenic mecha-
nisms provide new explanations for tumor metastasis, as
well as the inspiring ideas for models of cancer progres-
sion regulation by the BMCs.

LLPS helps evade tumor growth suppression, regulate

the aging process, and achieve replicative immortality

of tumor cells

Cancer cells not only promote their growth but also mod-
ify tumor-suppression pathways [20]. By inhibiting tumor
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suppressors such as SPOP, p53, and RB1 [146-148], can-
cer cells escape intrinsic growth limitations. P53, one of the
most well-known tumor suppressors, inhibits tumorigenesis
via transcriptional activation, which leads to the disorders
of apoptosis, cell cycle, and cell senescence. Tumor-associ-
ated stress significantly triggers p53 aggregation [149—154].
These findings demonstrate that the disruption of particu-
lar BMCs may cause cancer (Fig. 4C). Further studies are
needed to validate this approach with other tumor suppres-
sors and to test its potential applications.

Cellular senescence is considered an anticancer mecha-
nism that maintain homeostasis and is associated with
cell cycle arrest. The initiation and maintenance of cellu-
lar senescence rely on the frequent damage to the P53/Rb
signaling pathway. Increased accumulation of 53BP1 in
the nuclear foci after DNA damage can activate p53 and
has recently been shown to regulate the cellular senes-
cence via LLPS (Fig. 4D) [155].

Cancer cells can overcome the cell senescence and
death via telomerase or alternative methods for length-
ening telomeres (ALT) [156—158]. Multivalent interac-
tions between SUMO and SUMO-interacting motifs were
observed in the formation of ALT-associated PML bod-
ies on telomeres in cancer stem cells (Fig. 4E) [159]. The
fusion of PML bodies enables the clustering of telomere
elements and the recruitment of DNA helicases, and
other molecular machinery to extend the length of tel-
omeres [160]. This finding suggests that cancer stem cells
achieve replicative immortality through the unchecked
cell division, and that this process is associated with LLPS.

LLPS modulates epigenetic reprogramming of various
BMCs

Common epigenetic modifications include histone modi-
fications, DNA methylation, and RNA interference [161,
162]. Interactions between epigenetic modifications and
their corresponding reader proteins also exhibit polyvalent
interactions. M®A, known as the most common mRNA
modification [163], alters the mRNA structure and inter-
acts with multiple other mRNA modifications and proteins.
This modification facilitates YTHDF protein phase separa-
tion, further contributing to the forming of various RNA—
protein granules, including P bodies and SGs [74, 164]. In
addition, YTHDCI can undergo LLPS in the nucleus by
interacting with m°A-modified mRNAs. This interaction
results in the formation of nuclear YTHDC1-m®A conden-
sates (nYACs), which are significantly enhanced in acute
myeloid leukemia (AML) cells (Fig. 4F) [105].

LLPS helps cancer cells escape immune destruction

and participate in tumor-associated inflammation

The immune system employs the RLR-MAVS and
cGAS-STING signaling pathways for protection against
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microbial invasion and support tumor immune surveil-
lance [165-167]. However, tumors often escape immune
clearance surveillance. Recent findings by Meng et al.
revealed that neurofibromin 2 (NF2) facilitates innate
immunity by eliminating tank-binding kinase 1 (TBK1)
activation. It is the missense mutations in the FERM
domain of NF2 (NF2m) that robustly inhibit the STING-
initiated antitumor immunity via the NF2m-IRF3 con-
densates formations (Fig. 4G), suppressing the TBK1
activation [130]. This offers novel insights into NF2-
related cancer treatments.

Notably, inflammation often plays a dual role in can-
cer. Overproduced in various inflammatory tissues, the
reactive oxygen species (ROS) may accelerate the genetic
mutations of cells, making them more aggressive and
malignant [168]. However, recent research indicates that
the PML NB may function as a sensor for ROS in two
ways: protecting cancer cells from excessive ROS or pro-
moting ROS-induced apoptosis (Fig. 4H). Given the lack
of in-depth research in this field, further tumor microen-
vironment exploration is required to understand these
processes fully.

Tumor-associated viruses, such as human papilloma-
virus, Kaposi sarcoma herpesvirus, and Epstein—Barr
virus (EBV), influence tumor progression through LLPS
[169-171]. In EBV proteins such as EBNA2 and EBNALP,
LLPS regulates host gene expression, forming biomol-
ecule condensates at Runx3 and MYC SE sites to regulate
viral and cellular gene transcription (Fig. 4I). Further, the
LLPS of EBNA2 can influence the alternative splicing of
the pre-MPPEL1 gene in cancer [170].

LLPS induce vasculature of the tumors

Vascularization, also known as angiogenesis, is cru-
cial for supplying tumors with nutrients and oxygen for
growth. Vascular endothelial growth factor (VEGF) is
the leading factor responsible for rapid nutrient supply.
Mounting evidence has indicated a correlation between
BMC formation and angiogenesis. For example, the con-
stitutive expression of the transcription factor (TF) MYC
in metastasizing cells can lead to VEGF transcription by
potentially forming phase-separated transcription con-
densates, promoting promotes angiogenesis [172]. Simi-
larly, the use of 1,6-hexanediol, an inhibitor of LLPS, has
recently been shown to regulate angiogenesis by inhib-
iting cyclin Al-related endothelial functions as well as
condensates with BRD4, indicating that targeting con-
densates can block critical reactions (Fig. 4]) [173, 174].

Genomic arrangements initiate LLPS

Genomic instability contributes to tumor progression.
Genomic translocations and rearrangements can lead
to the fusion between the IDR of one protein and the
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DNA- or chromatin-binding domain of another [175].
This fusion acts as a TF, eliciting LLPS and attracting
additional partners to initiate transcriptional programs
that ultimately contribute to tumorigenesis. A typical
example is the NUP98 fusion oncoprotein (FO), which
occurs in 50% of patients with chemotherapy-resistant
AML [176-179]. FOs demonstrate that malignancies
establish cancerous TF condensates [83, 180, 181] and
attenuate aberrant chromatin organization (Fig. 4K).

LLPS of SGs assist in avoiding cell death of cancer cells
under the stress

Cancer cells can escape apoptosis by forming SGs (a
form of MLOs) when exposed to extreme conditions,
such as high temperatures, toxins, mechanical damage,
or other stresses. For example, the Y-box binding protein
1 (YB-1) interacts with the 5’-untranslated region (UTR)
of G3BP1[182], leading to the increased expression of
G3BP1 and SGs, which is elevated in human sarcomas
[183-185]. Consequently, these cancer cells survive
hyperproliferation, chemotherapy and other various
stressful conditions. Additional studies on prostate can-
cer have demonstrated that the m®A-modified androgen
receptor (AR) mRNA phase separated with YTHDEFS3,
while the unmodified AR mRNA phase separated with
G3BP1 to survive AR pathway inhibition stress (Fig. 4L)
[186]. Collectively, SGs may serve as novel targets for
cancer biology investigations.

LLPS regulates cellular metabolisms of cancer cells
Malignant cells undergo metabolic reprogramming
[187], thereby attracting considerable interest in tumor-
related research in the past decades [188]. For example,
the reduction of glutaminase-1 (GLS1) enables cancer
cells to survive under prolonged glutamine deprivation
stress [189, 190]. Wang et al. reported that the IncRNA
GIRGL promotes the LLPS of GIRGL-CAPRIN1-GLS1
mRNA to suppress GLS1 translation, thus adapting to
an adverse glutamine-deficient environment (Fig. 4M)
[191]. CAPRINI, an RNA-binding protein involved in
the SG formation via LLPS, plays a role in this metabolic
adaptation. Therefore, alteration of cell adaptation to an
adverse metabolic environment is possible by targeting
condensates.

Potential role of LLPS in the phenotypic plasticity

of tumorigenesis

Tumor cells often exhibit phenotypic plasticity to evade
terminal differentiation. This plasticity includes the
dedifferentiation, the differentiation inhibition, and the
transdifferentiation [20]. During dedifferentiation, spe-
cific malignant cells become sensitized to ferroptosis
[192-194], a form of cell death. Nakamura et al. [195]
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first demonstrated that the novel FSP1 inhibitor, icFSP1
impairs cell proliferation and induces FSP1 condensa-
tion to trigger ferroptosis in cancer cells (Fig. 4N). This
highlights the role of iron in tumor progression and the
dependence of cancer cells on iron in drug-resistant
states.

Clinical applications of LLPS in oncologic fields
Potential of LLPS in cancer treatments

Considering that various regulatory mechanisms of LLPS
are closely associated with tumorigenesis, it is impera-
tive to explore therapeutic approaches against abnor-
mal LLPS. These strategies can be categorized into three
main approaches (Table 4).

Disruptions of the formation of BMCs

The direct disruption of the driving force behind LLPS
offers a straightforward approach (Fig. 5A). For example,
certain drugs can intervene in the LLPS process by target-
ing IDRs of proteins. Notably, the anti-HIV drug elvitegra-
vir directly binds to the highly disordered steroid receptor
coactivator 1, effectively inhibiting oncogene YAP tran-
scription by disrupting SRC1/YAP/TEAD condensates
(Table 4) [117]. Similarly, Yu et al. reported that the nuclear
translocation of YAP and LLPS are affected by IFN treat-
ment in cancer cells. Therefore, interrupting the LLPS of
YAP can inhibit cancer cell proliferation and enhance the
immune response, indicating its potential as a predictive
biomarker in immune checkpoint blockade [67]. Further,
altering interactions between LCDs indirectly modulates
the transcriptional subunits, thus offering a promising
approach for targeting disease-causing TFs.

Modifications of PTMs and physicochemical conditions

As previously mentioned, certain post-transitional modi-
fications and physiochemical conditions contribute to
LLP dynamics (Fig. 5B). For example, nYACs protect
mRNAs from degradation and strengthen the role of
YTHDCI in leukemogenesis, which inspires us to dis-
rupt m®A to violate deleterious condensates[105]. Fur-
ther, studies have reported that modulating PTMs in
LLPS proteins is also significant [25, 96, 102, 218-221].
In the case of colon cancer, SENP1 has been reported
to decrease RNF168 SUMOylation, inhibit nuclear con-
densate formation, and promote DNA damage repair
(DDR) and drug resistance. Given these observations,
strategies to curb the harmful effects of protein aggrega-
tion by influencing protein modifications warrant further
investigation.

Drug interventions of the dynamics of condensates
Drugs can significantly influence the dynamics of the
condensates, affecting their anticancer effects and
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potentially leading to drug resistance (Fig. 5C). For exam-
ple, in luminal breast cancer, tamoxifen accumulates in
MED1 condensates, preventing the incorporation of ERx
into these condensates, partially inhibiting cancer pro-
gression. However, when MEDI is overexpressed, larger
condensates dilute the drug concentration, ultimately
leading to the development of resistance [202]. Several
drugs, such as cisplatin, mitoxantrone, and THZ1, selec-
tively partition into BMCs formed by MED1 (Table 4).
Drug resistance can occur via selective partitioning into
BMC:s or changes in properties. Notably, cisplatin exerts
its anticancer activity by dissolving SEs, indicating that
changes in the condensate properties may improve thera-
peutic outcomes[202]. This finding highlights the poten-
tial of altering the properties of condensates to improve
therapeutic outcomes. In some cases, promoting the
formation of BMCs may have therapeutic effects. For
example, in APL, fusion proteins of PML-retinoic acid
receptor o (RARA) hinder the assembly of PML bodies
and result in the suppression of differentiation genes.
Successful APL treatment involves the restoration of
PML nuclear bodies using empirically discovered drugs
(Table 4) [222].

Roles of LLPS in vesicular trafficking and drugs’ delivery
Although LLPS and traditional vesicles are two different
concepts with distinctive definitions, the vesicular traf-
ficking role of LLPS is still rarely described and attrac-
tive. Conventional approaches typically utilize nanoscale
carriers that are confined within the compartments of
the intranuclear body. Nevertheless, recent findings have
demonstrated that micron-scale polypeptide clusters,
formed through phase separation, possess the ability to
traverse the cell membrane via a non-canonical endocytic
pathway. These clusters undergo glutathione-induced
release of their cargo and exhibit the capacity to rapidly
incorporate various macromolecules into microdroplets,
such as RNA, small peptides and enzymes [223]. Loaded
with polysomes, they can provide new approaches for
vaccine carriers based on mRNAs and intracellular trans-
portations for cancer treatments.

Likewise, as previously mentioned, droplets of drugs
formed by LLPS can unexpectedly raise the inner drug
concentration up to 600 times higher than that outside
the condensate [202]. Furthermore, MED1 predomi-
nantly acts on oncogene promoters, thereby enabling
cisplatin to ultimately target the corresponding DNA
through its toxic platinum atoms, effectively assaulting
the vital components of the cancer cells. Besides, the
phosphopeptide KYp has been observed to induce LLPS
level at the cell membrane, thus enhancing the permea-
tion and internalization of the peptide drug [224]. KYp
has the ability to interact with alkaline phosphatase,
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Fig. 5 Potential approaches to developing new cancer treatments by regulating BMCs. A Targeting driving forces to disrupt condensate formation.
B Changing the modifications of components or physicochemical interaction. C Drug concentrations influenced by dynamic condensates

resulting in the dephosphorylation and in situ self-
assembly at the cell membrane [224]. The process
induces the aggregation of alkaline phosphatase and the
separation of proteolipid phases at the membrane, ulti-
mately enhancing membrane leakage and facilitating
the entry of the peptide drug. These great discoveries
provide inspirations for designing drug delivery sys-
tems and more similar ideas are worth exploring.

Conclusions and future perspectives

In the past decades, crucial advances have been made in
figuring out the role of LLPS in a variety of cellular pro-
cesses and biological functions. Since the update of the
new version of “Hallmarks of cancer 2022”, cancer hall-
marks and their enabling characteristics help distill the
oncogenic complexity into an evidently logical science,
which have been gradually proven to be closely asso-
ciated with LLPS. In this review, we summarize the

mechanism of LLPS formations, recent discoveries and
the individual role of LLPS in oncology. These findings
collectively reveal its vital role in solving undruggable
targets and multiple clinical problems.

The role of specific proteins and post-translational
mechanisms in the formation and regulation of LLPS are
being investigated. These efforts aim to identify abnormal
conditions and gain insights into the mechanisms regu-
lating the formation of the condensates. These studies
have already begun to help find new strategies for target-
ing disease-related condensates. Notably, while previ-
ous drugs were designed to inhibit each protein directly,
LLPS offers a novel and unexpected possibility of inter-
fering with the pathological process and does not neces-
sitate targeting each protein individually. This approach
achieves disruption of the condensates formed by IDRs
of TFs.
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Critical issues in the current development of oncogenic LLPS

Outlook and reflection on the future/ possible solutions to the
questions

What are the functional differences between LLPS-formed assemblies
and typical protein complexes?

What factors contribute to dynamic condensation and decondensation,
and how do different BMCs communicate in vitro and in vivo?

Is there other function of PTMs in tumorigenesis and tumor progressions?

Detections of BMCs/ MLOs in tumor samples and clinicopathologic asso-
ciations with cancer patients are deficient

How do environment conditions inducing condensate assemblies being
applied to clinical practice?

Is there any new convenient method to probe and control (induce, dis-
solve, or tune) the endogenous condensates?

How to make use of LLPS to enhance the efficiency of drugs in clinical
practice?

The target protein molecules and signaling pathways discovered
through LLPS method are a class of molecules that can form condensates
spontaneously due to their own unique properties or under different
environmental conditions. LLPS is essentially an energy saving process

in the organisms. Further functional differences between LLPS-formed
assemblies and canonical protein complexes deserve investigations

Further studies on phase separation on the basis of proteomics and PTMs
are needed

Clinicopathologic tests should be involved in further studies

Perhaps changing the environment conditions can dynamically alter

the condensation and decondensation of the BMC, which will make sense
in drug deliveries. A greater understanding of the opportunities for tar-
geting LLPS condensates in the pharmaceutical intervention should be
obtained

The partitioning of anticancer drugs in subcellular condensates

is also dominant for drug efficacy. According to this characteristic, we can
detect the distribution of drugs in cells or by linking drugs to molecules
that can specifically aggregate in liquid droplets

Despite the steady progress in targeting BMCs
using LLPS, several fundamental questions need to be
answered. For example, what are the functional differ-
ences between LLPS-formed assemblies and typical
protein complexes? What factors contribute to dynamic
condensation and decondensation, and how do different
BMCs communicate in vitro and in vivo? Moreover, the
role of PTMs in tumorigenesis requires further explora-
tion (Table 5). Clarifying these aspects will improve our
understanding of the conversion of physiological into
pathological condensates in cancer. Future research will
require collaborative efforts, innovative approaches, and
a holistic approach to studying cancer-associated LLPS,
which may lead to novel anti-tumor therapies directly
targeting BMCs.
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