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Abstract
Relapse and toxicity limit the effectiveness of chimeric antigen receptor T-cell (CAR-T) therapy for large B-cell 
lymphoma (LBCL), yet biomarkers that predict outcomes and toxicity are lacking. We examined radiomic features 
extracted from pre-CAR-T 18F-fluorodeoxyglucose positron emission tomography/computed tomography 
([18F]FDG PET/CT) scans (n = 341) of 180 patients (121 male; median age, 66 years). Three conventional (maximum 
standardized uptake value [SUVmax], metabolic tumor volume [MTV], total lesion glycolysis [TLG]) and 116 
novel radiomic features were assessed, along with inflammatory markers, toxicities, and outcomes. At both pre-
apheresis and pre-infusion time points, conventional PET features of disease correlated with elevated inflammatory 
markers. At pre-infusion, MTV was associated with grade ≥ 2 cytokine release syndrome (odds ratio [OR] for 100 
mL increase: 1.08 [95% confidence interval (CI), 1.01–1.20], P = 0.031), and SUVmax was associated with failure to 
achieve complete response (CR) (OR 1.72 [95% CI, 1.24–2.43], P < 0.001). Higher pre-apheresis and pre-infusion MTV 
values were associated with shorter progression-free survival (PFS) (HR for 10-unit increase: 1.11 [95% CI, 1.05–1.17], 
P < 0.001; 1.04 [95% CI, 1.02–1.07], P < 0.001) and shorter overall survival (HR for 100-unit increase: 1.14 [95% CI, 
1.07–1.21], P < 0.001; 1.04 [95% CI, 1.02–1.06], P < 0.001). A combined MTV and LDH measure stratified patients 
into high and low PFS risk groups. Multiple pre-infusion novel radiomic features were associated with CR. These 
quantitative conventional [18F]FDG PET/CT features obtained before CAR-T cell infusion, which were correlated 
with inflammation markers, may provide prognostic biomarkers for CAR-T therapy efficacy and toxicity. The use of 
conventional and novel radiomic features may thus help identify high-risk patients for earlier interventions.
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Among the emerging treatments for patients with large-B 
cell lymphoma (LBCL), CD19-directed chimeric antigen 
receptor T cell (CAR-T) therapy demonstrates poten-
tial for sustained disease remission [1, 2]. However, 60% 
of patients treated with CAR-T cells experience disease 
relapse or progression within 6 months [3, 4], and severe 
therapy-associated toxicities, such as cytokine release 
syndrome (CRS) and neurotoxicity, are common [5, 
6]. Therefore, biomarkers that predict the risk of treat-
ment failure, and could trigger early on-treatment inter-
ventions, are urgently needed. 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography 
([18F]FDG PET/CT) is the standard-of-care for staging 
and response assessment of LBCL [7], but its role in guid-
ing CAR-T therapy is not fully explored. Prior to CAR-T 
therapy, patients may undergo PET/CT before leukapher-
esis, to assess treatment eligibility, disease extent, and the 
need for bridging therapy; and again before lymphodeple-
tion and CAR-T cell infusion, as baseline for response 
assessment. Previous research suggested that these PET 
scans [8], as well as certain laboratory parameters [6, 9], 
may be prognostic for therapy outcomes and treatment-
associated toxicities. In our study–the largest to-date on 
this topic– we investigated (1) whether conventional and 
novel radiomic [18F]FDG PET/CT features could predict 
treatment response, survival, and treatment-related tox-
icities in patients with LBCL receiving CAR-T therapy; 
and (2) for the first time, whether laboratory markers of 
inflammation are correlated with PET features.

Findings
We retrospectively included 180 patients with LBCL who 
had undergone [18F]FDG PET/CT at pre-apheresis (aph-
PET) and/or pre-infusion (car-PET) time points before 
autologous CD19-directed CAR-T therapy at Memorial 
Sloan Kettering Cancer Center (axi-cel, n = 93; tisa-cel, 
n = 52; and liso-cel, n = 35 patients; Additional Files 1 and 
2). In total, 341 PET/CT scans (161 aph-PET and 180 car-
PET scans) performed on different PET scanners were 
analyzed; some car-PETs were performed before apher-
esis and thus considered for two time points. Maximum 
standardized uptake value (SUVmax), metabolic tumor 
volume (MTV), total lesion glycolysis (TLG), and 116 
radiomic features capturing metabolic heterogeneity and 
lesion shape, were calculated for each PET/CT (Addi-
tional File 1). Markers of tumor burden and inflamma-
tion (LDH, CRP, IL-6, IL-10, TNF-α, ferritin, fibrinogen, 
D-dimer) were correlated with aph-PET and car-PET fea-
tures (Additional Files 2 and 3). Following multivariable 
adjustment, car-PET MTV showed a significant asso-
ciation with CRS (OR 1.08 for 100-unit increase [95% 
CI, 1.01–1.20], P = 0.031) (Additional File 4). Failure to 
achieve complete remission (CR) after CAR-T therapy 
was associated with higher car-PET SUVmax (OR 1.72 

for 10-unit increase [95% CI, 1.24–2.43], P < 0.001). Of 
116 car-PET radiomic features, 47 differed significantly 
between patients with, and those without, day 100 best 
response CR (adjusted P < 0.05) (Fig.  1). Higher aph-
PET MTV (HR 1.11 for 10-unit increase [95% CI, 1.05–
1.17], P < 0.001) and car-PET MTV (HR 1.04 for 10-unit 
increase [95% CI, 1.02–1.07], P < 0.001) were associated 
with shorter PFS. Similarly, higher aph-PET MTV (HR 
1.14 for 100-unit increase [95% CI, 1.07–1.21], P < 0.001) 
and car-PET MTV (HR 1.04 for 100-unit increase [95% 
CI, 1.02–1.06], P < 0.001) were associated with shorter 
OS. The combination of MTV (calculated cutoff, 24 mL) 
and LDH, both significant outcome predictors on multi-
variable analysis, enabled separation of high and low PFS 
and OS risk groups, and two intermediate risk groups 
(Fig. 2).

Discussion
CAR-T cell response, survival, and toxicities are clini-
cally relevant endpoints for which predictive biomark-
ers are currently lacking. Our data suggest that higher 
car-PET SUVmax may be associated with higher like-
lihood of non-CR to CAR-T cells. This finding, which 
has not been reported before, may be explained by the 
prior observation that SUV on [18F]FDG-PET is linked 
to lymphoma aggressiveness. Moreover, we found sig-
nificant differences in several car-PET radiomic features 
between patients achieving, and those not achieving, CR. 
These features quantitatively assess lesion heterogene-
ity and shape, and have previously shown correlations 
with tumor aggressiveness and clinical outcomes [10]. 
Our identification of MTV as a key parameter associ-
ated with poor PFS and OS in patients treated with 
CAR-T cells confirms the findings of prior smaller stud-
ies [8, 11]. With regard to toxicities–a major limiting 
factor for CAR-T therapy– we found that car-PET MTV 
may predict the development of CRS. We also observed 
associations between car-PET and aph-PET features 
and multiple inflammation markers that are linked to an 
immunosuppressive tumor microenvironment, and thus, 
probably also to toxicities and lower response rates to 
CAR-T therapy [9].

The present study has some limitations. First, radiomics 
is still an exploratory analytic technique whose results 
are influenced by multiple factors, such as acquisition 
parameters [12]. While radiomic feature extraction is rel-
atively fast (approximately 5 min per PET/CT) and, per 
se, reproducible, interrater differences in terms of lesion 
delineation/segmentation are known to affect feature val-
ues [10]. Since we did not further evaluate our model per-
formance by cross-validation or in a held-out cohort, the 
results of our radiomic analyses must be considered as 
preliminary and require external validation. Second, our 
risk classification model combines MTV and LDH, both 
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Fig. 2  Combined prognostic value of MTV and LDH. Kaplan-Meier curves show that the combination of car-PET MTV (based on a cutoff of 24.06) 
and LDH separate high and low (A) progression-free survival (PFS) and (B) overall survival (OS) risk groups. Abbreviations: LDH = lactate dehydrogenase; 
MTV = metabolic tumor volume

 

Fig. 1  Prognostic value of PET radiomic features. Volcano plots showing PET radiomic features from (A) aph-PET and (B) car-PET scans. Radiomic 
features extracted from aph-PET scans did not differ significantly between patients achieving complete remission (CR) or not. In contrast, several radiomic 
features extracted from lymphoma manifestations on car-PET scans, such as Energy and Zone Percentage, differed significantly (P < 0.05) between the 
two outcome groups (CR vs. non-CR). Abbreviations: Aph-PET = pre-leukapheresis PET scan; Car-PET = pre-CAR-T cell infusion PET scan; CR = complete 
response; ROI = region of interest
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of which (directly or indirectly) reflect tumor volume; our 
model illustrates how MTV could further improve risk 
definition from LDH alone, and therefore the incremen-
tal utility of PET parameters. Third, data on extra-nodal 
involvement, which is a known risk factor in CAR-T cell 
therapy, was not available in this study and might be of 
interest in further analyses. Fourth, some car-PETs were 
considered for two time points, rendering our cohort 
more heterogeneous due to possible bridging therapies. 
In conclusion, for patients with LBCL undergoing CAR-T 
therapy, quantitative [18F]FDG PET/CT features assessed 
immediately before CAR-T cell infusion are associated 
with clinical outcomes, treatment response, toxicity, and 
markers of inflammation. [18F]FDG PET/CT features 
could therefore guide additional interventions in high-
risk populations to increase the efficacy and safety of 
CAR-T therapy.
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