Open Access

Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells

  • Mu Hao1,
  • Li Zhang2,
  • Gang An1,
  • Weiwei Sui1,
  • Zhen Yu1,
  • Dehui Zou1,
  • Yan Xu1,
  • Hong Chang3 and
  • Lugui Qiu1Email author
Journal of Hematology & Oncology20114:37

DOI: 10.1186/1756-8722-4-37

Received: 24 August 2011

Accepted: 22 September 2011

Published: 22 September 2011


The bone marrow microenvironment facilitates the survival, differentiation, and proliferation of myeloma (MM) cells. This study identified that microRNA-15a and -16 expressions tightly correlated with proliferation and drug sensitivity of MM cells. miRNA-15a/-16 expression in MM cells was significantly increased after treatment with cytotoxic agents. The interaction of bone marrow stromal cells (BMSC) with MM cells resulted in decreased miRNA-15a/-16 expression and promoted the survival of the MM cells. Interleukin-6 (IL-6) produced by BMSCs suppressed the expression of miRNA-15a and 16 in a time- and dose- dependent pattern, with the suppression on miRNA-15a being more significant than on miRNA-16. miRNA-15a-transfected MM cells were found to be arrested in G1/S checkpoint, and the transfected MM cells had decreased growth and survival. In conclusion, our data suggest that via suppressing miRNA-15a and -16 expressions, IL-6 secreted by BMSCs promotes drug-resistance in myeloma cells.

To the Editor

Multiple myeloma (MM) is an incurable plasma cell malignancy [13]. Binding of MM cells to bone marrow stromal cells (BMSCs) promotes the growth, survival, metastasis and drug resistance of the MM cells. The molecular bases of MM progression and drug resistance remain incompletely understood [4, 5]. In this study, apoptosis analysis by flow cytometry showed that BMSCs protect U266 and NCI-H929 myeloma cells from apoptosis induced by melphalan and bortezomib. (Figure 1A). IL-6 and VEGF are critical growth factors for myeloma cells. Both are mainly produced by BMSCs [68]. By ELISA analysis, we found that the level of IL-6 and VEGF secreted in the supernatant of BMSCs derived from MM patient (MM-BMSCs) was significantly higher (188.8+9.4 pg/mL and 1497.2+39.7 pg/mL, respectively) than that of normal BMSCs (115.0+15.1 pg/mL and 1239.0+21.1 pg/mL, respectively; p < 0.05).
Figure 1

Bone marrow stromal cells derived from myeloma patients (MM-BMSCs) suppress apoptosis and miRNA-15a/-16 expression in MM cells. (A) MM-BMSCs inhibited apoptosis of MM cells induced by cytotoxic agent. (B) Stem-loop RT-PCR assay showed that miRNA-15a/-16 expression in MM cells was significantly increased by melphalan and bortezomib treatment. When MM cells were co-cultured with MM-BMSCs, miRNA-15a/-16 expression in MM cells was suppressed. (C & D) IL-6 decreased miRNA-15a/-16 expression in U266 and NCI-H929 cells in a time- and dose- dependent pattern.

microRNA -15a and -16 are located on chromosome 13, an area commonly deleted in MM. Deletion of chromosome 13 predicts a significantly reduced survival in patient with MM [911]. We thus focused on the functions of miRNA-15a and -16. We found that miRNA-15a/-16 expression in MM cells was significantly increased under melphalan and bortezomib treatment (Figure 1B). Moreover, dexamethasone sensitive MM cell line, MM1S, expressed higher level of miRNA-15a than the resistant MM1R. miRNA-15a expression in MMIS and MM1R was 909.73 ± 7.12 and 134.88 ± 19.85 (p < 0.01), respectively, and miRNA-16 expression in those cells was 9.83 ± 2.01 and 9.20 ± 3.81 (p > 0.05), respectively. Interestingly, the interaction of MM cells with MM-BMSCs inhibited miRNA-15a and -16 expressions in MM cells. (Figure 1B) IL-6 secreted by MM-BMSCs decreased expression of miRNA-15a and -16 in myeloma cells in a time- and dose- dependent pattern. (Figure 1C,D) The suppression on miRNA-15a was more significant than on miRNA-16 in myeloma cells. Previous study has identified cyclinD1, cyclinD2 and CDC25A as the targets of miRNA-15a [12]. Our data further showed that miRNA-15a-transfected MM cells were arrested in G1/S checkpoint. The over-expression of miRNA-15a inhibited growth and survival of the transfected MM cells.

In conclusion, this study identified that microRNA-15a and -16 expressions correlated well with proliferation and drug sensitivity of MM cells. MM-BMSCs enhanced the survival of the MM cells and protected them from drug-induced apoptosis by suppressing miRNA-15a/-16 expression. IL-6 secreted by the MM-BMSCs plays a pivotal role in this process.

Conflicts of Interests

The authors declare that they have no competing interests.

List of Abbreviation


multiple myeloma


bone marrow stromal cells


interleukin 6


Vascular-Endothelial Growth Factor


enzyme-linked immunosorbent assay



This work was supported in part by grants from the National Natural Science Foundation of China (30871095 & 81172255). Tianjin Science and Technology Supporting Programme (09ZCGYSF01000) and Foundation for Youth Researcher of CAMS & PUMC.

Authors’ Affiliations

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College Tianjin China
West China Hospital, Sichuan University. Blood Section
Department of Laboratory Hematology, University Health Network, University of Toronto


  1. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC: A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003, 348: 2609-2617. 10.1056/NEJMoa030288.View ArticlePubMedGoogle Scholar
  2. Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC: Focus on multiple myeloma. Cancer Cell. 2004, 6: 439-444. 10.1016/j.ccr.2004.10.020.View ArticlePubMedGoogle Scholar
  3. Johann Micallef, Moyez Dharsee, Jian Chen, Suzanne Ackloo, Ken Evans, Luqui Qiu, Hong Chang: Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma. Journal of Hematology & Oncology. 2010, 3: 13-10.1186/1756-8722-3-13.View ArticleGoogle Scholar
  4. Jiahuai Tan, Shundong Cang, Yuehua Ma, Petrillo Richard, Delong Liu: Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. Journal of Hematology & Oncology. 2010, 3: 5-10.1186/1756-8722-3-5.View ArticleGoogle Scholar
  5. Venumadhav Kotla, Swati Goel, Sangeeta Nischal, Christoph Heuck, Kumar Vivek, Bhaskar Das, Amit Verma: Mechanism of action of lenalidomide in hematological malignancies. Journal of Hematology & Oncology. 2009, 2: 36-10.1186/1756-8722-2-36.View ArticleGoogle Scholar
  6. Raab Marc, Klaus Podar, Iris Breitkreutz: Multiple myeloma. Lancet. 2009, 374: 324-339. 10.1016/S0140-6736(09)60221-X.View ArticlePubMedGoogle Scholar
  7. Hardin J, MacLeod S, Grigorieva I, Chang R, Barlogie B, Xiao H, Epstein J: Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood. 1994, 84: 3063-3070.PubMedGoogle Scholar
  8. Mahindra A, Hideshima T, Anderson KC: Multiple myeloma: biology of the disease. Blood Rev. 2010, 24 (Suppl 1): S5-11.View ArticlePubMedGoogle Scholar
  9. Anuradha Budhu, Junfang Ji, Wang Xin: The clinical potential of microRNAs. Journal of Hematology & Oncology. 2010, 3: 37-10.1186/1756-8722-3-37.View ArticleGoogle Scholar
  10. Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem MR, Lin CP, Ribatti D, Rollins BJ, Witzig TE, Anderson KC, Ghobrial IM: MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood. 2009, 113: 6669-6680. 10.1182/blood-2009-01-198408.PubMed CentralView ArticlePubMedGoogle Scholar
  11. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, Dewald GW, Van Ness B, Van Wier SA, Henderson KJ, Bailey RJ, Greipp PR: Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003, 101: 4569-4575. 10.1182/blood-2002-10-3017.View ArticlePubMedGoogle Scholar
  12. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N: microRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008, 118: 3714-3724. 10.1172/JCI34922.PubMed CentralView ArticlePubMedGoogle Scholar


© Hao et al; licensee BioMed Central Ltd. 2011

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.