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Abstract

Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel
therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least
12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review
provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials
conducted to treat graft-versus-host-disease (GYHD) and cardiovascular diseases are highlighted. Clinical application
of MSC are mainly attributed to their important four biological properties- the ability to home to sites of
inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete
multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to
perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding

therapy from bench side to bedside.

clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs

Introduction
Stem cells have the capacity to self-renew and to give rise
to cells of various lineages. Thus, they represent an import-
ant paradigm of cell-based therapy for a variety of diseases.
Broadly speaking, there are two main types of stem cells,
embryonic and non-embryonic. Embryonic stem cells
(ESCs) are derived from the inner cell mass of the blasto-
cyst and can differentiate into cells of all three germ layers.
However teratoma formation and ethical controversy ham-
per their research and clinical application. On the other
hand, non-embryonic stem cells, mostly adult stem cells,
are already somewhat specialized and have limited differen-
tiation potential. They can be isolated from various tissues
and are currently the most commonly used seed cells in
regenerative medicine. Recently, another type of non-
embryonic stem cells, known as induced pluripotent stem
cell (iPSC) has emerged as a major breakthrough in regen-
erative biology. They are generated through enforced ex-
pression of defined transcription factors, which reset the
fate of somatic cells to an embryonic stem-cell-like state.
Cellular therapy has evolved quickly over the last decade
both at the level of in vitro and in vivo preclinical research
and in clinical trials. Embryonic stem cells and non-
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embryonic stem cells have all been explored as potential
therapeutic strategies for a number of diseases. One type of
adult stem cells, mesenchymal stem cells, has generated a
great amount of interest in the field of regenerative medi-
cine due to their unique biological properties. MSCs were
first discovered in 1968 by Friedenstein as an adherent
fibroblast-like population in the bone marrow capable of
differentiating into bone [1]. It was subsequently shown that
MSCs can be isolated from various tissues such as adipose
tissue, peripheral blood, umbilical cord and placenta. These
cells have a remarkable capacity of extensive in vitro expan-
sion which allows them to rapidly reach the desired number
for in vivo therapy [2]. Different laboratories have identified,
under partly different isolation or culture conditions, MSCs
with specific properties. For better characterization of MSC,
in 2006, the International Society of Cellular Therapy
defined MSCs by the following three criteria [3]:

(1)MSCs must be adherent to plastic under standard
tissue culture conditions;

(2) MSCs must express certain cell surface markers such
as CD73, CD90, and CD105, and lack expression of
other markers including CD45, CD34, CD14, or
CD11b, CD79alpha or CD19 and HLA-DR surface
molecules;

(3)MSCs must have the capacity to differentiate into
osteoblasts, adipocytes, and chondroblasts under
in vitro conditions.
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This review will provide an overview of the recent clinical
findings related to MSCs. Roles of MSCs in clinical trials
conducted to treat GVHD and cardiovascular diseases are
highlighted. The therapeutic effects of MSC are mainly
attributed to their four important biological properties.
Here, we will discuss these four properties and the issues
surrounding use of MSCs that need to be addressed during
the transition of MSCs therapy from bench side to bedside.

Clinical applications of MSCs

While accumulating data have shown the therapeutic effects
of MSCs in animal models of various diseases, we only
focus on the clinical application of MSCs in this review.
The first clinical trial using culture-expanded MSCs was
carried out in 1995 and 15 patients became the recipients
of the autologous cells [4]. Since then, a number of clinical
trials have been conducted to test the feasibility and efficacy
of MSCs therapy. By 2011/12/12, the public clinical trials
database http://clinicaltrials.gov has showed 206 clinical trials
using MSCs for a very wide range of therapeutic applications
Figure 1). Most of these trials are in Phase I (safety studies),
Phase II (proof of concept for efficacy in human patients), or
a mixture of Phasel/II studies. Only a small number of these
trials are in Phase III (comparing a newer treatment to the
standard or best known treatment) or Phase II /III (Figure 2).
In general, MSCs appear to be well-tolerated, with most
trials reporting lack of adverse effects in the medium term,
although a few showed mild and transient peri-injection
effects [5]. In addition, many completed clinical trials have
demonstrated the efficacy of MSC infusion for diseases in-
cluding acute myocardial ischemia (AMI), stroke, liver cir-
rhosis, amyotrophic lateral sclerosis (ALS) and GVHD.

MSCs infusion to treat GVHD
Acute graft-versus-host disease (aGVHD) occurs after
allogeneic hematopoietic stem cell transplant and is

-

Clinical trials of MSCs are classified by disease types
(by 2011/12/13 n=206)
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Figure 1 Clinical trials of MSCs are classified by disease types.

Page 2 of 9

Clinical trials of MSCs are classified by phase
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Figure 2 Clinical trials of MSCs are classified by phase.

associated with high morbidity and mortality [6-8]. Cur-
rently, corticosteroids are the gold standard for initial
treatment of aGVHD. However, they are only effective for
some patients. Over the past decade, the immunomodula-
tory functions of MSCs have triggered great interests in
their application for GVHD. Le Blanc K et al were the first
to transplant haploidentical MSCs in a 9 year old boy with
severe treatment-resistant grade IV aGVHD of the gut
and liver. They found the clinical response was striking
and the patient was well after 1 year [9]. A subsequent
study was reported by Ringdén O et al in 2006. They gave
MSC to eight patients with steroid-refractory grades III-
IV GVHD and one who had extensive chronic GVHD.
Acute GVHD disappeared completely in six of eight
patients. Complete resolution was seen in gut (6), liver (1)
and skin (1). Their survival rate was significantly better
than that of 16 control patients. Five patients are still alive
between 2 months and 3 years after the transplantation
[10]. The beneficial effect of MSCs infusion was then
observed in a series of studies (Table 1).

All these studies with varying numbers of patients and
different degrees of GVHD severity suggest that
complete and partial responses can be achieved in a ma-
jority of patients after MSCs infusion and that MSCs
might represent a potential novel therapy for GVHD.

MSCs for cardiovascular repair

Despite progression of treatment options, ischemic heart
disease and congestive heart failure remain major causes of
morbidity and mortality. Cellular therapy for cardiovascular
disease heralds an exciting frontier of research. Among the
used cell types, MSCs are an attractive candidate for car-
diovascular repair due to their abovementioned biological
properties. In preclinical studies using experimental animal
models of cardiac injury, MSCs had been show to engraft
after systemic or local administration and improve the
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Table 1 A summary of the clinical experience of MSCs in GVHD treatment

Year of Patients MSC source MSC dose outcome

publication (N)

2007 [11] 6 haplo-identical family 1.0x10(6)/kg Acute GVHD disappeared completely in five of six patients,
donors (n=2), unrelated four of whom are alive after a median follow-up of 40 months
mismatched donors (n=4) (range, 18-90 months) after the initiation of AMSC therapy. All

four surviving patients are in good clinical condition and in
remission of their hematological malignancy.

2008 [12] 55 HLA-identical sibling 14x10 (6) (Min-max 30 patients had a complete response and nine showed
donors (n=5), haploidentical range 04-9x10 (6)) improvement. No patients had side-effects during or
donors (n=18), third-party cells per kg immediately after infusions of mesenchymal stem cells. Three
HLA-mismatched donors patients had recurrent malignant disease and one developed
(n=69). de-novo acute myeloid leukaemia of recipient origin. Complete

responders had lower transplantation-related mortality 1 year
after infusion than did patients with partial or no response

2008 [13] 7 hematopoietic stem cell From 0.4x10(6) One out of three patients showed slight improvement of

donors (n=5), third party
parental donor (n=2)

2009[14] 13 Unrelated HLA disparate donors

2009 [15] 33 PBSCT combined with MSCs
2009 [16] 32 Unrelated, unmatched donor
2010 [17] 11 Unrelated HLA disparate donors
2011 [18] 12 premanufactured, universal donor

to 3.0x10(6) per kg
based on availability

A median dosage of
0.9 x 10(6)/kg
(range 0.6-1.1).

From 0.5x10 (5)
to 1.7x10(6) per kg

2 or 8 million MSCs/kg
in combination with
corticosteroids

Median dose was
1.2 x 10(6)/kg (range:
0.7-3.7 x 10(6)/kQ).

8 x 10(6)cells/kg
in 2 patients and
2 x 10(6)cells/kg
in the rest

chronic GVHD. Two patients with severe acute GVHD did
not progress to cGVHD. One patient received MSC to
stabilize graft function after secondary haploidentical
transplantation. One patient recovered from trilineage
failure due to severe hemophagocytosis.

Two patients (15%) responded and did not require any further
escalation of immunosuppressive therapy. Eleven patients
received additional salvage immunosuppressive therapy
concomitant to further MSC transfusions, and after 28 days,
five of them (45%) showed a response. Four patients (31%)
are alive after a median follow-up of 257 days, including one
patient who initially responded to MSC treatment.

Fifteen patients (45.5%) developed grade I-IV acute GVHD
(@GVHD) and only 2 (6.1%) developed grade Il to IVaGVHD.
Nine (31%) of 29 evaluable patients experienced chronicGVHD
(cGVHD).

Ninety-four percent of patients had an initial response (77%
complete response and 16% partial response). No infusional
toxicities or ectopic tissue formations were reported.

Overall response was 71.4%, with complete response in 23.8%
of cases. None patients presented GVHD progression upon
MSC administration, but 4 patients presented GVHD recurrence
2 to 5 months after infusion. Two patients developed chronic
limited GVHD.

7 (58%) patients had complete response, 2 (17%) partial
response, and 3 (25%) mixed response. Complete resolution
of Gl symptoms occurred in 9 (75%) patients. The cumulative
incidence of survival at 100 days from the initiation of therapy
was 58%.

repair of infarcted myocardium [19-21]. In a rat model of
dilated cardiomyopathy, Nagaya N et al found that MSC
transplantation significantly increased capillary density and
decreased the collagen volume fraction in the myocardium,
resulting in decreased left ventricular end-diastolic pressur-
eand increased left ventricular maximum [21].

Clinical trials using MSCs to improve cardiac function
have also demonstrated encouraging results. For instance, in
a pilot study, sixty-nine patients who underwent primary
percutaneous coronary intervention within 12 hours after
onset of acute myocardial infarction were randomized to re-
ceive intracoronary injection of autologous bone marrow
mesenchymal stem cell or standard saline. Several imagining
techniques demonstrated that MSCs significantly improved
left ventricular function [22]. We conducted a clinical trial

which recruited sixty-nine patients with acute myocardial
infarction after percutaneous coronary intervention (PCI).
They were randomly divided into intracoronary injection of
MSCs (n=34) and saline (n=35) groups. Three months
after MSC transplantation, left ventricular ejection fraction
(LVEEF) in MSCs group increased significantly compared with
that of pre-implantation and that of the control group [23].

Here we summarized the currently completed clinical
trials registered with clinicaltrials.gov that using MSC to
treat cardiovascular diseases (Table 2). While a number of
studies demonstrated the therapeutic effects of MSC trans-
plantation, the underlying mechanisms remain unclear. The
beneficial effects of MSCs might be mediated not only by
their differentiation into cardiomyocytes but also by their
ability to secret large amounts of bioactive molecules.
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Table 2 Completed clinical trials at present time with MSC expanded in vitro (http: //clinic altrials.gov)

Condition Patients MSC source Delivery route Phase Study design ClinicalTrials.gov
(N) identifier

Myocardial 31 Autologous intramyocardial Phase I/l Non-randomized, NCT00260338
Ischemia MSC from injections Single group assignment,

bone marrow Open label
Acute 80 Autologous MSC intracoronary Phase 1I/ 11l Randomized, Parallel assignment, NCT01392105
Myocardial from bone injection Open Label
Infarction marrow
Ischemic 48 MSC from intracoronary Phase /Il Non-Randomized, Parallel NCT00135850
Heart bone marrow injection Assignment, Open label
Disease
Heart 10 Not mentioned intramyocardial Phase Il Randomized, Parallel Assignment, NCT00927784
Failure injections Double blind (Subject, Caregiver,

Investigator)

MSCs for liver disease

In regard to liver diseases, MSCs have been used to treat cir-
rhosis in a limited number of patients. In a phase I trial, four
patients with decompensated liver cirrhosis were included.
They received autologous MSC infusion through a peripheral
vein. There were no side-effects in the patients during follow-
up. The quality of life of all four patients improved by the end
of follow-up [24]. In another phase I-II clinical trial, 8 patients
(four hepatitis B, one hepatitis C, one alcoholic, and two
cryptogenic) with end-stage liver disease were included. After
autologous MSCs injection, all patients tolerated well and their
liver function improved, suggesting the feasibility, safety, and
efficacy of using MSCs as a treatment for end-stage liver dis-
ease [25]. To test the safety and efficacy of allogenic MSCs for
Patients with refractory primary biliary cirrhosis (PBC), we are
conducting an open-label, multiple centers, randomized, Phase
I-1I clinical trial (Clinical Trials.gov ID NCT01440309).

Biological characteristics of MSCs associated with
their therapeutic effects

The use of MSCs in clinical applications requires under-
standing of their biological characteristics that contribute to
the therapeutic effects. Currently, the following four proper-
ties are considered the most important (Figure 3): (1) the
ability to home to sites of inflammation following tissue in-
jury when injected intravenously (2) the ability to differenti-
ate into various cell types (3) the ability to secrete multiple
bioactive molecules capable of stimulating recovery of
injured cells and inhibiting inflammation (4) the lack of im-
munogenicity and the ability to perform immunomodula-
tory functions. Although we divide the effects of MSCs into
these four aspects for better description in this review, in
fact, these four aspects are combined and overlapped. Their
exact roles in the therapeutic effects of MSCs remain to be
further elucidated.

Capacity to migrate and engraft
MSCs have the capacity to migrate to, and engraft in,
sites of inflammation after systematic administration and

exert local, functional effects in the resident tissue. Vari-
ous studies have demonstrated that under a variety of
pathologic conditions, MSC selectively home to sites of
injury, irrespective of the tissue. Ortiz LA et al showed
that murine MSCs could home to lung in response to
injury, adopt an epithelium-like phenotype, and reduce
inflammation in lung tissue of mice challenged with
bleomycin [26]. We found that transplanted MSCs could
migrate to injured muscle tissues in mdx mice [27].

Cell migration is dependent on a multitude of signals ran-
ging from growth factors to chemokines secreted by injured
cells and/or respondent immune cells [28]. Migration of
MSCs may also be regulated by such signals. Studies have
demonstrated that MSCs migration is under the control of
a large range of receptor tyrosine kinase growth factors
such as platelet-derived growth factor (PDGF) or insulin-
like growth factor 1 (IGF-1) and chemokines such as
CCR2, CCR3, CCR4: or CCLS5 as assessed by in vitro migra-
tion assays [29].

Differentiation

MSCs have the capacity to differentiate into mesenchymal
lineages including osteoblasts, adipocytes, and chondro-
blasts under both in vitro and in vivo conditions [30]. Stud-
ies have also reported that MSCs can give rise to cells of
other lineages. We found that MSC injected immediately
into C57BL/6 mice after irradiation-caused injury could dif-
ferentiate into functional lung cells, such as epithelial and
endothelial cells [31]. Other studies employing animal
model of lung injury caused by bleomycin exposure showed
that MSCs engrafted in lung differentiated into type I pneu-
mocytes [32] and type II epithelial cells [26] or assumed
phenotypic characteristics of all major cell types in lung in-
cluding fibroblasts, epithelial cells, and myofibroblasts [33].
In addition, MSCs could be induced to differentiate into
cells of ectoderm. For example, Kopen GC et al were the
first to demonstrate that MSCs injected into the central
nervous systems of newborn mice could adopt morpho-
logical and phenotypic characteristics of astrocytes and
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Figure 3 A schematic model demonstrating the biological properties of MSCs that are associated with their therapeutic effects.
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neurons [34]. Subsequent studies confirmed such findings
[35,36].

The evidence that MSCs were able to differentiate into
specialized cells of tissues such as epithelial cells or ner-
vous cells, opened up the possibility of using MSCs to sub-
stitute damaged cells for disease treatment. We showed
that in a C57BL/6 mouse model of ischemia-reperfusion
(I/R) kidney, transplanted MSCs were able to differentiate
toward renal tubular epithelium at an early stage of injury.
The differentiated donor cells replaced the vacant space
left over by the dead cells, therefore contributing to the
maintenance of structural integrity and preceded to a sub-
sequent tissue repair process [37]. Several studies also
demonstrated the contribution of MSCs differentiation to
disease treatment [27]. However, accumulating data sug-
gest the replacement of the damaged cells by MSCs
through specific differentiation may be only a small part of
the mechanism underlying MSCs’ therapeutic effects.

Secreting multiple bioactive molecules

MSCs could secrete multiple bioactive molecules including
many known growth factors, cytokines and chemokines
which have profound effects on local cellular dynamics
(Table 3). Administration of conditioned medium of MSCs
is able to recapitulate the beneficial effects of MSCs for tis-
sue repair. For instance, data from Van Poll D et al provide
the first clear evidence that MSCs conditioned medium
(MSC-CM) provides trophic support to the injured liver by
inhibiting hepatocellular death and stimulating regeneration,

Table 3 Important bioactive molecules secreted by MSCs

and their functions

Bioactive molecules

Functions

prostaglandin-E2
(PGE2)
Interleukin-10(IL-10)
transforming growth

factor-1(TGF@1), hepatocyte
growth factor(HGF)

Interleukin-1 receptor
Antagonist

human leukocyte
antigen G isoform (HLA-G5)

LL-37

angiopoietin-1

MMP3, MMP9

Keratinocyte growth factor

endothelial growth factor (VEGF),

basic fibroblast growth factor
(bFGF), placental growth factor
(PIGF), and monocyte
chemoattractant protein-1
(MCP-1)

anti-proliferative mediators [40]
anti-inflammation [41]
anti-inflammatory [42,43]

suppress T-lymphocyte
proliferation [44]

anti-inflammatory [45]

anti-proliferative for naive
T-cells [46]

anti-microbial peptide and
reduce inflammation [47]

restore epithelial
protein permeability [48]

mediating neovascularization
[49]

Alveolar epithelial
fluid transport [50]

enhance proliferation

of endothelial cells

and smooth muscle cells
[51,52]
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potentially creating new avenues for the treatment of ful-
minant hepatic failure (FHF) [38]. Takahashi M et al demon-
strated that various cytokines were produced by BM-MSCs,
and these cytokines contributed to functional improvement
of the infarcted heart by directly preserving the contractile
capacity of the myocardium, inhibiting apoptosis of cardio-
myocytes, and inducing therapeutic angiogenesis of the
infarcted heart [39].

A protein-array analysis of MSC-CM detected 69 of 174
assayed proteins and most of these detected molecules are
growth factors, cytokines, and chemokines. They have
known anti-apoptotic and regeneration-stimulating effects
[53]. These effects can be either direct or indirect or both:
direct by causing intracellular signaling or indirect by
causing another cell in the microenvironment to secrete
functionally active agent.

Immunomodulatory functions of MSCs

The ability of MSCs to modulate the immune system was
first recognized in 2000 when Liechty KW et al found that
MSCs have unique immunologic characteristics that allow
their persistence in a xenogeneic environment [54]. Since
then, an emerging body of data confirmed the immuno-
modulatory properties of MSCs. However, the precise
mechanisms underlying their immunomodulation are still
not fully understood. Direct cell-to-cell contact and/or re-
lease of soluble immunosuppressive factors may play
major roles.

MSC:s could interact with a wide range of immune cells,
including T lymphocytes, B lymphocytes, natural killer
cells and dendritic cells. A brief summary of the in vitro
interaction of MSCs and immune cells was shown in
Table 4. The immunomodulatory effects of MSCs have
also been examined in a variety of animal models of im-
mune diseases. For instance, donor-derived MSC could in-
duce long-term allograft acceptance in a rat heart
transplantation model [55].

The immunomodulatory functions of MSCs have gen-
erated a great amount of interest in their potential for
treatment of immune disorders such as GVHD.

Discussion and future directions

Over the past decade, there have been a large number of
publications on MSCs, reporting their biological properties,
experimental and clinical applications or underlying mo-
lecular mechanisms. Although tremendous advancements
have been made from both preclinical and clinical studies
using MSCs, substantial challenges are still to be overcome
before MSC therapy can fulfill its promise in wider clinical
practice. (1) Safety issue: up to now, few adverse effects
have been reported after MSC administration, in terms of
immediate, infusional toxicity and of late effects. However,
the relatively small number of patients being treated with
MSCs does not allow the drawing of definitive conclusions
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Table 4 Inmunomodulatory effects of MSCs on immune cells
MSCs’ effects

Immune cell
type
T lymphocyte

Suppress T cell proliferation
induced by cellular or nonspecific
mitogenic stimuli [44]

Alter the cytokine secretion profile
of naive and effector T cells [56]

Promote the expansion and
function of Treg cells [57]

B lymphocyte Inhibit proliferation of B

lymphocyte [58]

Affect the chemotactic
properties of B cells [59]

Suppress B-cell terminal
differentiation [60]

NK cell Alter the phenotype of NK cells
and suppress proliferation, cytokine
secretion, and cyto-toxicity against
HLA-class I- expressing targets

[61,62]

Influence differentiation, maturation
and function of monocyte-derived
dendritic cells [63]

Dendritic cells
(DCs)

Suppress dendritic cell migration,
maturation and antigen presentation
[64]

Induce mature DCs into a novel
Jagged-2-dependent regulatory
DC population [65]

on the safety of MSCs. Furthermore, MSCs has been
reported to promote tumor growth [66] and metastases
[67]. Potential for malignant transformation of cultured
MSC commonly used in clinical cell-therapy protocols has
also been reviewed [68]. In addition, under some patho-
logical conditions, application of MSCs might do more
harm than good. We found that MSCs could aggravate
arthritis in collagen-induced arthritis model by at least up-
regulating secretion of IL-6, which favors Th17 differenti-
ation [69]. These studies remind us that particular attention
should be paid to the biosafety of MSC. (2) Quality control:
Cell amplification by culture is not free from the dangers of
microbial contamination, thus bacteriological tests (mainly
in liquid medium) should be carefully performed during
the various phases of production and at harvest. In
addition, viability and phenotype tests, oncogenicity tests
and endotoxin assay should also be included. In addition,
optimal timing of MSC administration, cell dose and sched-
ule of administration need to be defined according to dis-
ease types and severity. (3)Clinical grade production:
Clinical application of MSC requires a large number of cells
for transplantation, so in vitro expansion of MSC is inevit-
able. Studies have suggested that continuous passaging of
MSCs could lead to cell transformation. Rubio D et al
found that human mesenchymal stem cells could undergo
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spontaneous transformation following long-term in vitro
culture (4-5 months).The transformed cells exhibited
chromosomal abnormalities, increased c-myc levels and tel-
omerase activity, and formed tumours on transplantation
[70]. To reduce malignant transformation of human
MSCs, meticulous attention must be taken to prevent cell
senescence and limit the number of passaging. According
to Bernardo ME et al [71], MSCs can be safely expanded
in vitro until passage 25. We conducted the first stem cell
clinical trial approved from SFDA in China and our stand-
ard procedure requires that the optimal passage should be
less than passages 6 during the manufacture of MSC.
MSCs used in clinical trials must be manufactured under
the conditions required by Good Manufacturing Practice
(GMP). (4) Autologous vs allogeneic MSCs: MSC are im-
mune privileged because they express low levels of major
histocompatibility complex-I (MHC-I) molecules and do
not express MHCII molecules or costimulatory molecules
such as CD80, CD86 or CD40 [15]. This unique property
allows for the transplantation of allogeneic MSCs without
inducing immune rejection. Thus both autologous and
allogeneic MSCs can be used in the clinical setting. How-
ever, which one to prefer needs further investigation. (5)
Clinical transition: In the field of MSCs research, biolo-
gists and clinicians should come together to establish
proper and stringent regulations and standards for MSC
based therapies. The regulations and standards should at
least include methods and criteria for the culture, storage,
shipping, and administration of MSCs.

MSC therapies are undergoing rapid development and
have generated great excitement amongst scientists and
physicians. Currently, more randomized, controlled, multi-
centre clinical trials are needed to find the optimal condi-
tions for MSC therapy. We believe that eventually a novel
and safe therapy with MSCs can emerge and revolutionize
treatment and therapies for patients with severe diseases.
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