
Li et al. Journal of Hematology & Oncology           (2024) 17:33  
https://doi.org/10.1186/s13045-024-01541-w

REVIEW

Critical role of the gut microbiota in immune 
responses and cancer immunotherapy
Zehua Li1,2†, Weixi Xiong3,4†, Zhu Liang2,5†, Jinyu Wang6, Ziyi Zeng7, Damian Kołat8,9, Xi Li10, Dong Zhou3,4, 
Xuewen Xu1 and Linyong Zhao11* 

Abstract 

The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, 
there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. 
Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer 
immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art 
research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immu-
notherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse 
events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application 
of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut 
microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current 
challenges and provide a general outlook on future directions in this field.
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Introduction
Microbes can be found throughout the human body, 
from external surfaces such as the conjunctiva, oral 
mucosa, and skin to internal surfaces such as the gas-
trointestinal tract and saliva. It has been estimated that 
trillions of bacteria, fungi, archaea, protozoa, and viruses 
exist throughout the body [1]. In accordance with this 
fact, there is also accumulating evidence that many physi-
ological functions within the human body, including 
metabolism, inflammation, and the immune response, 
are influenced by microbes [2, 3]. Thanks to the tech-
nological boosts in large-scale sequencing over the past 
decade, multiple databases of the gut microbiome have 
been built to examine these functions(Table  1). These 
functions are related to the pathological processes of 
many human diseases, especially the development, pro-
gression, and immune evasion of cancer, as well as the 
modulatory effects of cancer treatments [4–7].

The essential properties of the gut microbiota, such 
as its stability, resilience, and diversity, need to be dis-
cussed, given its importance in human health [8]. The gut 
microbial community can be stable for years in healthy 
adults; thus, the microbiota has high stability. Homeosta-
sis of the gut microbiota is maintained through negative 
feedback mechanisms [9]. The gut microbiota is often 
highly resilient to perturbations, thus allowing a host to 
maintain key species for long periods. However, under-
standing the resilience of this complex gut ecosystem is 
still challenging because the threshold for transitions of 
the gut microbiota to different states is only beginning 
to be determined [10, 11]. Microbial interactions rang-
ing from mutualism and commensalism to competition 
and amensalism and the symbiotic relationship between 
microbes and their host can be considered essential 
factors in shaping gut stability and resilience of the gut 
microbiota [12]. With the recent advent of high-through-
put sequencing, the diversity of the gut microbiota has 
been revealed at both the species and functional levels 
[13]. Functional screening by shotgun metagenomics 
contributes significantly to understanding the functional 
diversity of the gut microbiome. As more complemen-
tary “omics” datasets become available, functional varia-
tion in the gut microbiota in response to disease, diet, or 
other factors may be discovered [14]. For studies focusing 
on the diversity of the gut microbiota, a key challenge is 
understanding functional redundancy (i.e., which com-
munity species have similar functional niches and can 
substitute for one another). Funtional redundancy is also 
a critical aspect for conferring stability and resilience to 
the gut microbiota [15].

The gut microbiota has been shown to play criti-
cal roles in maintaining intestinal barrier integrity and 
homeostasis. The composition of the gut microbiome is 

under the surveillance of the intestinal immune system. 
Inflammation caused by an imbalance between commen-
sal and pathogenic microbes can lead to intestinal and 
even systemic diseases [16]. In terms of the mutually ben-
eficial symbiotic ecosystem between the gut microbiota 
and the host, the host offers habitats and nutrients in the 
gut, while the microbes support the maintenance of lipid 
and glucose metabolism and the maturation of the intes-
tinal immune system by providing microbiome-derived 
metabolites [17]. For instance, short-chain fatty acids 
(SCFAs), including acetic acid, butyric acid, and propi-
onic acid, are essential energy sources for gut microbes 
and perform diverse regulatory functions related to host 
physiology and immunity [18]. Trimethylamine N-oxide 
(TMAO), which is a molecule generated from gut micro-
bial metabolism, is also associated with host immunity 
[19].

Current research on the relationship between cancer 
and microbes has mostly focused on the gut microbiota 
and demonstrated a complicated interaction between 
the gut microbiota and the immune system; this inter-
action was evaluated by determining the composition 
of the gut microbiota [20]. For example, observations of 
developmental defects in germ-free (GF) mice suggest 
that systemic immune function may be impaired in the 
absence of the gut microbiota [21]. Moreover, the gut 
microbiota and its metabolites have been proposed to be 
critical factors involved in modulating the efficacy and 
toxicity of cancer immunotherapy. A landmark example 
was presented by Sivan et al. [22], who first reported the 
complicated crosstalk between the gut microbiota and 
programmed cell death protein-1 (PD-1)/PD-1-ligand 1 
(PD-L1) blockade.

Consistent with the demonstrated relationships 
between the gut microbes and immune responses, many 
in  vitro and in  vivo studies have also noted a promis-
ing approach for optimizing the therapeutic outcomes 
of cancer immunotherapy: manipulating the composi-
tion of the gut microbiota [23, 24]. However, although 
the concept of using the gut microbiota as a tool for 
precision medicine has developed rapidly over the last 
decade [25], the number of published studies explor-
ing practical interventions to modify the gut microbiota 
is rather limited and unspecific. In this review, we will 
discuss five commonly explored interventions that have 
had relatively strong impacts on the therapeutic out-
comes of cancer immunotherapy, namely, fecal micro-
biota transplantation (FMT), diet, probiotics, prebiotics, 
and engineered microbial products. Compared with the 
other four methods, FMT is a well-established clini-
cal approach recommended by the FDA for modulation 
of the gut microbiota. The gut microbes from a healthy 
host are transplanted to recover microbial homeostasis in 
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Table 1 Selected database of the gut microbiome

Official name Description Website

NIH Human Microbiome Project The Human Microbiome Project (HMP) characterizes 
the microbial communities found at several different 
sites on the human body, and examines the role of these 
microbes in human health and disease

https:// www. hmpda cc. org/ health/ 
proje ctdem os. php

NIH Integrative Human Microbiome Project The Integrative Human Microbiome Project (iHMP) 
is the second phase of the HMP. In this phase of the pro-
gram, the iHMP will create integrated longitudinal datasets 
of biological properties from both the microbiome and hos-
tusing multiple "omics" technologies

https:// www. hmpda cc. org/ ihmp

The Animal Microbiome Database Animal Microbiome Database (AMDB) is a database cover-
ing bacterial 16S rRNA gene profiles to assess the rela-
tionship between the gut microbiota and animal hosts. 
Currently, AMDB contains 10,478 bacterial taxa from 467 
animal species

http:// leb. snu. ac. kr/ amdb

Peryton Peryton constitutes a novel resource of experimentally sup-
ported microbe-disease associations, currently linking 43 
diseases and 1,396 microorganisms

https:// diana lab.e- ce. uth. gr/ peryt on

gutMDisorder GutMDisorder, a manually curated database, aims at provid-
ing a comprehensive resource of dysbiosis of the gut micro-
biota in disorders and interventions, derived from manual 
literature extraction and raw data reprocessing

http:// bio- annot ation. cn/ gutMD isord er

Type Strains Genome Database The type strain sequencing project is an international 
coordinated effort to close current gaps in the genomic 
maps of microbes and hence to comprehensively decipher 
the characteristics of microorganisms through deep mining 
of the genomic data

http:// gctype. wdcm. org

The Integrated Microbial Genomes system The Integrated Microbial Genomes (IMG) system serves 
as a community resource for analysis and annotation 
of genome and metagenome datasets in a comprehensive 
comparative context

https:// img. jgi. doe. gov/m

The SILVA ribosomal RNA gene database project SILVA provides comprehensive, quality checked and regu-
larly updated datasets of aligned small (16S/18S, SSU) 
and large subunit (23S/28S, LSU) ribosomal RNA sequences 
for all three domains of life (Bacteria, Archaea and Eukarya)

http:// www. arb- silva. de

National Microbiome Initiative The National Microbiome Initiative aims at supporting 
interdisciplinary research to answer fundamental questions 
about microbiomes and developing platform technologies 
that will generate insights of microbiomes and enhance 
access to microbiome data

–

The Integrated Gene Catalog The integrated gene catalog is comprised of 9,879,896 
genes including samples from the MetaHit project. This 
expanded catalog should facilitate characterization 
of metagenomic, metatranscriptomic and metaproteomic 
data from the gut microbiome to understand its variation 
in human health and disease

–

MetaGenoPolis MetaGenoPolis offers a State-of-the-art equipment 
for biobanking, DNA extraction, sequencing, screening, bio-
informatics, and data visualization. It owns 100 publications 
in metagenomics

https:// mgps. eu

The Michigan Microbiome Project The Michigan Microbiome Project (MMP) focused on study-
ing how these microbes originate, function, and evolve. This 
is a repository of 16S gene sequence surveys, transcrip-
tomes, metagenomes, metabolomes, and information 
about isolated strains

https:// micro be. med. umich. edu

Home Microbiome Project The Home Microbiome Project followed 7 families 
over the course of 6 weeks. The participants in the study 
swabbed their hands, feet and noses daily to collect a sam-
ple of the microbial populations living in and on them

https:// homem icrob iome. com

https://www.hmpdacc.org/health/projectdemos.php
https://www.hmpdacc.org/health/projectdemos.php
https://www.hmpdacc.org/ihmp
http://leb.snu.ac.kr/amdb
https://dianalab.e-ce.uth.gr/peryton
http://bio-annotation.cn/gutMDisorder
http://gctype.wdcm.org
https://img.jgi.doe.gov/m
http://www.arb-silva.de
https://mgps.eu
https://microbe.med.umich.edu
https://homemicrobiome.com
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the recipient. However, the research has been restricted 
to correlation relationships rather than causality, and 
outlining the future direction of clinical applications uti-
lizing the gut microbiota is challenging. With multiom-
ics tools and synthetic biology, we can now explore the 
exact mechanism underlying gut microbiota modifica-
tion in cancer immunotherapy. Here, we will also provide 
evidence to support the incorporation of gut microbiota 
modification in immunotherapy while acknowledging the 
challenges in this rapidly developing field.

The interplay between the immune system 
and the gut microbiota
Gut microbiota symbiosis plays a multifaceted role in 
shaping the immune responses of the human host [26, 
27]. This complicated crosstalk allows for the normal 
functioning of immune tolerance and immunosurveil-
lance, which recognizes and eliminates opportunistic 
bacteria to prevent potential infection. The critical role of 
the gut microbiota in the formation of a fully functional 
immune system was identified in GF animals [28]. As a 
go-to animal model for bacteria-host interactions, GF 
animals display distinct features in the gut, including an 
immature mucus system, unformed gut-associated lym-
phoid tissues, and a reduced number of immune cells 

[29–33]. Here, we summarize the current views on how 
the gut microbiota influences various components of the 
systemic immune system. We roughly divided the fol-
lowing discussion into three parts: non-gastrointestinal 
(GI) tract lymphoid organs, the innate immune system, 
and adaptive immune system components in the GI tract. 
Specifically, we summarize the interactions between 
immune cells and gut microbiota (Table 2).

Lymphoid organs
Regarding the interplay of non-GI tract lymphoid organs 
with the gut microbiome, several studies have revealed 
immunological modulation by microbes in the thymus, 
bone marrow, and spleen. Initial clinical evidence showed 
an association between primary lymphoid organs and the 
gut microbiota in patients with hematologic malignan-
cies [34, 35]. This association was further validated with 
mouse models by Staffas et al. [36], where depletion of the 
gut microbiota led to significant reductions in lympho-
cyte and neutrophil counts. Moreover, metabolites such 
as SCFAs can facilitate the recovery of hematopoiesis 
in bone marrow after radiation damage [37]. The devel-
oped bone marrow can work together with translocated 
gut microbiota to drive the expansion of yolk sac-derived 
macrophages, increase the number of granulocytes and 

Table 2 Interactions between immune cells and gut microbiota

Immune cell types Crosstalk with the gut microbiota Ref

Macrophages 1. B. fragilis enhances their phagocytic functions
2. The gut microbiota supports the interaction between macrophages and other immune cells
3. The microbial products inhibit the release of inflammatory factors, cause macrophage metabolism altera-
tion and induce potent Th cell response

85–89

DCs 1. The gut microbiota controls the basal state of DCs
2. The microbiota-derived signals could promote intestinal homeostasis by affecting the secretion of DCs

93–95

NK cells 1. The gut microbiota controls the innate mucosal defense provided by NK cells
2. The crosstalk between NK cells and the gut microbiome mediated by specific transcription factors could 
promote intestinal homeostasis

97–102

B cells 1. B cells assist in maintaining a noninflammatory host-microbe relationship by secreting immunoglobulins 
and cytokines
2. The gut microbiota and its metabolites could promote B cell maturation, differentiation and enhance 
specific IgA antibody response. This process could be influenced by IgA, cytokines, or even B cells themselves 
to form a symbiotic regulatory loop

106–117

CD8 + T cells 1. CTLs can be activated in TME by the intestinal microbiota and its metabolites
2. Microbial dysbiosis exacerbates can cause CD8 + T cell exhaustion
3. Butyrate could exert a direct antagonistic influence on the HDACs of CTLs and Tc17 cells and activate 
CD8 + T cells to differentiate into memory cells

119–125

Th cells 1. The gut microbe-derived metabolites regulate Th1 and Th2 cell functions
2. The gut microbiota modulates the activation, plasticity, and differentiation of Th17 cells
3. Different gut microbes-derived metabolites modulate Th17 cell immunological function and differentiation
4. Different diets have also shown complicated impacts on Th17 cells via alterations in the gut microbiota

130–133, 142–155

Tfh cells 1. The gut microbiota and its metabolites can induce the differentiation of Tfh cells, facilitate systemic Tfh cell 
responses, and regulate Tfh cell abundance
2. The gut microbiota exhibits the potential to influence systemic Tfr cells and induce the differentiation of Tfr 
cells

157–165

Treg cells 1. The gut microbial signals could modulate the development of Treg cells and their IL-10 expression
2. The SCFAs have been demonstrated to regulate the size and function of the Treg cell pool

171–178
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monocyte progenitors, and promote their differentia-
tion [38]. In addition, bone marrow development can also 
be affected by peptidoglycans, which modulate neutro-
phil function [39]. In the thymus, studies have demon-
strated that recolonization of the gut microbiota drives 
the thymic expansion of T cells. Specifically, the gut 
microbiota is trafficked to the thymus in a CX3CR1- and 
CCR5-dependent manner by intestinal CX3CR1 DCs, 
which assist in inducing the expansion of microbiota-
specific T cells [40]. Researchers have demonstrated that 
cyclophosphamide (CTX) induces the translocation of 
selected bacteria into the spleen, followed by the stimu-
lation of a specific subset of “pathogenic” helper T (Th) 
17 cells, which generate memory Th1 immune responses 
and increase the CD8 + /Regulatory T(Treg) cell ratio 
[41, 42] (Fig. 1).

Antimicrobial peptides (AMPs)
AMPs are secreted by epithelial cells in the gut, mostly 
Paneth cells [43]. They are a crucial component of 

immunoreactive substances, and affect the innate 
immune system. As the first-line defender, AMPs modu-
late the immune system in response to a wide range of 
invasive pathogens. The most abundant AMPs, human 
defensin(HD) HD-5 and HD-6, modulate the microbiota 
in vivo via an increase in the abundance of Akkermansia 
sp [44]. In mouse models, the lack of pore-forming Orai1 
was associated with high mortality due to severe intesti-
nal bacterial dysbiosis, and the absence of AMP secretion 
from acinar cells was considered the major cause [45] 
(Fig. 2).

Pattern recognition receptors (PRRs)
PRRs identify host receptors that recognize specific path-
ogen-associated molecular patterns (PAMPs), making 
PRRs a critical factor in defense against infectious patho-
gens [46]. Following activation by PAMPs, PRR signaling 
pathways produce AMPs, cytokines, chemokines, and 
apoptotic factors. These factors are expressed not only 
in innate immunity but also in various nonprofessional 

Fig. 1 The interplay between the immune system and the gut microbiota in non-GI tract lymphoid organs. The gut microbiota and its metabolites 
influence the development of host bone marrow and thymus. For instance, SCFAs are capable of facilitating hematopoiesis recovery of bone 
marrow after radiation damage.The gut microbiota also induce the translocation of selected bacteria into and stimulate immunocytes and immune 
responses of the spleen after CTX treatment
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immune cells, such as intestinal epithelial cells (IECs) 
in the GI tract. The most well-studied PRRs are toll-like 
receptors (TLRs) and nucleotide oligomerization domain 
(NOD)-like receptors (NLRs) [47]. Understanding how 
microbes influence PRR-associated immune responses 
is fundamental for understanding gut microbiome 
homeostasis.

TLRs are widely expressed in the GI tract but differ 
significantly between the intestine and colon [48]. We 
focused on TLR4, TLR5, TLR9, and TLR2, which are 
involved in microbe recognition. In the context of the 
GI tract, TLR2 is expressed in mononuclear cells of the 
lamina propria, goblet cells, and enterocytes. TLR4 and 
TLR9 are expressed mainly in IECs [49]. In addition, 
TLR5 is expressed on the basolateral side of IECs in the 
colon, while its expression is restricted to Paneth cells 
in the small intestine [50]. TLRs are strongly affected by 

the presence of microbes [51]. In particular, we will dis-
cuss how TLR signaling mediates the crosstalk between 
microorganisms and IECs and how this structural and 
functional interplay primes immune cell responses in the 
gut mucosa. Microbial metabolites strongly regulate IEC 
proliferation, apoptosis, and differentiation [52]. These 
processes can be induced by the development of gob-
let cells that are activated by TLR2 and TLR4 [53]. The 
motility of intestinal smooth muscle could be another 
factor that impacts the differentiation of IECs, which is 
mediated by TLR4, TLR5, and TLR9 [54, 55]. Research-
ers have revealed that TLR2 stimulation effectively pre-
serves tight junction-associated barrier integrity by 
promoting phosphoinositide 3-kinase (PI3K)/Akt-medi-
ated cell survival via myeloid differentiation primary 
response gene 88 (MyD88) as well as the translocation 
of zona occludens 1 (ZO1) and occluding proteins [56]. 

Fig. 2 The interplay between the innate immune system and the gut microbiota in GI tract. Some mechanisms utilized by the gut microbiota 
to interact with the host innate immune system in GI tract are described above. The interplay between the gut and its microbiota is complex. The 
secretion of AMPs could be affected by A.muciniphila. PRRs are strongly affected by the presence of the gut microbiota. Microbiota-derived TLR 
and NOD ligands act directly on intestinal immunocytes and can activate inflammatory genes. Bacteroides fragilis stimulates the downstream PI3K 
pathway and activates the transcription of anti-inflammatory genes by co-operating TLR1/TLR2 heterodimer and Dectin-1. NLRs function to activate 
inflammatory caspases and cytokines to compost optimal microbiota and maintain intestinal homeostasis. Microbial metabolites taurine, histamine, 
and spermine have been identified to regulate the activation of NLRP6 inflammasome as well as the induction of downstream epithelial IL-18 
and AMPs secretion. Innate immune cells, including macrophages, DCs, and NK cells, interact heavily with the gut microbiota. OMVs derived 
from Bacteroides elicit IL-10 production by DCs, as well as enhance the phagocytic functions of macrophages triggered by the bacteria themselves. 
The expression of the transcription factor RORγt and IL-22 of intestinal NK cells is conditioned by the commensal microbiota
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Moreover, activation of TLR4 induces a loss of barrier 
function through the expression of myosin light chain 
kinase (MLCK) [57]. In addition, AMP and IgA transcy-
tosis are highly dependent on TLR-mediated recognition 
of the gut microbiota [58, 59]. IECs control microbial 
invasion of the mucosa through the release of ROS into 
the lumen after TLR activation [60]. These results indi-
cate that TLRs are involved in intercellular junctions, and 
that enhancing or disrupting intestinal epithelial barrier 
integrity depends on microbes. A typical example for 
understanding TLR–microbe interplay is the symbiont 
molecule polysaccharide A (PSA) of  Bacteroides fragilis 
(B.fragilis). PSA interacts with the TLR1/TLR2 heterodi-
mer on DCs in cooperation with Dectin-1 to stimulate 
the downstream PI3K pathway, followed by the transcrip-
tion of anti-inflammatory genes. This PSA-dependent 
immunomodulation is essential for presenting CD4 + T 
cells and Treg cells, which are critical for producing 
interleukin-10 (IL-10), which is the primary anti-inflam-
matory outcome [61, 62].

NLRs activate inflammatory caspases and cytokines 
and modulate inflammatory signaling pathways [63]. 
NOD1/NOD2 recognizes peptidoglycan in bacterial cells 
and activates the NF-κB/extracellular-signal-regulated 
kinase(ERK) /mitogen-activated protein kinase(MAPK) 
signaling pathway to mediate cytokine, chemokine, and 
antimicrobial peptide expression, thereby promoting the 
host immune response [64–66]. Specifically, stimula-
tion of epithelial cells with NOD1 stimulatory molecules 
can induce the production of CXCL1, CCL2, IL-8, and 
AMPs, which are essential for recruiting neutrophils 
[67]. In NOD2(-/-) mice, inflammatory pathologies asso-
ciated with the expansion of Bacteroides vulgatus were 
observed [68]. Researchers confirmed that NOD2 medi-
ates CCL2-CCR2-dependent recruitment of inflamma-
tory monocytes and promotes their production of IL-10 
[69]. Moreover, the anti-inflammatory effects of Lacto-
bacillus salivarius Ls33 were abrogated in NOD2(-/-) 
mice [70]. NOD-like receptor thermal protein domain 
associated protein(NLRP)3, plays a well-defined role in 
intestinal homeostasis and protection against inflamma-
tion [71]. According to Seo et al. [72], Proteus mirabilis 
(P. mirabilis) can induce robust IL-1β release by meditat-
ing the recruitment of CCR2 mononuclear phagocytes. 
Similarly, Yao et  al. [73] confirmed that the hyperactive 
NLRP3 inflammasome could remodel the gut micro-
biota by inducing IL-1β production. Furthermore, they 
observed enhanced production of AMPs and compensa-
tory changes in local Treg cell levels to neutralize inflam-
mation. Another well-studied inflammasome-forming 
NLR is NLRP6. Elinav et  al. [74] described the novel 
regulatory mechanism of the NLRP6 inflammasome in 
which a deficiency of NLRP6 resulted in reduced IL-18 

and IL-1β levels. Additionally, NLRP6 knockout mice 
had an increased abundance of Akkermansia mucin-
iphila (A.muciniphila) [75]. Wlodarska et al. [76] further 
explored the regulatory effect of the NLRP6 inflammas-
ome on the biogeographical distribution of the gut micro-
biota, and the authors suggested that NLRP6 mediates 
mucin granule exocytosis and subsequent mucous layer 
formation. In another study, Levy et  al. [77] reported 
that taurine, histamine, and spermine activated NLRP6 
inflammasome and induced downstream epithelial IL-18 
and AMP secretion. In addition to inflammasome for-
mation, NLRP12 suppresses NF-κB signaling and the 
expression of downstream inflammatory cytokines [78–
81]. Two recent studies have connected NLRP12 with the 
gut microbiota in the contexts of colon inflammation and 
obesity. Chen et  al. [82] found that microbial dysbiosis 
contributed to colitis in NLRP12 knockout mice. These 
mice exhibited increased expression of inflammatory 
cytokines, including tumor necrosis factor-α(TNF-α) and 
IL-6, by DCs, which was reversed by the administration 
of Lachnospiraceae. In addition, inflammation associated 
with obesity in NLRP12-deficient mice was attributed to 
the maintenance of beneficial microbiota [83] (Fig. 2).

Macrophages
Macrophages are known as the first-line of defense 
against pathogens, but they also interact heavily with 
commensal bacteria [84]. B. fragilis enhances the phago-
cytic functions of macrophages by polarizing them to 
an M1 phenotype [85]. Researchers have shown that 
the gut microbiota promotes the interaction between 
IL-1β–secreting macrophages and colony-stimulating 
factor 2 (Csf2)-producing RORγt + innate lymphoid cells 
3 (ILC3s) [86]. Several studies have explored the influ-
ence of microbial products on macrophages. By inhibit-
ing the release of NO, IL-6, and IL-12, n-butyrate may 
assist in the tolerance of colon macrophages to commen-
sals [87]. Furthermore, butyrate-enhanced antimicrobial 
activity was shown to be related to alterations in mac-
rophage metabolism and increased LC3-associated anti-
microbial clearance [88]. TMAO-polarized inflammatory 
macrophages induce a potent Th1 and Th17 response by 
modulating the microenvironment, which exacerbates 
inflammation-related diseases [89] (Fig. 2).

Dendritic cells (DCs)
DCs are the most potent and versatile professional anti-
gen-presenting cells (APCs), that can initiate the adap-
tive immune response and support innate immunity [90]. 
DCs can be divided into plasmacytoid DCs (pDCs) and 
conventional DCs (cDCs) [91, 92]. Researchers have sug-
gested that cDCs cannot be fully activated due to insuf-
ficient interferon-I(IFN‐I) signaling. In other words, the 
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gut microbiota, which is the major regulator of IFN-I 
secreted by pDCs, controls the basal state of DCs [93]. 
Another example of this crosstalk is the outer membrane 
vesicles (OMVs) derived from Bacteroides thetaiotaomi-
cron. These OMVs are instrumental in eliciting regula-
tory IL-10 production by DCs [94]. In addition, Bessman 
et  al. [95] reported that hepcidin produced by cDCs in 
response to microbiota-derived signals promoted intesti-
nal homeostasis. (Fig. 2).

Natural killer (NK) cells
NK cells are an important component of the innate 
immune system and account for up to 15% of all lympho-
cytes [96]. Researchers have suggested that the innate 
mucosal defense provided by a subset of intestinal NK 
cells is conditioned by the commensal microbiota, which 
expresses the transcription factors RORγt and IL-22 
[97]. Four trials applying synbiotics or probiotics have 
shown that administration improved the gut microbiota 
composition and increased NK cell activity and the lev-
els of associated cytokines [98–101]. More specifically, 
Qiu et  al. [102] reported that the probiotic Lactobacil-
lus plantarum can efficiently increase the expression of 
IL-22 mRNA and protein in NK cells, thereby mitigating 
intestinal epithelial barrier damage. (Fig. 2).

B cells
B cells are crucial mediators of intestinal homeostasis. 
By secreting immunoglobulins and cytokines, they assist 
in maintaining a noninflammatory host-microbe rela-
tionship [103, 104]. GF mice show a reduced amount of 
immunoglobulin A, a differentiated form of B-cell, and 
impaired B-cell responses [105]. The intestinal coloni-
zation of E. coli, bifidobacteria, and segmented filamen-
tous bacteria (SFB) might promote B-cell maturation and 
enhance the specific IgA antibody response [106, 107]. 
This IgA response helps maintain gut microbiota home-
ostasis, thereby facilitating the expansion of Foxp3 + T 
cells and maturation of the gut immune system through 
a symbiotic regulatory loop [108]. The regulation of 
B cells by the gut microbiota and its products could be 
influenced by IgA, immune cells, chemokines, cytokines, 
or even B cells themselves [109]. More specifically, 
B-cell activating factors can be induced by IECs, DCs, 
T cells, and eosinophils. Together, these immune cells 
and cytokines can promote the differentiation and sur-
vival of IgA plasma cells [110–114]. Additionally, micro-
bial metabolites such as SCFAs activate B-cell receptors 
(BCRs), inhibit histone deacetylases (HDACs), and 
increase adenosine triphosphate (ATP) levels [115, 116]. 
The differentiation of naïve B cells into regulatory B cells 
(Bregs) can be induced by intestinal microbiota-driven 
production of IL-1β and IL-6 [117] (Fig. 3).

CD8 + T cells
T cells coordinate the immune response and directly 
kill damaged cells. These functions are mediated by 
CD4 + and CD8 + T cells, respectively. CD8 + T cells 
play central roles in controlling infections and cancer. 
These cells are known to secret IFN-γ and the protease 
granzyme B, which act synergistically to kill infected or 
tumorigenic cells [118]. CD8 + T cells can be activated 
by the intestinal microbiota and its metabolites, such as 
cytotoxic T lymphocytes (CTLs), to exert direct cytotox-
icity and interact with other immune cells, especially in 
the tumor microenvironment (TME) [119]. Conversely, 
microbial dysbiosis exacerbates chronic inflammation 
and tumor susceptibility, thereby attenuating the activ-
ity of CD8 + T cells and sometimes even causing their 
exhaustion [120–123]. Moreover, butyrate had a direct 
antagonistic influence on the HDACs of CTLs and cyto-
toxic T lymphocyte 17 (Tc17) cells, thereby promoting 
the expression of IFN-γ and granzyme B [124]. Butyrate 
could also promote activated CD8 + T cell differentia-
tion into memory cells [125]. Immunotherapy targeting 
the close interaction between CD8 + T cells and the gut 
microbiota is promising and will be discussed below 
(Fig. 3).

Helper T (Th) cells
Th cells, which are differentiated from naïve CD4 + T 
cells, can orchestrate humoral and cellular immunity by 
facilitating the activation of immunocytes in a cytokine-
dependent manner [126, 127]. Different subsets of Th 
cells show distinct functions in protective immunity 
and reactivity to the gut microbiota because of differ-
ences in the production of signature cytokines [128]. Th1 
cells produce IFN-γ, IL-2, and TNF-α, and the expres-
sion of IL-4, IL-5, and IL-13 defines Th2 cells. Th17 
cells are abundant within the GI tract and help regulate 
gut microbes. The signature cytokines of this cell sub-
set include IL-17A, IL-17F, and IL-22 [129]. Th1 and 
Th2 cells exhibit functions that are regulated by the gut 
microbe-derived metabolites [130]. SCFAs are asso-
ciated with an impaired ability to initiate a Th2 cell 
immune response [131]. Additionally, SCFAs can pro-
mote microbe antigen-specific IL-10 production in Th1 
cells through GPR43 and induce the expansion of the Th1 
transcription factor T-bet [132]. Furthermore, cancer 
patients display decreased plasma tryptophan(Trp) levels 
correlated with an increase in Th1-type immune activa-
tion markers [133]. The potential association between 
Th17 cells and gut microbes has been shown in different 
diseases. Specific alterations in the intestinal mucosa-
associated microbiota were correlated with an increased 
number of intestinal Th17 cells and a high disease burden 
[134]. Preclinical models further verified this correlation 
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by showing that augmenting the population of patho-
genic colonic Th17 cells could promote tumorigenesis 
[135]. However, their causal relationships have not been 
proven. We propose that the delicate balance of plasticity 
makes Th17 cells potential pathogenic drivers of intesti-
nal immune diseases [136–141]. Studies have shown that 
the gut microbiota and metabolites activate Th17 cells. 
The impaired plasticity of Th17 cells in the absence of the 
gut microbiota can be restored by microbial metabolites 
[142–144]. SFB is a representative example of a molecule 
that can induce homeostatic intestinal Th17 cells [145, 
146]. Atarashi et al. [147] further demonstrated that the 
adhesion of SFB to IECs is a critical factor for induc-
ing Th17 cells and antigen binding to pro-Th17 DCs. 
Another study revealed that Bifidobacterium adolescentis 
could influence Th17 cells in a similar manner [148–150]. 
Researchers have shown that ATP derived from com-
mensal bacteria can activate a unique subset of lamina 

propria cells, namely, CD70high/CD11clow cells, which 
induce IL-6 and transforming growth factor(TGF)-β, 
leading to the differentiation of Th17 cells [151]. Moreo-
ver, different gut microbe-derived BA and SCFA metab-
olites regulate and modulate Th17 cell immunological 
function and differentiation [152, 153]. Various diets have 
also been shown to have complicated impacts on Th17 
cells [154, 155] (Fig. 3).

Follicular helper T (Tfh) cells
Another critical subset of Th cells is Tfh cells. In addi-
tion to assisting B cells in producing antibodies, Tfh cells 
are essential for germinal center (GC) formation, affinity 
maturation, and the production of memory B cells [156]. 
The maturation of Tfh cells is restricted in GF mice, 
resulting in diminished IgA development and disruptions 
in microbial homeostasis [111]. Alterations in the gut 
microbiota can be observed in Tfh cells when ATP-gated 

Fig. 3 The interplay between the adaptive immune system and the gut microbiota in GI tract. Some mechanisms utilized by the gut microbiota 
to interact with the host innate immune system in GI tract are described above. Foxp3 + Treg cells promote maturation of B cells and production 
of secretary IgA. These contribute to the regulation of homeostatic microbiota composition and the maintenance of a non-inflammatory 
host-microbial relationship. CD8 + T cells can be activated by the intestinal microbiota and its metabolites. Butyrate, for instance, showed a direct 
antagonistic influence on the HDAC of CTLs and Tc17 cells, thereby promoting the expression of IFN-γ and granzyme B. As for Th cells, the adhesion 
of SFB to IECs is a common outcome of inducing homeostatic intestinal Th17 cells. Tfh cells, being another modulation target of gut microbiota 
modification, are essential for the production of plasma cells and memory B cells. The SCFAs have been demonstrated to regulate the size 
and function of the Treg cell pool
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ionotropic P2X7 receptors are absent [157, 158]. Moreo-
ver, bacteria of the genus Anaeroplasma can increase 
intestinal IgA levels by inducing TGF-β in Tfh cells [159] 
SFB can induce the differentiation of Tfh cells and egress 
into systemic sites, thereby facilitating systemic Tfh cell 
responses and autoantibody secretion that can worsen 
diseases [160]. Microbiota-derived eATP can also regu-
late Tfh cell abundance [161]. Thus, the gut microbiota 
can be a modulatory target of Tfh cells to further impact 
intestinal immunity [162] (Fig. 3).

Some Treg cells are also found in B-cell follicles and 
were identified as T follicular regulatory (Tfr) cells. These 
cells can migrate into the GC, thereby inhibiting B-cell 
maturation and antibody production [163] SFB, which 
induces Tfh cells to promote autoimmune arthritis, has 
also exhibited the potential to influence systemic Tfr cells 
[164]. In addition, butyrate is an environmental cue that 
can induce the differentiation of Tfr cells, which can also 
ameliorate autoimmune arthritis [165].

Regulatory T (Treg) cells
Treg cells, which differentiate from naïve CD4 + T cells, 
are an irreplaceable constituent of immunity and are 
involved in the maintenance of immunological self-tol-
erance and homeostasis. Treg cells express the transcrip-
tion factor Foxp3 in the nucleus and CD25 and CTLA-4 
on the cell surface [166]. These factors are modulated by 
gut microbial signals [167–170]. TGF-β, the physiologi-
cal inducer of the transcription factor Foxp3 (associated 
with the development of Treg cells), can be induced by 
Clostridia [171, 172] B. fragilis has been shown to form 
OMVs, packed with capsular PSA, and increase IL-10 
expression in Treg cells, and activate TLR2 ligation on T 
cells and DCs [173, 174]. SCFAs have been demonstrated 
to regulate the size and function of the Treg cell pool 
[175, 176]. Specifically, butyrate promotes histone H3 
acetylation at the Foxp3 locus, and propionate inhibits 
HDACs [177, 178].

In summary, microbes exert positive and negative 
effects on the immune system of the GI tract, thus indi-
cating their dual role in cancer progression. Gut micro-
biome homeostasis enhances the host immune response. 
However, dysbiosis and depletion of the gut microbiome 
interfere with the immune system abnormally by manip-
ulating various innate and adaptive immune system com-
ponents, which may further increase susceptibility to 
tumorigenesis. (e.g., inducing a loss of intestinal barrier 
function through the PRR signaling pathway; affecting 
B-cell differentiation and response; attenuating CD8 + T 
cells, even causing their exhaustion; causing impaired 
plasticity in Th17 cells; and restricting the maturation of 
Tfh cells). Specifically, different strains of gut microbes 
play different roles in regulating GI tract immunity. In the 

GI tract, A.muciniphila, B.fragilis, Ls33, Lachnospiraceae, 
E. coli, bifidobacterial, SFB, and Bifidobacterium ado-
lescentis are associated with immune cell activation 
processes and exhibit anti-inflammatory properties. 
Moreover, strains like Bacteroides vulgatus displayed 
inflammatory pathologies, which might be involved in 
cancer progression. Microbial metabolites showed simi-
lar dual characteristics. Butyrate attenuates the inflam-
matory response, while TMAO promotes it.

The gut microbiota and the efficacy of cancer 
immunotherapy
The idea of cancer immunotherapy has evolved rapidly 
in the past few decades. Many types of immunotherapy 
have been developed to revive the immune system by 
suppressing the immunoinhibitory pathways commonly 
employed by tumor cells to escape immunosurveil-
lance. A close link between the gut microbiota and can-
cer immunotherapy has slowly been unveiled with an 
increasing number of innovative studies. We outline the 
recent evidence in this field by type of immunotherapy 
(Additional file 1: Table S1) (Fig. 4).

Antibodies against PD‑1/PD‑L1
PD-1 is a coinhibitory transmembrane receptor 
expressed on tumor-infiltrating lymphocytes (TILs) 
[179]. Within the TME, PD-1 binds to PD-L1 and con-
sequently inhibits CTL-mediated cytolysis, as well as 
Fas-induced cellular apoptosis, thus allowing tumor cells 
proliferate indefinitely [180, 181]. Inhibitors of PD-1/
PD-L1, such as nivolumab, pembrolizumab, and atezoli-
zumabor, promote immune responses against cancer 
cells in clinical trials [182–187].

Moreover, landmark experiments have confirmed the 
association between antibodies against PD-1/PD-L1 
and the gut microbiota. These preclinical trials have 
explored the hallmark mechanisms of this crosstalk: (1) 
alterations in the gut microbiota composition caused 
by immune checkpoint inhibitors(ICIs), (2) the effects 
of gut microbes on intestinal immune cells, (3) induced 
metabolic changes affecting the immune response of 
commensals, and (4) the accumulation of immunocytes 
in the TME caused by the gut microbiota. Specifically, 
this crosstalk was first explored by Sivan et  al. [22]. 
Their data suggested that Bifidobacterium could aug-
ment DC functions and enhance CD8 + T-cell prim-
ing and accumulation in the TME. Routy et  al. [188] 
confirmed the correlation between the abundances of 
different microbes (A.muciniphila and E.hirae) and 
PD-1/PD-L1 blockade efficacy. Mechanistically, these 
researchers demonstrated that the antitumor effect was 
restored in an IL-12-dependent manner by increas-
ing the recruitment of CCR9 + CXCR3 + CD4 + T 
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lymphocytes into the TME. Another study indi-
cated that Prevotella and A.muciniphila improved 
the therapeutic efficacy of PD-1/PD-L1 inhibitors and 
Bacteroides led to poorer efficacy. Researchers have 
speculated that changes in the gut microbiota affect 
glycerophospholipid metabolism, thereby altering the 
expression of IFN-γ and IL-2 in the TME [189]. In mice 
with breast cancer (BC), anti-PD-1 therapy increased 
the abundance of Bifidobacterium, Lactobacillus, and 
Adlercreutzia [190].

Analogous clinical studies were implemented in the 
following years, and the results validated the correla-
tion between the gut microbiota composition and the 

therapeutic efficacy of ICIs in clinical trials beyond pre-
clinical models.

In trials involving metastatic melanoma (MM) patients, 
contradictory results showed that no single species could 
be regarded as an entirely consistent predictive fac-
tor. In terms of mechanism, Gopalakrishnan et al. [191] 
reported increased abundances of Clostridiales, Rumi-
nococcaceae, and Faecalibacterium in responders(R) 
and suggested that increasing antigen presentation and 
improving effector T-cell function in the TME could 
enhance antitumor immune responses. Matson et  al. 
[192] performed FMT to transfer R-enriched bacteria 
into colonized mice and observed an increased frequency 

Fig. 4 Selected mechanisms of how the gut microbiota impact cancer immunotherapies. Current studies have revealed the close link 
between the gut microbiota and the efficacy of cancer immunotherapy. Grouped by immunotherapies and metabolites, outlined here are some 
selected mechanisms utilized by the gut microbiota and its metabolites to regulate immunocyte activation, cytokine secretion, metabolism 
restriction and tumor cell proliferation inside the TME to influence cancer immunotherapy effects
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of DCs and augmented T-cell responses. Other stud-
ies have shown that specific bacterial species are associ-
ated with R and nonresponders(NRs) [193, 194] and that 
carriers of specific bacterial taxa exhibit a better cancer 
prognosis [195, 196].

Multiple studies on the systemic immune responses of 
cancer patients ranging from those with melanoma to 
those with non-small cell lung carcinoma (NSCLC) have 
detected a greater frequency of memory CD8 + T cells 
and NK cells in the periphery of R enriched with Alis-
tipes putredinis Bifidobacterium longum, and Prevotella 
copri [197]. A group in the United States found that mice 
model with transplanted gut microbes had improved 
ICI efficacy when the TME was enriched with immu-
nocytes [198]. Other studies have also demonstrated a 
diverse array of molecular features in the gut microbiota 
during immunotherapy modulation [199–206]. Taken 
together, the findings are conflicting; thus, continued 
research efforts are needed to establish causal relation-
ship between different microbes and ICI treatment effi-
cacy. Similarly, studies focusing on other rare thoracic 
malignancies are needed, although initial data have been 
provided [207].

Not until 2019 did studies start focusing on predict-
ing responses to PD-1/PD-L1 immunotherapy based on 
the gut microbiota composition in the context of hepa-
tocellular carcinoma (HCC). Zheng et al. [208] reported 
that the dynamic nature of commensals plays an impor-
tant role in ameliorating oxidative stress injury and host 
inflammatory responses in antitumor therapy. Another 
study revealed that the antitumor functions of certain 
bacterial species could be a result of SCFA production 
and bile acid metabolism [209]. Although multiple stud-
ies have demonstrated that better ICI efficacy in HCC 
patients appears to be correlated with a favorable gut 
microbiota [210–212], one recent study failed to confirm 
such a positive association in patients with HCC [213].

Compared with those of the solid tumors men-
tioned above, little is known about the direct impact 
of individual intestinal nonpathogenic bacteria on the 
therapeutic outcomes of ICIs in renal cell carcinoma 
(RCC). Derosa et  al. [214] observed a positive associa-
tion between D. formicigenerans and CD8 + CD69 + T 
cells as well as negative associations between C. 
clostridioforme and CD137/4.1BB expressing CD4 + T 
lymphocytes and memory CXCR5-CCR6-CCR4-CCR10-
CXCR3 + CD8 + T cells. Salgia et al. [215] also identified 
several species that were presumably correlated with 
therapeutic benefits.

Although a significant amount of research has been 
dedicated to revealing how the gut microbiota influences 
the carcinogenesis of colorectal carcinoma (CRC), little is 
known about the regulatory mechanisms involved in the 

efficacy of ICIs. In a recent study, F. nucleatum was con-
nected to the activation of the stimulator of interferon 
genes (STING) signaling pathway as well as the accu-
mulation of IFN-γ + CD8 + TILs [216]. To better under-
stand how individual bacterial species modulate ICI 
therapy, future studies are needed to better character-
ize any shared functionalities among different microbial 
communities.

The negative impact of H. pylori on immunomodula-
tion raises the concern that H. pylori infection may sup-
press immune responses to cancer immunotherapy [217, 
218]. Researchers have confirmed that H. pylori infec-
tion decreases the effectiveness of cancer immunothera-
pies by inhibiting DCs and suppressing CD8 + T-cell 
responses [219].

Antibodies against cytotoxic T lymphocyte‑associated 
antigen 4 (CTLA‑4)
CTLA-4 is a major negative receptor of T cells and has 
upregulated expression upon T-cell activation [220–226]. 
Inhibitors of CTLA-4, such as ipilimumab and tremeli-
mumab, are thought to boost antitumor immunity due to 
the strong immunosuppressive effects of CTLA-4 [227–
231]. Mechanistically, anti-CTLA-4 blockade affects 
the Th1 subset of CD4 T cells that express an inducible 
costimulator (ICOS) [232, 233]. Additionally, both effec-
tor T cells and Tregs are the primary targets of anti-
CTLA-4 mediated blockade [234, 235].

Studies have revealed the mechanisms by which dif-
ferent species of gut microbiota improve the clinical 
outcomes of anti-CTLA-4 immunotherapy. Initially, an 
altered gut microbiota was thought to activate IL-12-de-
pendent Th1 immune responses, thereby facilitating anti-
tumor effects [236, 237]. Chaput et  al. [238] confirmed 
that prolonged progression-free survival (PFS) and over-
all survival (OS) in patients enriched with Firmicutes was 
mediated by increased ICOS induction levels of CD4 + T 
cells and sCD25 levels. A recent study suggested that the 
antitumor efficacy of CTLA-4 blockade is negatively cor-
related with the proportion of the microbial metabolite 
butyrate since systemic butyrate is capable of inhibit-
ing ipilimumab-mediated DC maturation and the CD28 
signaling pathway (Additional file 1: Table S1) [239].

Adoptive cell transfer (ACT)
While ICI efficacy relies on the presence of tumor-reac-
tive T cells [240], ACT may be a good strategy for treat-
ing poorly immunogenic types of cancer [241]. There 
are two approaches to ACT: (1) isolating TILs from the 
TME and (2) genetically modifying blood-derived T 
cells to express chimeric antigen receptor (CAR). Both 
approaches require in  vitro T-cell manipulation before 
reinfusion into patients [242–247]. Considering the 
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obstacles to the application of ACT, interventions modu-
lating the immune microenvironment, such as gut micro-
biota modifications, have become a central issue [248, 
249].

Paulos et al. [250] reported for the first time that trans-
located microbes could augment the function of ACT 
therapy by triggering the TLR4 pathway. Activating this 
pathway stimulates DCs and increases the secretion of 
proinflammatory cytokines in the gut. Similarly, other 
studies also revealed enhanced ACT efficacy after vanco-
mycin supplementation, which induced IL-12 expression 
to increase the number and activity of tumor-specific 
TILs [251]. Adoptive transfer of naïve Helicobacter hepat-
icus (Hhep)-specific CD4 + T cells has been shown to 
contribute to antitumor immunity in CRC. Mechanisti-
cally, researchers have discovered that increased Hhep 
levels stimulate tertiary lymphoid structures (TLSs), 
which further activate NK cells and CD4 + T cells [252]. 
Recently, Smith et  al. [253] demonstrated a close corre-
lation between a high abundance of Ruminococcus, Bac-
teroides, and Faecalibacterium and better responses to 
CD19 CAR T-cell therapy in patients. Collectively, these 
findings, although preliminary, have not revealed the 
exact mechanisms by which bacterial taxa and metabo-
lites influence ACT immunotherapy outcomes, espe-
cially CAR-T-cell therapy outcomes (Additional file  1: 
Table S1) [254].

Unmethylated cytidine phosphate guanosine 
oligonucleotide (CpG‑ODN) therapy
CpG-ODNs possess immunostimulatory effects and 
potential antitumor activity [255]. They interact with 
TLR9 in B cells and plasmacytoid DCs to initiate a signal-
ing cascade that activates the NF-κB pathway and vari-
ous cell types and induces the production of cytokines 
and chemokines [256]. Thus, CpG-ODN injections were 
initially promoted for their immunotherapeutic potential, 
and recent studies have focused on applying CpG-ODNs 
as an adjuvant to other cancer treatments [257–259].

Iida et  al. [119] identified several species associated 
with CpG-ODN efficacy. These associations suggest that 
the gut microbiota affects immunotherapy by inducing 
TNF production and manipulating tumor-associated 
myeloid cells. These findings confirmed that commen-
sals affect the outcomes of patients receiving CpG-ODN 
therapy by regulating inflammatory responses in the 
TME (Additional file 1: Table S1).

Microbial metabolites and the efficacy of cancer 
immunotherapy
Metabolites derived from the gut microbiota have been 
identified as important regulators of the development 
and function of immune cells [17, 260, 261]. Given their 

complicated interactions with the immune system, mul-
tiple studies have focused on how they impact local and 
systemic antitumor immune responses, especially in the 
context of ICI therapy (Fig.  4). These heavily studied 
metabolites can be divided into three subgroups accord-
ing to their origin and synthesis: (1) metabolites pro-
duced by the gut microbiota from dietary components, 
(2) metabolites produced by the host and modified by the 
gut microbiota, and (3) metabolites synthesized de novo 
by the gut microbiota. We will discuss the latest evidence 
about the potential mechanisms underlying these inter-
actions for each of these groups.

Metabolites produced by the gut microbiota from dietary 
components
SCFAs
In the intestine, dietary fiber can be fermented into 
SCFAs by the gut microbiota [262]. These SCFAs act as 
signaling molecules that regulate host physiology and 
immune processes, specifically by inhibiting HDACs or 
activating G protein-coupled receptors (GPRs) [87, 263–
266]. Multiple studies have confirmed the association 
between gut microbiota-derived SCFAs and the long-
term benefits of ICI treatment in cancer [202, 267–269]. 
However, Coutzac et  al. [239] identified the antagonist 
effect of SCFAs that limits anti-CTLA-4 activity. Here, 
we will discuss the critical role that SCFAs play in the 
immune system, which demonstrates their antitumor 
effects in cancer immunotherapy.

SCFAs directly inhibit the proliferation of tumor cells. 
Researchers have shown that butyrate can inhibit tumor 
cell proliferation by decreasing the activation of nuclear 
factor of activated T-cell (NFAT)c3 and calcineurin 
[267]. Additionally, propionate produced by A. mucin-
iphila promotes tumor cell apoptosis [268] In addition, 
SCFAs can induce histone hyperacetylation by inhibiting 
HDACs, leading to cell cycle arrest [269].

Moreover, SCFAs activate immune cells to augment 
antitumor immune responses. SCFAs can modulate 
intestinal macrophages and DCs through the inhibition 
of HDACs [87, 265, 270, 271]. Research has also shown 
that SCFAs modulate the suppressive function and dif-
ferentiation of Foxp3 + Treg cells in an HDAC-dependent 
manner to establish immunological homeostasis in the 
gut [175, 177, 178, 272]. Singh et  al. [273] showed that 
the GPR-butyrate interaction is another signaling factor 
that is involved in the differentiation of Treg cells. SCFAs 
also improved the efficacy of anticancer therapy by influ-
encing cytotoxic CD8 + T cells. The antitumor effect was 
boosted by the inhibition of class I HDAC enzymes via an 
IL-12-dependent signaling pathway [274, 275]. The meta-
bolic promotion of glycolysis and oxidative phosphoryla-
tion in CD8 + T cells induced by SCFAs provides energy 
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for immune cells [276]. In addition, SCFAs increase 
acetyl-CoA levels to modulate energy metabolism in B 
cells to support antibody production [112].

There are also contradictory findings showing 
restricted antitumor activity of anti-CTLA-4 in the face 
of high systemic levels of butyrate [239], leading to poor 
clinical response to treatment with ICIs. Although the 
mechanism through which SCFAs affect the efficacy of 
ICIs remains ambiguous, the SCFA-associated immu-
nomodulatory pathway and its relevant clinical trials are 
still a promising area of research.

Tryptophan catabolites
Tryptophan catabolites, which mostly result from the 
degradation of dietary proteins, are critical contribu-
tors to intestinal and systemic homeostasis [277]. These 
proteins act as ligands for the aryl hydrocarbon receptor 
(AhR) [278], which is a ligand-inducible transcription 
factor in host cells that assists in immune responses [279, 
280]. Accumulating evidence has confirmed the anti-
tumor effect of targeting these microbial metabolites in 
cancer treatment.

Clinical research has shown that a decreased ratio 
of serum kynurenine(Kyn)/ Trp improves ICI treat-
ment efficacy [281, 282]. In concert, studies have further 
demonstrated that T-cell proliferation can be inhibited 
by high Kyn/Trp ratios, which consequently worsens 
patient prognosis [283]. Another clinical trial revealed 
the immunosuppressive activity of 3-hydroxyanthranilic 
acid (3-HAA), which is a downstream metabolite in the 
kynurenine pathway [284].

High levels of AhR expression have been recognized 
as a signal for rapid disease progression. Hezaveh et  al. 
[285] observed the activation of AhR in tumor-associated 
macrophages (TAMs) by microbiota-derived trypto-
phan metabolites in pancreatic ductal adenocarcinoma 
(PDAC). Moreover, deletion of AhR reduced tumor 
growth, increased the number of IFNg + CD8 + T-cells, 
and improved the efficacy of ICI treatment.

Indole-3-carboxaldehyde (3-IAld) exhibits great poten-
tial in modulating the immune response at the interface 
between microbes and the host immune system [286]. 
Researchers have found that 3-IAld in alters the compo-
sition of the gut microbiota and induces SCFAs produc-
tion [287]. In addition, 3-IAld has been shown to alleviate 
irAEs by activating the AhR/IL-22 pathway, which targets 
the epithelial barrier to help maintain mucosal homeo-
stasis [288].

According to Huang et  al. [289], interventions such 
as prebiotics assist in the accumulation of the trypto-
phan catabolite valeric acid. Decreased Kyn/Trp ratios 
could suppress Treg cells and activate effector T cells, 
which will eventually enhance the efficacy of anti-PD-1 

immunotherapy. In summary, these findings support the 
oncogenic effect of the kynurenine pathway and the anti-
tumor effect of indoles.

Metabolites produced by the host and modified by the gut 
microbiota
Bile acids
Bile acids (BAs) are a group of metabolites synthesized 
from cholesterol and then formed by the gut microbiota 
[290]. Limited knowledge is available regarding the cor-
relation between ICI treatment outcomes and BAs, while 
relatively more is known about the mechanism through 
which BAs modulate the host immune system.

A recent study revealed distinct BA features in Rs 
and NRs to ICI-treated HCC. Specifically, ursodeoxy-
cholic acid (UDCA) was significantly more abundant 
in Rs, whereas lithocholic acid (LCA) was more abun-
dant in NRs [291]. The antitumor effect of UDCA has 
been widely reported [292]. Various signaling pathways, 
immune cells, and cytokines, such as the epidermal 
growth factor receptor (EGFR)/ERK signaling pathway, 
NKT cells, and TGF-β, are involved in the protective 
effect of UDCA [293–295].

Secondary BAs such as deoxycholic acid (DCA) acti-
vate EGFR and protein kinase C, thus causing DNA dam-
age and apoptosis and eventually leading to cancer cell 
proliferation [296–299].

Metabolites synthesized de novo by the gut microbiota
Inosine
A recent study identified that A. muciniphila and 
B. pseudolongum utilize the inosine-adenosine 2A 
receptor(A2AR) signaling pathway to improve the effi-
cacy of ICI therapy. The authors presumed that inosine 
activates T cells and reprograms the TME [300]. Based 
on their findings and other relevant studies, we identified 
several potential mechanisms through which inosine may 
influence immune responses to ICI therapy.

The immunomodulatory effects of inosine on immune 
cells could be a critical factor. Activation of the inosine-
A2AR-cAMP-PKA signaling pathway leads to phos-
phorylation of the transcription factor cAMP response 
element–binding protein (CREB) [300]. Other research 
has shown that the microbiota–inosine–A2AR axis 
can influence the differentiation and expansion of Treg, 
CD8 + T, Th1, and Th2 cells and the production of 
cytokines [301–305].

Furthermore, inosine can support cell growth and 
T-cell functions as an alternative metabolic substrate. 
The high metabolic demands of cancer cells can limit the 
capacity of effector T cells by restricting available nutri-
ents [306–308]. Wang et al. [309] demonstrated that ino-
sine can relieve tumor-imposed metabolic restrictions 
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on T cells. Specifically, effector T cells utilize the ribose 
subunit of inosine to activate central metabolic pathways 
and generate ATP and biosynthetic precursors.

Peptidoglycan
In a recent study, NOD2-active muropeptides gener-
ated by active enterococci with orthologs of the NlpC/
p60 peptidoglycan hydrolase SagA were shown to 
improve the efficacy of ICI immunotherapy [310]. Fur-
ther mechanistic exploration revealed that microbiota-
derived peptidoglycans augment CD8 + T cells that 
express granzyme B and a particular monocyte popula-
tion characterized by Cx3cr1 and Nr4a1 expression [39]. 
Accordingly, researchers suggested that specialized pep-
tidoglycan remodeling activity and muropeptide-based 
strategies could be regarded as the future of next-genera-
tion immunotherapy.

Immune‑related adverse events and the gut microbiota
A large spectrum of autoimmune responses is associated 
with ICIs due to their impact on immune cell activation 
[311]. Inflammatory side effects termed immune-related 
adverse events (irAEs) are frequently linked to the gastro-
intestinal tract, endocrine glands, skin, and liver during 
ICI treatment [312–316]. These potential irAEs reveal 
the necessity of multidisciplinary, collaborative manage-
ment across the clinical spectrum [317, 318]. In addition 
to identifying microbial signatures associated with the 
efficacy of ICI therapy, the microbiota composition and 
dysbiosis in the gut have also shown a connection with 
the incidence of irAEs (Additional file 1: Table S2).

In terms of immunotherapy-related colitis, multiple 
studies have identified various microbial signatures and 
related signaling pathways that mediate the proinflam-
matory side effects of ICIs. Dubin et al. [319] reported a 
correlation between the abundance of specific bacterial 
taxa and subsequent colitis development. This report was 
followed by several studies that identified more irAE-
colitis-associated gut microbes ranging from Firmicutes 
families to Streptococcus spp [196, 200, 209, 236, 238]. 
In addition to studies on colitis-induced bacteria, other 
studies have suggested that Bifidobacterium ameliorates 
colitis [320]. Researchers have demonstrated that Bifi-
dobacterium breve and Lactobacillus rhamnosum can 
enhance the suppressive function of Treg cells by stimu-
lating an IL-10/IL10Ra signaling loop [321].

These discoveries have provided opportunities to target 
gut microbes using strategies such as FMT or probiot-
ics to decrease intestinal toxicity. Researchers in a case 
series utilizing FMT to abrogate ICI-associated coli-
tis observed an increase in the proportion of Treg cells 
within the colonic mucosa [322]. Additionally, admin-
istration of the probiotic L. reuteri could ameliorate the 

immunopathology associated with ICIs by affecting the 
local number of ILC3s [323]. The microbial metabolite 
3-IAld has demonstrated therapeutic potential in main-
taining epithelial barrier function in the gut, which could 
help alleviate ICI-induced intestinal toxicity [286].

With the increased use of ICIs, irAEs are no longer 
limited to colitis but include all kinds of related diseases, 
such as diarrhea, pancreatitis, pruritus, and thyroid dys-
function. Researchers have identified various characteris-
tics of the gut microbiome related to the increasing risk 
of irAEs [324–326]. Usyk et al. [327] applied this widely 
studied connection to predict the incidence of irAEs.

In summary, utilizing the microbiota composition 
as a prediction tool and therapeutic target for irAEs in 
ICI-treated patients may be a promising direction for 
treatment.

Gut microbiota modifications in response to cancer 
immunotherapy
Accumulating evidence has revealed how the gut micro-
biota and its metabolites interact with the host immune 
system to regulate antitumor immunity and immuno-
therapy responses. Therefore, modifications of the gut 
microbiota to enhance ICI treatment efficacy are prom-
ising approaches for therapeutic development. Here, 
we review preclinical and clinical trials that aimed to 
improve the clinical outcomes of patients treated with 
ICIs by altering gut microbes (Fig.  5). The main meth-
ods used for this purpose include FMT, dietary regula-
tion, probiotics, prebiotics, and engineered microbial 
products.

FMT
FMT is a well-established clinical approach for modula-
tion of the gut microbiota [328]. Transplantation of the 
gut microbiota from a healthy donor restores intesti-
nal microbial diversity in the recipient [329]. Currently, 
FMT is recommended by the FDA for treating recurrent 
Clostridium difficile infection [330].

Considering the unique microbial features of ICI 
responders, it is tempting to presume that FMT is appli-
cable in immunotherapy. Several preliminary trials have 
explored coupling FMT with immunotherapy, and their 
results have indicated that FMT could induce the differ-
ential expression of T-cell and NK cell-related pathways 
in ways that control tumor growth and ameliorate the 
immune response [188, 191, 192, 331].

Three recent studies have investigated the feasibil-
ity of introducing FMT through oral stool capsules in 
patients treated with ICIs. All of these studies revealed 
desirable outcomes, including an increased abundance of 
bacteria associated with response to anti-PD-1 therapy, 
activation of CD8 + T cells, and a decreased amount of 
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IL-8-expressing myeloid cells. The microbiota sources 
were obtained from healthy stool donors [23, 261, 332]. 
These observations confirmed that FMT could alter the 
microbiota composition and reprogram immune and 
inflammatory factors to increase the efficacy of ICIs 
[333]. The safety data from Routy et al. [332] confirmed 
that FMT combined with anti-PD-1 therapy did not 
increase the incidence of irAEs. Additionally, Spreafico 
et al. utilized a microbial consortium, Microbial Ecosys-
tem Therapeutic 4 (MET4), as an alternative to FMT in 
combination with ICIs in patients with advanced solid 
tumors. Their results suggested no worsening of ICI-
associated irAEs when using MET4 [334]. Given these 
promising results, there are many ongoing clinical trials 
investigating the exact mechanism behind FMT-induced 
enhancement of ICI efficacy in larger patient cohorts 
(Additional file 1: Table S3).

Recently, two live microbiome therapeutic products 
were approved by the FDA: RBX2660 and SER-109. Clini-
cal trials on these products have shown that they reduce 
the incidence of recurrent Clostridioides difficile infec-
tion (rCDI) with a low risk of adverse events related to 
treatment. We summarized the detailed trial design and 
results of these products(Table 3).

Based on their innovativeness, RBX2660 and SER-109 
were granted Breakthrough Therapy Status, Fast Track, 
and Orphan Drug designations by the FDA [335, 336].

However, there is also considerable risk during FMT 
[337]. For example, a whole transplantation of the gut 
microbiota may sabotage the existing boundary of benefi-
cial bacteria in the recipient, thereby causing infectious 
diseases [338]. Therefore, professional guidelines should 
be put in place to mandate presurgical safety screenings 
for donors, define standardized duration and delivery 

Fig. 5 Future intervention strategies to modificate gut microbiota in cancer immunotherapy. Targeting the association between the gut 
microbiome and cancer immunotherapy, modifying the gut microbiota with the latest intervention technologies could significantly advance 
the quality of individualized treatment. Listed here are the potential mechanisms behind the five microbiota modification strategies, which 
could be used to promote the efficacy of cancer immunotherapy in a precise manner. These intervention strategies are developed mainly 
based on current views of the crosstalk between the gut microbiota and the immune system. FMT, dietary regulation, probiotics, prebiotics, 
and engineered microbial products all can alter intestinal bacteria to enhance anti-tumor immune responses inside the TME, which consequently 
improve the efficacy of cancer immunotherapy
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methods for the procedure, and build machine learning 
models that can to predict responses to minimize FMT-
associated risks [339–341].

Dietary regulation
Recent studies have revealed the potential regulatory 
effect of diet on the gut microbiota [342]. Multiple stud-
ies have proven that dietary interventions can alter the 
composition of the gut microbiome. For instance, the 
standard Western diet (which is high in fat and carbo-
hydrates and low in fiber) could induce gut dysbiosis, as 
it causes an increase in Firmicutes, Proteobacteria, Mol-
licutes, Bacteroides spp., Alistipes spp., Bilophila spp., 
Enterobacteriaceae, Escherichia, Klebsiella, and Shigella 
while decreasing the abundance of beneficial bacteria 
Bacteroidetes, Prevotella, Lactobacillus spp., Roseburia 
spp., E. rectale, Bacillus bifidus and Enterococcus, lead-
ing to increased BA secretion and decreased down-
stream SCFA production [343–345]. Moreover, low-fat, 
high-fiber diets can improve the gut microbiome com-
position by shifting the microbiota composition toward 
and increase in the beneficial bacteria Prevotella and 
Bacteroides and a decreased in Firmicutes [346]. There-
fore, dietary regulation via the gut microbiota could be a 
promising clinical strategy to improve the efficacy of can-
cer treatment [347–352].

One clinical study that focused on the impact of the 
food-gut axis on the response to ICIs revealed a posi-
tive correlation between high-fiber diets and improved 
responsiveness to anticancer immunotherapy. Specifi-
cally, higher expression of genes related to T-cell acti-
vation and the interferon response were observed in 
the high-fiber diet group, which were likely induced by 

fiber-fermenting bacteria through the production of 
SCFAs [353].

A ketogenic diet, which is a high-fat, low-protein, 
and low-carbohydrate diet, is well known for its abil-
ity to inhibit lactate-mediated tumoral immunosup-
pression and tumor cell metabolism [354–356]. Ferrere 
et al. studied the efficacy of combining a ketone-rich diet 
with immunotherapy [357] and reported that supple-
mentation with ketone bodies could re-establish thera-
peutic responses when ICI treatment failed to reduce 
tumor growth on its own. A ketogenic diet could induce 
changes in the gut microbiota composition, leading to 
the expansion of CXCR3 + T cells and inhibition of the 
IFNγ-mediated upregulation of PD-L1 expression on 
myeloid cells.

Currently, many tentative clinical trials aimed at char-
acterizing diet-induced alterations in the gut microbiota 
and their possible effects on immunotherapy efficacy are 
underway to better understand their relationship (Addi-
tional file 1: Table S3).

Probiotics
Probiotics are defined as “live microorganisms which, 
when administered in adequate amounts, confer a health 
benefit to the host” [358]. Probiotics have been applied to 
prevent and treat multiple diseases [355–357] and specif-
ically for cancer, Lactobacillus spp. and Bifidobacterium 
spp. strains were capable of relieving dysbiosis, enhanc-
ing anticancer immunity, and improving ICI treatment 
efficacy in recent studies [359–362].

The utilization of single probiotic strains has yielded 
exciting therapeutic effects when combined with cancer 
immunotherapy. Bifidobacterium supplementation has 

Table 3 The latest FDA approved live microbiome therapeutic products

Microbiome 
therapeutic 
product name

Participants Trial design Group Results

Treatment 
success rates 
(after 8 weeks) 
(%)

Sustained 
clinical response 
(between 
8 weeks to 
6 months)

Adverse events The number of 
engrafting dose 
species (after 
8 weeks)

RBX2660 267 participants 
with rCDI were 
included, 180 
in RBX2660 group 
and 87 in Placebo 
group

1. A randomized, 
double-blind trial

RBX2660 70.6 92.1% 55.6% (after 
6 months)

–

2. Intention-to-
treat population 
used in statistical 
analysis

Placebo 57.5 90.6% 44.8% (after 
6 months)

–

SER-109 182 participants 
with rCDI were 
included, 89 
in SER-109 group 
and 93 in Placebo 
group

1. A randomized, 
double-blind trial

SER-109 87.6 – 51.1% (after 
8 weeks)

66

2. Intention-to-
treat population 
used in statistical 
analysis

Placebo 60.2 – 52.2% (after 
8 weeks)

56
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been shown to play a key role in improving ICI efficacy 
[22, 363]. The probiotics Clostridium butyricum and 
Lactobacillus rhamnosus, and antibiotic-resistant lactic 
acid bacteria may also improve the therapeutic efficacy 
of ICIs as they increase the number of beneficial bacte-
ria and reshape functional metagenomes [24, 364–366]. 
In terms of A. muciniphila, researchers have identified 
an IL-12-dependent mechanism by which A. muciniphila 
triggers the recruitment of CCR9 + CXCR3 + CD4 + T 
lymphocytes into the TME to increase the efficacy of 
ICI treatments [188]. Increased T-cell function was also 
observed in CTLA-4 mAb-treated patients adminis-
tered L.acidophilus. Zhuo et  al. [367] reported that ICI 
efficacy could be enhanced by increasing the abundance 
of CD8 + T cells and effector memory T cells, as well as 
by decreasing the abundance of Treg cells and M2 mac-
rophages in the TME.

Compared to single probiotic strains, a bacterial con-
sortium may better represent the collective properties of 
the gut microbiota. Tanoue et al. [368] applied a bacterial 
consortium containing 11 commensal strains in tumor-
bearing mice and identified a mechanism or enhancing 
ICI efficacy that was dependent on CD103 + DCs and 
major histocompatibility class Ia cells. A recent study val-
idated the use of probiotics as a stand-alone therapy for 
treating tumors, where a mix of four Clostridiales species 
could exert antitumor effects by activating CD8 + T cells 
and increasing the immunogenicity of tumors [369].

Nevertheless, there is conflicting evidence on the ben-
efits of probiotics marketed as dietary supplements [370]. 
Suez et  al. [371] identified a delayed reconstitution of 
the gut mucosal microbiota using an 11-strain probi-
otic cocktail. Inconsistent clinical results also exist of 
the agonist effects of probiotic strains and formulations 
in immunotherapy have also been reported [353]. More 
efforts are needed to gain a thorough understanding of 
the effects of probiotics on immune responses and cancer 
immunotherapy (Additional file 1: Table S3).

Prebiotics
A prebiotic is defined as a substrate that is selectively uti-
lized by host microorganisms to confer a health benefit 
[372]. Studies have shown that prebiotics can assist in 
promoting immunomodulatory effects, as well as stimu-
lating the gut barrier and enhancing metabolic functions 
[373].

Prebiotics may improve the immunomodulatory effects 
of ICIs by altering the adundance of SCFAs. Research-
ers have shown that natural prebiotics, such as bilberry 
anthocyanin, pectin, the plant polysaccharide inulin, and 
ginseng polysaccharides, modulate anti-PD-1 therapy. 
These prebiotics can increase the amount of beneficial 
SCFAs, which further induces systemic memory T-cell 

responses and increases T-cell infiltration and activation 
in the TME [289, 374–377]. Alternatively, artificial prebi-
otics such as AHCC® (a standardized extract of cultured 
Lentinula edodes mycelia) and castalagin also enhanced 
ICI efficacy by altering the gut microbiota composition 
and enhancing T-cell functions within the TME [378, 
379].

Engineered microbial products
With the development of genetic technology, engineered 
microbial products have attracted research interest 
worldwide. In contrast to the innate microbiota, these 
engineered microbes are designed to be sensitive to 
disease signals and respond to them at the site of onset 
[380]. They also contain bacteriophages, which modulate 
the composition of the gut microbiota.

To date, multiple reports have demonstrated the relia-
ble delivery of antitumor benefits by engineered bacterial 
strains in many different contexts [381–385]. Here, we 
discuss how these microbes could be applied as a com-
plement to anticancer immunotherapy. Binder et al. [386] 
demonstrated a powerful new therapeutic approach, that 
combines Salmonella typhimurium with PD-L1 blockade 
to activate the expansion of tumor-specific CD8 + T cells, 
resulting in the eradication of tumors. Similarly, Mkr-
tichyan et al. [387] observed an increase in CD8 + T-cell 
infiltration and antigen-specific immune responses in 
the periphery during anti-PD-1 immunotherapy after the 
administration of Listeria monocytogenes. These stud-
ies supported the hypothesis that microbes could indeed 
establish a more immunogenic microenvironment. 
Another approach to improve antitumor effects would be 
to enable metabolic modulation. Intertumoral injection 
of the Nissle 1917 E.coli strain increased the intracellu-
lar L-arginine concentration, triggered T-cell infiltration, 
and amplified the efficacy of PD-L1 blockade [388]. How-
ever, further technical refinements are still needed before 
the full-fledged clinical application of engineered bacte-
ria can be achieved [389].

The utilization of bacteriophages as microbe-target-
ing vectors to induce immunomodulation has attracted 
extensive research interest [290, 390]. Bacteriophages 
promote the eradication of cancer-promoting commen-
sals while maintaining their influence on the surround-
ing microbiota. A bacteriophage-guided, biotic–abiotic 
hybrid nanosystem could also provide precise phage 
release within the TME to accurately remove only pro-
tumoral bacteria. For instance, F. nucleatum-specific 
phages have been shown to augment the efficacy of ICIs 
as well as first-line chemotherapy treatments [391, 392]. 
Notably, studies have revealed that correlations between 
specific bacteriophages and bacteria appear to be associ-
ated with FMT outcomes [393, 394].



Page 19 of 31Li et al. Journal of Hematology & Oncology           (2024) 17:33  

These engineered microbial products are promising 
for immunotherapy development, and more studies are 
needed to explore their potential application.

Challenges and future perspectives
In this review, we systematically examined current stud-
ies on the intricate relationship between the gut micro-
biota and the host immune system. Given the dynamic 
interactions among the gut microbiota, its metabolites, 
and various cancer immunotherapies including ICI, ACT, 
and CpG-ODN therapy, future studies should focus on 
discovering the underlying mechanisms of this modula-
tory effect, in addition to investigating distinct microbi-
ota compositions. Recently, there has been accumulating 
evidence that the gut microbiota is a leading cause of 
irAEs in cancer immunotherapy. To minimize irAEs and 
improve immunotherapy safety, more studies are needed 
to develop novel interventions targeting commensal 
bacteria. Additionally, after reviewing the current thera-
peutic trials utilizing FMT, diet control, probiotics, prebi-
otics, and engineered microbial products combined with 
immunotherapy, we believe that there is still a tremen-
dous need to explore the design of personalized methods 
of microbiota modification and strategies to optimize 
therapeutic efficacy.

Recent research on microbiota-cancer immunotherapy 
interactions shares the common concern of heterogeneity 
in trial design [5], which can be attributed to the lack of 
a uniform methodology during sample allocation, tech-
nology utilization, data quality control, and data analysis. 
To address this issue, a consortium-level effort is needed 
to construct a standardized protocol specifying certain 
requirements for microbial specimen type and origin, 
sample handling environment, and microbiota bioin-
formatics analysis [395]. In addition to the study design, 
dynamic alterations in the gut microbiota and time-
dependent disease progression could also induce heter-
ogeneity [396, 397]. Therefore, consistent monitoring of 
the microbial composition throughout the disease course 
or exploration of the predictable patterns of micro-
bial communities needs to be incorporated as a part of 
study protocols [398]. A recent study developed a com-
putational method that exhibited promising potential 
for monitoring the dynamic alterations in gut microbes. 
This approach revealed the associations between drug 
exposure and the microbiome at high resolution, indicat-
ing the capacity to predict microbial changes and patient 
outcomes [399].

Moreover, the high degrees of biological inter- and 
intrapersonal variability of the gut microbiota imply that 
there is much more to learn in terms of individual heter-
ogeneity [400]. Emerging spatial multiomics tools, espe-
cially single-cell techniques, are invaluable in deciphering 

the heterogeneous configurations of individuals at the 
bacterial strain level [401, 402]. Despite the accumulating 
evidence of improved therapeutic outcomes in humans 
and preclinical model mice, there are still gaps in our 
knowledge regarding the modulating effects of the gut 
microbiota that hindering its clinical application. Most 
importantly, most studies have focused solely on observ-
ing the correlation between the gut microbiota and treat-
ment outcomes rather than exploring the existence of 
any causality. Because the gut microbiota functions as 
a whole, the impact of modifying individual bacterial 
strains may have different effects on the collective prop-
erties of the entire gut microbiota beyond an individual 
strain. To advance the current research from association-
based to mechanism-based, the application of synthetic 
biology in the human microbiota might be a critical tool 
[403, 404].

In terms of gut microbiota modification, more func-
tional studies and prospective clinical trials are needed 
to translate preclinical interventions targeting the gut 
microbiota into clinical applications in humans. One 
main challenge of applying experimental interventions 
in the clinic is that humans and animals do not share 
the same immune system. Another factor that cannot be 
ignored is differences in the gut microbiome composition 
and richness between rodents and humans. These limita-
tions have restricted the translation of preclinical studies 
focusing on the gut microbiota. Therefore, the construc-
tion and characterization of the human gut microbiota 
in  vitro could significantly improve the quality of indi-
vidualized immunotherapy [405]. Furthermore, in  situ 
genome engineering of the microbiota has also demon-
strated promising potential for the regulation of existing 
microbial communities, which suggests its future utiliza-
tion in the manipulation of cancer immunotherapy out-
comes [406].

In summary, our knowledge about the intricate rela-
tionships among the gut microbiota, the host immune 
system, and cancer immunotherapy are still limited. By 
combining artificial intelligence applications with the 
emerging advances we mentioned above [407], future 
research should provide further insights into the cross-
talk between the microbiota and clinical outcomes of 
immunotherapies, thus paving the way for the clinical 
application of gut microbiota interventions, as well as 
the development of personalized medicine for cancer 
management.
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