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Abstract 

Patients with cytogenetically normal acute myeloid leukemia (CN‑AML) may harbor prognostically relevant gene 
mutations and thus be categorized into one of the three 2022 European LeukemiaNet (ELN) genetic‑risk groups. 
Nevertheless, there remains heterogeneity with respect to relapse‑free survival (RFS) within these genetic‑risk 
groups. Our training set included 306 adults on Alliance for Clinical Trials in Oncology studies with de novo CN‑AML 
aged < 60 years who achieved a complete remission and for whom centrally reviewed cytogenetics, RNA‑sequencing, 
and gene mutation data from diagnostic samples were available (Alliance trial A152010). To overcome deficiencies 
of the Cox proportional hazards model when long‑term survivors are present, we developed a penalized semi‑para‑
metric mixture cure model (MCM) to predict RFS where RNA‑sequencing data comprised the predictor space. To vali‑
date model performance, we employed an independent test set from the German Acute Myeloid Leukemia Coopera‑
tive Group (AMLCG) consisting of 40 de novo CN‑AML patients aged < 60 years who achieved a complete remission 
and had RNA‑sequencing of their pre‑treatment sample. For the training set, there was a significant non‑zero cure 
fraction (p = 0.019) with 28.5% of patients estimated to be cured. Our MCM included 112 genes associated with cure, 
or long‑term RFS, and 87 genes associated with latency, or shorter‑term time‑to‑relapse. The area under the curve 
and C‑statistic were respectively, 0.947 and 0.783 for our training set and 0.837 and 0.718 for our test set. We identi‑
fied a novel, prognostically relevant molecular signature in CN‑AML, which allows identification of patient subgroups 
independent of 2022 ELN genetic‑risk groups.

Trial registration Data from companion studies CALGB 8461, 9665 and 20202 (trials registered at www. clini caltr ials. 
gov as, respectively, NCT00048958, NCT00899223, and NCT00900224) were obtained from Alliance for Clinical Trials 
in Oncology under data sharing study A152010. Data from the AMLCG 2008 trial was registered at www. clini caltr ials. 
gov as NCT01382147.
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To the Editor,

Patients with cytogenetically normal AML (CN-AML) 
comprise the largest cytogenetic subgroup, ranging from 
40 to 49% of all adult patients with AML [1]. CN-AML 
patients are heterogeneous clinically [2] and molecularly 
[3–8], which has led the European LeukemiaNet (ELN) 
experts to develop genetic-risk classification, in which 
the presence of select gene mutations serves as criteria 
allowing stratification of CN-AML patients into Favora-
ble, Intermediate, and Adverse genetic-risk groups [9]. 
Kaplan–Meier estimates typically demonstrate a long 
plateau that does not drop down to zero despite long 
follow-up, suggesting the existence of a subgroup of 
CN-AML patients who enjoy long-term relapse-free 
survival (RFS). In fact, it has been suggested that AML 

patients attaining 3-year RFS can be considered “poten-
tially cured” [10]. When a Cox proportional hazards 
model is applied to data that includes a cured subgroup, 
the hazard and the survival will not be accurately esti-
mated because the proportional hazards assumption is 
violated [11]. Thus, we used our regularized semi-para-
metric mixture cure model (MCM) to identify prognos-
tically relevant transcripts that can distinguish CN-AML 
patients cured from CN-AML patients susceptible with 
lower- or higher-risk of relapse.

We fit our penalized semi-parametric MCM to our 
training set, which included 306 adults aged < 60  years 
(range, 17–59) diagnosed with de novo CN-AML with 
RNA-sequencing data available and identified 112 genes 
associated with cure, that is, long-term RFS (Additional 
file  1: Table  S1) and 87 genes associated with latency, 

Fig. 1 Relapse‑free survival for the training set (A–C) and test set (D–F). A Kaplan–Meier curve for relapse‑free survival for the training set. B 
Kaplan–Meier curves for relapse‑free survival for the training set stratified by those predicted to be cured versus susceptible to relapse or death 
using the semi‑parametric penalized MCM. C Kaplan–Meier curves for relapse‑free survival for those predicted to be susceptible in the training set 
stratified by high versus low risk of relapse using the semi‑parametric penalized MCM. D Kaplan–Meier curve for relapse‑free survival for the test set. 
E Kaplan–Meier curves for relapse‑free survival for the test set stratified by those predicted to be cured versus susceptible using the semi‑parametric 
penalized MCM. F Kaplan–Meier curves for relapse‑free survival for those predicted to be susceptible in the test set stratified by high versus low risk 
of relapse using the semi‑parametric penalized MCM
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that is, shorter-term time-to-relapse (Additional file  1: 
Table  S2). As desired, for the training set the predicted 
cured group had a survival probability of 1 throughout 
the observation period, while the predicted susceptible 
group had an estimated survival curve that descended 
towards 0 (Fig.  1B). The two risk groups among those 
predicted to be susceptible were well separated (Fig. 1C). 
The 5-year area under the curve (AUC) and C-statistic 
both indicated good predictive ability of our MCM, at 
0.947 and 0.783, respectively.

Only eight of the 40 patients in the independent test 
set, GSE146173 [12], were predicted to be in the cured 
group though they had a high survival probability 
throughout the observation period, with exception of 
one death at approximately one year (Fig.  1E). Among 
patients predicted to be susceptible to relapse or death 
(thereafter referred to as susceptible), there was good 
separation between the lower- and higher-risk groups 
(Fig. 1F). The 5-year AUC and C-statistic for the test set 

both indicated good and relatively good predictive ability 
of our MCM, at 0.837 and 0.718, respectively.

Interestingly, for our training set, our MCM sepa-
rated patients predicted to be cured from those pre-
dicted to be susceptible in each of the three 2022 ELN 
genetic-risk groups: Favorable, Intermediate and Adverse 
(Fig.  2A–C). Despite the small sample sizes for our test 
set, when performing the same subgroup analyses, there 
were observable differences in RFS between patients pre-
dicted to be cured versus those predicted to be suscepti-
ble in all three 2022 ELN genetic-risk groups (Additional 
file 2: Fig. S1A, B); all patients in the 2022 ELN Adverse 
genetic-risk group were predicted to be susceptible 
with higher risk of relapse or death (Additional file  2: 
Fig.  S1C). Moreover, among patients in the training set 
predicted to be susceptible, RFS differed between those 
having higher and lower risk in each of the three 2022 
ELN genetic-risk groups (Fig. 2D–F). In the test set, RFS 
also differed between patients predicted to be susceptible 

Fig. 2 Training set RFS by 2022 ELN, cure status (A–C), and susceptibility to relapse (D–F). A Kaplan–Meier curves for relapse‑free survival 
for 2022 ELN Favorable risk patients in the training set stratified by those predicted to be cured versus susceptible to relapse or death using 
the semi‑parametric penalized MCM. B Kaplan–Meier curves for relapse‑free survival for 2022 ELN Intermediate risk patients in the training set 
stratified by those predicted to be cured versus susceptible using the semi‑parametric penalized MCM. C Kaplan–Meier curves for relapse‑free 
survival for 2022 ELN Adverse risk patients in the training set stratified by those predicted to be cured versus susceptible using the semi‑parametric 
penalized MCM. D Kaplan–Meier curves for relapse‑free survival for 2022 ELN Favorable risk patients predicted to be susceptible in the training set 
using the semi‑parametric penalized MCM, stratified by high versus low risk of relapse. E Kaplan–Meier curves for relapse‑free survival for 2022 ELN 
Intermediate risk patients predicted to be susceptible in the training set using the semi‑parametric penalized MCM, stratified by high versus low 
risk of relapse. F Kaplan–Meier curves for relapse‑free survival for 2022 ELN Adverse risk patients predicted to be susceptible in the training set using 
the semi‑parametric penalized MCM, stratified by high versus low risk of relapse
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having higher versus lower risk for 2022 ELN Favorable, 
Intermediate, and Adverse genetic-risk groups (Addi-
tional file 2: Fig. S2A–C).

Given that patients in the training set received similar 
treatment, the identified subgroups (cured, susceptible 
lower risk, susceptible higher risk) seem to have different 
sensitivities to 7 + 3-based therapy. Therefore, our work 
serves as a proof-of-principle that consideration of addi-
tional biologic features, such as expression profiles, have 
the ability to identify patients who have high likelihood of 
cure with our current standard of care. Thus, our strat-
egy may be useful for refining risk associated with CN-
AML patients by identifying those who might be cured 
with chemotherapy alone and those at higher risk for 
relapse or death who are in need of different treatment 
approaches. Future studies should test application of our 
model a prospective clinical trial and in patients receiv-
ing alternative therapies, including those targeting spe-
cific gene mutations in CN-AML.
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