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Conclusions: Our study indicates that Sf3b1
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Background: The presence of somatic mutations in splicing factor 3b subunit 1 (SF3B7) in patients with Myelodysplastic
syndromes with ring sideroblasts (MDS-RS) highlights the importance of the RNA-splicing machinery in MDS. We
previously reported the presence of bone marrow (BM) RS in 5f3b7 heterozygous (5f3b177) mice which are rarely found
in mouse models of MDS. 5367~ mice were originally engineered to study the interaction between polycomb genes

Methods: We used routine blood tests and histopathologic analysis of BM, spleen, and liver to evaluate the hematologic
and morphologic characteristics of Sf3b7"~ mice in the context of MDS by comparing the long term follow-up

(15 months) of 5377~ and Sf3b7** mice. We then performed a comprehensive RNA-sequencing analysis to evaluate
the transcriptome of BM cells from Sf361%~ and Sf3b17* mice.

Results: 5307~ exhibited macrocytic anemia (MCV: 495 + 16 vs 47.2 + 14; Hgb: 55+ 1.7 vs 7.2 + 1.0) and thrombocytosis
(PLTs: 9114+ 212.1 vs 8784 + 240.9) compared to 53b7** mice. BM analysis showed dyserythropoiesis and occasional
RS in Sf3b7~ mice. The splenic architecture showed increased megakaryocytes with hyperchromatic nuclei, and
evidence of extramedullary hematopoiesis. RNA-sequencing showed higher expression of a gene set containing Jak2 in

mice manifest features of low risk MDS-RS and may be relevant for

Background

Myelodysplastic syndrome (MDS) is a heterogeneous group
of hematopoietic stem cell disorders characterized by per-
ipheral blood (PB) cytopenias, dysplastic bone marrow
(BM), and increased risk of transformation to acute mye-
loid leukemia (AML). Within MDS, refractory anemia with
ring sideroblasts (RARS) is a low-grade disease character-
ized by anemia, erythroid dysplasia, and the presence of
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15% or more RS [1]. Some patients with RARS also present
with marked thrombocytosis (RARS-T), a form of myelo-
dysplastic/ myeloproliferative neoplasm (MDS/ MPN) asso-
ciated with mutations in JAK2, TET2, and MPL genes [2-5].
The presence of RS is a key pathologic criterion for the
diagnosis of both RARS and RARS-T. RS are erythroblasts
with an abnormal localization of mitochondrial iron which
appears in the shape of a blue ring by light microscopy.
Studies investigating the mechanisms of RS formation in
MDS implicated the mitochondrial genes ALAS2 and
ABCB?7 based on the gene expression differences detected
in CD34-positive cells of RARS and RARS-T patients com-
pared to healthy individuals [6,7]. The discovery of recur-
rent somatic mutations in splicing factor 3b, subunit 1
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(SF3B1), a component of the RNA splicing machinery in
approximately 60% of RARS and 82% of RARS-T patients
opened a new area of study in MDS [8-12].

SF3BI is a core component of the U2 small nuclear ribo-
nucleoprotein (U2 snRNP). The function of SF3BI is to
recognize the 3 splice site at the intron-exon boundaries of
pre-nascent RNAs. SF3B1 protein interacts with the 3'-
splice-site recognition of U2AF65 and other splicing factors
such as SF3B14 to facilitate the successive steps of RNA spli-
cing [13,14]. Although SF3BI has been associated with MDS-
RS, the biological role and the functional consequences of the
genetic alterations in this gene on the pathogenesis of MDS-
RS have not been fully elucidated. We previously reported
that a mouse model characterized by Sf3b1 haploinsufficiency
(Sfb’bl*/ ") have RS in the BM [15]. Isono et al. generated the
SF3BI*"~ mice by replacing 4 exons of Sf3bI (chromosome
1qC1.2) with a neo-cassette to investigate the interaction of
Sf3b1 protein with the polycomb group of proteins. In 2005,
they reported that Sf3h1”~ mice were embryonic lethal
whereas Sf3h1*'~ mice survived and exhibited several skeletal
abnormalities [16]. However, the long-term dynamics of the
hematologic phenotype of this mouse model was not ana-
lyzed. The diagnosis of human MDS is strictly based on
blood counts, BM morphology, and cytogenetic criteria. Simi-
larly, the criteria established by the Mouse Models of Human
Cancers Consortium are also only weighted on PB counts
and morphologic features. It is for this reason that we focused
our investigation on the long term PB and BM morphologic
characteristics of Sf3b1*'~ mice to help establish if this mouse
model displays features of MDS and can therefore serve as a
robust mouse model to study human RARS and RARS-T
and a platform to test new therapies.

Results

Genomic analysis of Sf3b7 mice

Embryos of the S$f3b1 mice were purchased from RIKEN.
Mating of Sf3b1 mice was conducted in-house at the
Cleveland Clinic. All procedures were approved by the
Institutional Animal Care and Use Committee (IACUC)
of the Cleveland Clinic.

None of the Sf3b1"~ or Sf3b1*"* mice died immediately
after birth and no obvious skeletal abnormalities were noted.
There were no reported early deaths in either cohort. A total
of 78 mice were analyzed (Sf3h1*'~/Sf3b1*"* = 33/45). There
were no homozygous Sf3b1~"~ mice. Tissues from tail and
toes were taken in the first 10 days of life and used as a
source of genomic DNA. PCR analysis showed that Sf3b1%'~
mice carried 2 PCR products: a wild type (WT) band at
1.5 kb and knock-out (KO) band at 0.9 kb as shown for
mice # 1, 2, 4, and 7 in Additional file 1: Figure S1.

Hematologic findings of $f3b7%~ mice
Mouse models of MDS demonstrate specific features re-
sembling human MDS disease albeit at variable time points
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[17]. This fact underlines the importance of long term
follow-up of mouse models to accurately capture disease-
related events. We examined the standard hematologic pa-
rameters of Sf3bI""~ (n=5) and Sf3bI"* (n=5) starting
from 6 months of age every month. After 6 months of age,
fertility of breeding pairs dropped dramatically. No progeny
was produced by mice of this age or older. The mechanism
for this decline is unclear at present and it is under active
investigation.

In terms of MCV, the Sf3b1*~ mice have a higher MCV
compared to Sf3b1*'* at 6 (46.72 fL +1.32 vs 44.98 fL +
2.32) to 12 months (49.50 fL +1.58 vs 47.68 fL + 1.40)
of age. Levels of statistical significance were reached at 7
(P=0.047) and 10 (P = 0.031) months of age (Figure 1A).

In terms of Hgb levels, Sf3b1*'~ mice tend to have lower
values compared to Sf3b1"'* at 6, 8, 9, 11, and 12 months
of age. Statistically significant difference was noted
at month 11 (6.97 g/dL +1.60 vs 10.04 g/dL +0.73; P=
0.008) of age (Figure 1B). As expected, the trend of the
RBC values paralleled the trend of the Hgb levels with
statistical significance being reached at 11 (5.96 M/ulL +
1.02 vs 8.28 M/uL + 0.48; P =0.008) and 12 (4.52 M/uL +
130 vs 6.09 M/uL+0.82; P=0.027) months of age
(Figure 1C). PLT counts increased at month 6 until month
12 of age with a significant difference at month 10 (731 K/
uL +105.36 vs 579 K/uL +92.66; P =0.008) (Figure 1D).
We also observed that after 12 months of age, some of the
mice (n=3) started to show a decline in overall activity
characterized by reduced movements and difficulty walk-
ing which culminated in death a few weeks later. Two of
the deaths were in the Sf3BI*'* group while 1 occurred in
the Sf3b1*'~ cohort.

Since somatic heterozygous mutations in SF3B1 were
also identified in a specific cohort of chronic lymphocytic
leukemia (CLL) patients [18] we also measured and ana-
lyzed the leukocyte counts of the mice. The leukocyte
compartment was primarily enriched with lymphocytes.
However, the values were variable over time in both mice
groups (data not shown). Moreover, mast cells were also
evaluated in BM cells derived from Sf3b1*~ (n=2) and
Sf3bI1*"* (n=2) by performing immunohistochemistry for
CD117 (c-Kit) (Additional file 2: Figure S2). Mast cells
noted as CD117 positive cells were rare and scattered and
no difference was detected between both groups.

Histological examination of bone marrow, spleen, and
liver

We first examined and compared the BM cellularity be-
tween the Sf3b1*~ and Sf3bI*"* mice. H&E stain showed
trilineage hematopoiesis with an adequate number of
megakaryocytes in both groups of mice (Additional file 3:
Figure S3, panel A). No difference in the number of BM
cells was also observed at the end of the study between
Sf3b1*'~ and Sf3bI""* mice (57.9+9.5 vs. 60.2 + 8.4
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Figure 1 Hematologic parameters in Sf3b71*"~ compared to Sf3b1** mice. Complete blood cell count (CBC) was measured during long-term
follow-up of SAB1Y" (n=5; Female/Male = 3/2) and S3b1"" (n = 5; Female/Male = 3/2) mice. Blood was taken every month and measured using a
are indicated in white and Sf3b7
mean + standard deviation for mean corpuscular volume (MCV) (A), hemoglobin (Hgb) (B), red blood cells (RBC) (C) and platelets (PTL) (D).

*Indicates a significant difference (P < 0.05). **Indicates a significant difference (P < 0.01). -//- indicates the interval between 0 and 6 months of age.
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*~in black bars, respectively. Data are presented as

P =0.74) (Additional file 3: Figure S3, panel B). We next ex-
amined the morphology of BM cells derived from Sf3b1%'~
and Sf3b1*"* mice. BM (2-3 x 10°) cells were spotted on
cytospin slides and stained with Wright-Giemsa. BM cells
from Sf3b1""showed dyserythropoietic features including
nuclear budding or nuclear irregularity (Figure 2, red ar-
rows) similar to what is observed in human MDS. Similar
features were also noted in slides stained with Prussian blue
(Additional file 4: Figure S4, black arrows). We originally
reported the presence of rare RS in BM slides from
Sf3b1*'~ mice [15]. We confirmed this observation by per-
forming Prussian blue staining on fresh BM cytospin slides
and finding occasional RS (Figure 3, black arrows) in the
BM of Sf3b1*~ mice while BM cells from Sf3b1"* only
showed iron accumulation in histiocytes. RS were noted in
several BM slides as shown in Additional file 5: Figure S5,
black arrows.

The spleen and liver from both groups of mice were also
dissected, measured, and histopathologically examined at
the end of the study. Spleen and liver weights were com-
pared between Sf3b1"~ (n =4) and Sf3b1** (n=3) (0.10 +
0.02 vs. 0.08+0.01; P=0.08; 1.13+0.15 vs. 1.36 +0.21;
P =0.14). Microscopic examination of the spleen tissues

showed significant expansion in the red pulp of Sf3b1*/"
mice with finding of extramedullary hematopoiesis (EMH)
with hematopoietic elements, increased megakaryocytes
with hyperchromatic nuclei, increased hemosiderin de-
posits and signs of fibrosis (Figure 4) but no hepatomegaly
or microscopic abnormalities in the liver were noted
(Additional file 6: Figure S6).

RNA-sequencing analysis showed overexpression of Jak2
and other hematopoietic-related gene sets

We performed RNA-sequencing to characterize and com-
pare the transcriptome profile of BM cells derived from 2
female Sf3b1*'~ and 2 female Sf3b1*"* mice. Total 100-bp
reads (mapped to mm10 genome reads) in millions for the
four mice were 35.54 (22.29), 31.18 (18.50), 35.07 (21.09)
and 48.48 (26.28), of which 17.69, 15.54, 16.70 and 22.52
million reads, respectively, mapped to 20,207 mouse genes.
After filtering by gene intensity, 17.67, 12.46, 16.67 and
22.49 million reads, respectively, mapped to 10,330 genes.
Global gene level differential expression analysis of these
10,330 genes did not find any significant differential ex-
pression in Sf3b1"'~ compared to Sf3b1""* mice (Additional
file 7: Table S1). The target gene Sf3b1 showed evidence of
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Figure 2 Bone marrow morphology in Sf3b1*'~ compared to Sf3b1*"* mice. Bone marrow (BM) cells were extracted by flushing femurs of
S361*7 (n=5) and SBLT™* (n=5) in media supplemented with 10% fetal bovine serum. Cells (2-3 x 10°) were washed and spotted on cytospin
slides prior immersion in buffered Wright-Giemsa staining solution. Budding and irregular nuclei are indicated in red arrows and are also magnified in
the right quadrants. This feature was also observed in slides of BM cells from Sf3b7"~ mice subjected to iron staining (Additional file 4: Figure S4).

The image is presented for 1 Sf3b1+/- mouse.
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Figure 3 Detection of ring sideroblasts by Prussian blue staining in Sf3b7*/~ compared to Sf3b7*/* mice. Bone marrow cells were extracted
from femurs of SB617~ (n=5) and ST+ (n=>5) and cells (2-3x10%) spotted on cytospin slides prior staining with Prussian blue. Ring sideroblasts
(RS) were detected in 5367~ compared to Sf3b7"* mice. Images were taken from 2 mice per group. RS were also detected in additional mice as

shown in Additional file 5: Figure S5.
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Figure 4 Histology of splenic tissues of Sf3b7™"~ compared to Sf3b

PBS and embedded in paraffin. Sections were stained with Haematoxylin—Eosin and showed extramedullary hematopoiesis with all 3 hematopoietic
elements, increased megakaryocytes with hyperchromatic nuclei (black arrows), increased hemosiderin deposits (blue arrows) and evidence of fibrosis.
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mice. Spleens from Sf387%~ and Sf3b7** mice were fixed in 4% formaldehyde/

down-regulation [fold change (FC) = 0.75; P = 0.075, rank =
309] in Sf3b1*'~ vs Sf3b1*"* mice. Since this $f3b1*'~ mouse
model was originally developed to study the interaction of
Sf3b1 protein and proteins of the polycomb (PcG) complex,
we also evaluated the status of known PcG genes, finding a
trend towards lower mRNA levels of Ezh2 (FC =0.02; P =
0.185, rank = 1387). We also found higher mRNA levels of
Bmil (FC = 1.69; P = 0.138, rank = 471), a component of the
PcG repressive complex, which is involved in axial skeletal
development. This is likely a consequence of repression of
the Hox genes. Bmil has been associated with progressive
loss of proliferative capacity of hematopoietic stem cells
and anemia. In addition, gene expression analysis of genes
important in MDS pathogenesis showed weak evidence for
lower mRNA expression levels of Npml (FC=0.01; P=
0.184, rank =1363) and no evidence of changes for Asxl1
and Runxl (FC=1.25; P=0.296 and FC =1.21; P=0471)
in 31"~ vs Sf3bI™*.

Because in human MDS, SE3BI clones are found in
early hematopoietic stem cells, [19] we interrogated gene
sets and genes related to hematopoietic stem cell function
and signaling. In total 39 gene sets were selected from the
MSigDB c2 collection (gene set results in Additional file 8:
Table S2; gene results for members of the gene sets in
Additional file 9: Table S3) and showed that hematopoietic

receptors mainly expressed in myeloid cells like Treml
and transcriptional factors involved in hematopoietic
development like Ptsg2 (Cox2) were over-expressed
in Sf3b1"'~ (FC=2.80, P=0.011 and 2.43, P =0.028).
Thrombospondin-1 (Thbsl), a glycoprotein involved in
the in-vitro proliferation of megakaryocytes was also one
of the highest ranked genes and was found to be over-
expressed (FC=2.67, P=0.008). Haploinsufficiency of
Nr4al and Nr4a3, two nuclear receptors expressed in
hematopoietic stem and myeloid cells, has been shown to
cause MDS/MPN and leukemic evolution in mice [20].
In patients with MDS carrying SF3B1 mutations, the
risk of AML transformation is less compared to those
with WT SF3BI. In this study, Nr4al was found to be
over-expressed in Sf3b1"'~ mice compared to Sf3b1"'*
mice (FC =2.29, P =0.038) but Nr4a3 was not detected.
We also observed some evidence of down-regulation in
Sh2b3 (Lnk) and Calr in Sf3b1"'~ (FC=0.22, P =0.261
and FC=0.33, P=0.193) compared to Sf3bI*'* mice.
Mutations in both genes have been found in human
MPNs . In addition, a Stat5 target gene set showed some
evidence of increased expression in Sf3b1"'~ mice (gene
set P =0.064).

From our global gene set analysis of collections cl
through c7, we found 1 significant gene set in the human
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chromosomal location collection (c1), chr9p24 (gene set
P =0.00032). This gene set contained Jak2 and showed
higher expression in Sf3b1"'~ compared to Sf3b1"'*
mice. We also evaluated genes associated with mito-
chondrial function (Abcb7, Alas2, and Sod2), which
may possibly explain the anemia phenotype in Sf3b1"/~
mice. Only Abcb7 showed a weak evidence of increased
expression in Sf3b1*'~ mice (FC = 1.58, P = 0.096).

Discussion

MDS is a heterogeneous disease with a variety of clinical,
morphologic, and biological features. Mouse models may
provide helpful insight into the mechanisms whereby spe-
cific genetic alterations can contribute to disease patho-
genesis and can serve as platforms to study therapies that
may be useful to treat these diseases. In MDS, the Human
Cancer Consortium Mouse Model Group established the
set of criteria that defines a MDS mouse model. There are
3 main criteria including the presence of at least one PB
cytopenia (anemia, neutropenia or thrombocytopenia),
the presence of a maturation arrest in a non-lymphoid
hematopoietic component demonstrated in the form of
dysplasia, and the absence of criteria of a non-lymphoid
leukemia [17,21]. Here we report the hematologic and
some of the biologic characteristics of a mouse model with
Sf3b1 haploinsufficiency. The Sf3b1*'~ mice demonstrated
macrocytic anemia, thrombocytosis, dyserythropoiesis, RS
and EMH in the spleen. These are findings clinically and
pathologically observed in human RARS and RARS-T.
We also observed that PLT levels were increased and the
spleen was enlarged as demonstrated by EMH in Sf3b1*"
which are important clinical features of RARS-T patients.
In humans, somatic mutations in JAK2 have been associ-
ated with disorders characterized by increased number of
PLTs like RARS-T and related MPNs [5]. Patients with
JAK2 mutations are also frequently found to have an en-
larged spleen and an evidence of EMH. Definitive evi-
dence of RS in erythroid precursors were once again
consistently identified although in small numbers in the
Sf3bI*"~ and not in the Sf3h1** mice supporting our ini-
tial report that demonstrated rare RS in this mouse model.
Somatic mutations in SF3B1 have also been found in 7-
15% of CLL patients and associated with aggressive phases
of the disease, relapsed and chemorefractory CLL [18].
The link between SF3BI mutations and CLL pathogenesis
remain unclear. In MDS, mutations have been associated
with a better survival outcome and a lower rate of AML
transformation. Interestingly, we noticed an enrichment of
the lymphocyte compartment in our mouse model al-
though the increase was variable over time. Studies of Sf3b1
haploinsufficiency identified a reduction of hematopoietic
stem cell pool confined in the myeloid compartment. Our
data differ from a recent paper where Sf3b1*'~ haploinsuffi-
ciency appears to only lead to an impairment in the stem
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cell function but does not lead to MDS features in the same
mouse model [22]. Matsunawa et al. investigated the
functional role of §f3b1 in normal hematopoiesis in this
mouse model describing that besides a decrease in the
number of hematopoietic cells and a reduced capability
of hematopoietic reconstitution, no features of MDS were
observed. Based on their results there was no change in
the number of WBC and PLTs and in the content of Hgb
up to 44 weeks (Additional file 1: Figure S1, panel A) [22].
Morphologically, Matsunawa et al. did not detect any RS
and any change in spleen size by weight estimation.
Although, the same mouse model was used, there are key
differences in the methodology that significantly affected
the outcomes of both studies. Our current study aimed to
study specifically the morphologic features of this mouse
model using conventional routine techniques used in the
assessment of clinico-pathologic features of human MDS
and MPN and during long term follow-up. This is an im-
portant difference since some mouse models exemplified
by Sall4 (14.5 months), Evil/Evilt (12 months), NPM-1
(6—18 months) and Arid4a (12—22 months) did not show
their respective phenotypes until the mouse models were
much older and had longer follow-up [17]. This is in keep-
ing with human MDS, where the vast majority of patients
are diagnosed at an elderly age with a median age of diag-
nosis of 71 years old [23]. Next Matsunawa et al. did not
analyze specifically the dysplastic morphologies and no
images of cellular morphology of the BM aspirates have
been shown. The tabulated hematologic results presented
in their study showed a lower percentage of erythroid cells
in Sf3b1*~ mice compared to Sf3bI*"* further supporting
our findings (P =0.07). The histomorphologic features of
the spleen, a frequently affected organ in human RARS-T
were also not studied in the prior study. Our study showed
that the spleen of the Sf3b1*/~ was not just enlarged but
displayed architectural changes consistent with EMH akin
to patients with human RARS-T. The RNA-sequencing
results also support the fact that $f3b1"'~ mice have a pat-
tern more close to low rather than to high-risk MDS. In
human MDS, ASXL1 mutations have been found enriched
in patients with high-risk rather than in low-risk MDS and
are correlated with unfavorable outcomes and AML trans-
formation. In addition patients with ASXLI mutations
carry concomitant RUNXI mutations and lower incidence
of SF3BI mutations [24]. Studies in mice showed that
Asxl1 haploinsufficiency leads to a reduced hematopoietic
stem cell pool, decreased hematopoietic repopulating
capacity, and mild features of MDS [25]. On the same
line, mice expressing the RUNXI frameshift mutation
(S291fs) develop signs of MDS including excess of blasts
and dysplasia of the erythroid compartment [26]. In our
mouse model, we observed minimal changes in the
expression levels of both Asx/I and RunxI, factors trad-
itionally associated with more inferior outcomes in
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patients with MDS further supporting the natural his-
tory of human RARS-T probably due to the fact that
Sf3b1""~ mice do not manifest a late stage higher risk
MDS disease. Indeed we did not observe any increased in
blasts percentage and any sign of AML development des-
pite the long term follow-up.

Our clinicopathologic results are further supported by
RNA sequencing analysis where we found an over-
expression of Jak2 and a down-regulation of Sh2b3 and
Calr mRNA levels consistent with what is observed in
human RARS-T. In regards to RS we consistently iden-
tified RS in the BM of these mice by using two blinded
independent hematopathologists and this is unlikely to
be simply a matter of chance. Lastly, using the guide-
lines established by the hematopathology subcommittee
of the Mouse Models of Human Cancers Consortium,
[17,21], it clearly shows that this mouse model fulfills
the criteria for an MDS mouse model (Additional
file 10: Figure S7).

Conclusions

In conclusion, our current data show that Sf3b1 haploin-
sufficiency in mice causes biological and morphological
features resembling low risk MDS patients with RS spe-
cifically RARS and RARS-T opening the possibility that
this mouse model can be helpful in testing therapeutic
approaches in low risk MDS.

Methods

Mice

All procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) of the Cleveland Clinic.
Sf3b1*'~ mice were originally developed by Isono et al. [16]
Cryopreserved embryos of Sf3b1*'~ mice were purchased
from Dr. H. Koseki and Dr. K. Isono from the Center for
Integrative Medical Sciences (IMS) RIKEN (Japan) in early
2012. Embryos were successfully implanted in foster
mothers and rederived mice were genotyped.

Genotyping

DNA derived by tail and toe clippings was extracted using
a Puregene Core kit A (Qiagen, Valencia, CA) following
the manufacturer’s instruction. DNA (100 ng) was used for
PCR amplification using 3 sets of primers: primer #1 [spe-
cific for the neo gene (5° GCGTGCAATCCATCTTG)],
primer #2 [specific for $f3b1 (5 AAGAATTCGTCATT
GACACTTTTCA)], and primer #3 [specific for Sf3b1 (5
GACTGAGCTCAGATAACATG)]. PCR conditions were:
initial denaturation at 98°C for 1 min, 35 cycles (94°C for
1 min, 60°C for 1 min, 72°C for 2 min) and a final exten-
sion at 72°C for 7 min. PCR products were resolved on
1.2% agarose gels. Gel micrographs were acquired using a
Quantity One 1D-analysis software (Bio-Rad Laboratories,
Hercules, CA).
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Long-term evaluation of Sf3b7*~ mice

A total of 5 Sf3b1*'~ (3 females/ 2 males) and 5 Sf3b1*'*
(3 females/ 2 males) were maintained on a regular diet.
Blood was collected by retro-orbital puncture in hepa-
rinized tubes every month. Blood was diluted 1:1 with
PBS containing 2.7 mM EDTA and standard blood pa-
rameters [leucocyte counts, mean corpuscular volume
(MCV), red blood cells (RBC), hemoglobin (Hgb), and
platelets (PLTs)] were measured using a Hemavet 950 FS
analyzer (Drew Scientific Incorporation, Dallas, TX).
Mice were sacrificed at the endpoint of the study and
tissues were collected as following: femurs from 2 mice
per genotype were submitted for hematoxylin and eosin
(H&E) stain, BM from all mice was flushed with Iscove’s
Modified Dulbecco’s media plus 10% fetal bovine serum
using a 25-gauge needle syringe from femurs and evalu-
ated for cell count using a Vi-Cell™ XR cell viability
analyzer (Beckman Coulter, Brea, CA). The spleen and
liver were also fixed in 4% formaldehyde/PBS and
stained with H&E.

Histomorphological analysis and Prussian blue staining
BM cells from femurs of Sf3b1*'~ and Sf3bI*"* mice were
flushed with Iscove’s Modified Dulbecco’s medium supple-
mented with 10% fetal bovine serum (FBS). Cells (2x10°)
were washed once with PBS supplemented with 2% FBS
and spotted on cytospin slides before Wright-Giemsa and
Prussian blue stains were performed using standard his-
topathology staining procedures. Spleen and liver from
Sf3bI*"~ and Sf3bI""* mice were fixed in 4% formalde-
hyde/PBS and embedded in paraffin before H&E staining.

RNA Sequencing (RNA-Seq) analysis

Mapping

Total RNA was extracted from whole BM of 6-month-old
female Sf3b1"~ (n=2) and Sf3bI""* (n=2) mice using
NucleoSpin RNA II (Clontech Laboratories). PolyA cDNA
was prepared from 3 pg of RNA and mouse RNA-
sequencing was run on Illumina HiSeq2000 by Otogenetics
(Norcross, GA). 100 basepair paired-end RNA-sequencing
reads were mapped to the mm10 RefSeq mouse transcrip-
tome and spliccome by DNAnexus (http://dnanexus.com)
using a Bayesian method where a read was mapped when
its posterior probability of mapping exceeded 0.9. These
filtered posterior probabilities were summed to generate
fractional read counts per gene and per exon, with prob-
abilities from splice-junction spanning reads counted for
each relevant exon. We used rounded gene and exon read
counts as inputs for our differential expression analyses.

Differential gene expression analysis

We used TMM [27] normalization and the voom-limma
approach [28] from the R package limma version 3.17
with R version 3.0.1 in order to perform differential gene
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expression analysis for Sf3b1%'~ versus Sf3bI*"* samples.

Before testing, we dropped all genes with read counts per
million reads less than or equal to 1 in at least 2 samples
to improve testing power while maintaining type I error
rates. We used the ImFit function with empirical Bayes
shrinkage to estimate fold changes, p-values and adjusted
p-values obtained using the Benjamini-Hochberg method
[29] for each filtered gene under the null hypothesis of
common expression intensity across groups. Genes with
adjusted p-values less than 0.10 were declared significant.

Differential exon usage analysis

We used the R package DEXSeq, version 1.6 (http://www.
bioconductor.org/packages/release/bioc/html/DEXSeq.html),
to perform differential exon usage analysis of Sf3b1*'~ ver-
sus Sf3b1""* samples. DEXSeq uses a negative binomial
(NB) distribution to model the exon read counts and
shrinkage estimators to estimate the per-exon NB disper-
sion parameters. We defined a testable exon as one that
had a total sum of at least 8 mapped reads across samples
and was in a gene with no more than 70 exons. Before
exon usage testing, we dropped any exons that were not
testable or were in genes with less than 2 testable exons to
improve testing power while maintaining type I error
rates. We used the testForDEU function, which compares
deviances from generalized linear model fits (assuming
NB likelihood) to a chi-squared reference distribution, to
estimate p-values and adjusted p-values obtained using
the Benjamini-Hochberg method for each exon under
the null hypothesis of common usage across groups.
Exons with adjusted p-values less than 0.10 were con-
sidered significant. Logarithm base 2 fold changes
(Sf3b1"'~/ Sf3b1*'*) for each exon were estimated using
the function estimatelog2FoldChanges.

Gene set differential expression analysis

We used CAMERA [30], Competitive Gene Set Test
Accounting for Inter-Gene Correlation approach, as imple-
mented in the camera function from the R package limma
version 3.17.17, on TMM normalized and voom weighted
expression data to test whether a set of genes was highly
ranked relative to other genes in terms of differential ex-
pression, accounting for inter-gene correlation. We mapped
mouse gene symbols to human gene symbols using the
MGI mouse to human homology mappings (http://www.
informatics.jax.org/homology.shtml). We used the MSigDB
database [31] version 4.0 (http://www.broadinstitute.org/
gsea/msigdb/index.jsp), gene set collections c1 through c7
in our gene set analyses. For each MSigDB collection of
gene sets, we ran the camera function to estimate p-values
for the competitive null hypothesis that the genes in the
tested gene set didn’t show stronger average differential ex-
pression relative to all tested genes not in the gene set. Ad-
justed p-values were calculated on the gene-set p-values
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per collection using the Benjamini-Hochberg method to
control for the number of gene sets tested within a collec-
tion. Any gene sets with adjusted p-values less than 0.10
were declared significant.

Statistical analysis

Comparison of hematologic parameters between Sf3b1*'~
and Sf3bI1""* mice were analyzed using two-sample
Wilcoxon signed rank test and presented as mean + standard
deviations. Statistical analyses were performed using R
(www.r-project.org). Data were considered statistically sig-
nificant if the P value was < 0.05.

Additional files

Additional file 1: Figure S1. Genotyping of wild type (53b7"*) and Sf3b1
haploinsufficient (S3b777) mice. Genomic DNA was extracted from tails and
toes of Sf3b7 pups after rederivation and subjected to PCR amplification by
using specific primers as described in Methods. Examples of S367"~ mice
(#1, 2,4, and 7) identified by the presence of amplicons corresponding to wild
type (WT: 1.5 Kb) and knock-out (KO: 09 Kb) alleles on a 1.2% agarose gel.
Lane marked with MM indicates TKb Plus DNA ladder.

Additional file 2: Figure S2. 53b1*~ have no difference in the mast
cell compartment compared to Sf3b7%* mice. Immunohistochemistry
(IHC) was used to evaluate the presence of mast cells in 53677~ (n=2)
and S3b1™* (n = 2). Bone marrow cells (5 x 10°) were spotted on
cytospin slides and IHC for CD117 (c-Kit) was performed.

Additional file 3: Figure S3. 5f3b77/~ mice have no difference in bone
marrow cellularity compared to Sf3b77* mice. (a) Hematoxylin/eosin
(H&E) was performed on bone marrow (BM) cells (3-5 x 10°) from
SFb1T™ (n=3) and Sf3b1"* (n = 3). An H&E representative image
showed normal trilineage hematopoiesis and no changes in BM
cellularity in both groups of mice. (b) A bar graft shows mean + standard
deviations of the number of BM cells at the end of the follow-up between
SBbIY" (n=4) and SBLT™* (n=3) mice.

Additional file 4: Figure S4. 53617/~ mice have dyserythropoietic
features in the bone marrow. Bone marrow (BM) cells (3-5 x 10°)
were spotted on cytospin slides and iron stain (Prussian blue) was
performed according to common pathology stain’s protocols.

A representative image taken by light microscopy shows that BM
cells from Sf3b1%~ showed specific dyserythropoietic features such as
nuclear budding or nuclear irregularity (black arrows) that were not
seen in Sf3b1%~ mice.

Additional file 5: Figure S5. 5f3b77~ mice have ring sideroblasts in the
bone marrow. Iron stain (Prussian blue) was performed on bone marrow
(BM) cells (3-5 x 10°) derived from Sf367™~ and Sf3b7™* mice. Images taken
by light microscopy show presence of ring sideroblasts (black arrows) in the
BM of S3b17~ (n = 3) and absence in $3b1%* (n=2) mice.

Additional file 6: Figure $6. 5f3b7"~ mice do not have any liver
abnormalities. Representative images from Hematoxylin & Eosin stain of
liver sections from 2 Sf3b1%/~ and 2 Sf3b1** mice show absence of
hepatomegaly or abnormalities in the liver.

Additional file 7: Table S1. Differential gene level between $f3b71%~
and Sf3b7"* mice. The expression level of all genes is presented as mean
fold change between Sf3b1%/~ and S361** mice. In total 10330 genes
were found in the comparison Sf3b7%~ versus Sf361%* mice.

Additional file 8: Table S2. Comparison of hematopoietic-related gene
sets between Sf3b7%~ and Sf3b7"* mice. Gene set analysis shows
hematopoietic —related genes between both groups of mice.

Additional file 9: Table S3. Gene clustered in hematopoietic-related
gene sets between Sf3b7"~ and 537"+ mice. The genes related to the
specific gene set are summarized.
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Additional file 10: Figure S7. 5f3b7"" mice have features of low risk
Myelodysplastic syndrome with ring sideroblasts. A table illustrating the
criteria established by the hematopathology subcommittee of the Mouse
Models of Human Cancers Consortium establishing the myeloid dysplasia
in mice. The table has been adopted by Beachy, SM et al. (Hematol Oncol
Clin North Am 2010) to summarize all the criteria and it shows the
specific features harbored by the S361*~ mice (red color).

Abbreviations

SF3B1: Splicing factor 3b, subunit 1; MDS: Myelodysplastic syndromes; MDS/
MPN: Myelodysplastic/ Myeloproliferative neoplasms; AML: Acute myeloid
leukemia; MCV: Mean corpuscular volume; PLTs: Platelets; WBC: White blood
cells; Hgb: Hemoglobin; RBC: Red blood cells; RS: Ring sideroblasts; BM: Bone
marrow; EMH: Extramedullary hematopoiesis; JAK2: Janus kinase 2; TET2:
Ten-eleven translocation-2; MPL: Myeloproliferative leukemia virus oncogene;
ALAS2: Aminolevulinate, Delta-, Synthase 2; ABCB7: ATP-binding cassette,
sub-family B (MDR/TAP), Member 7; U2AF65: U2 small nuclear RNA auxiliary
factor 2; SF3b14: Splicing factor 3B, 14 kDa subunit; EZH2: Enhancer of zeste
homolog 2; RARS: Refractory anemia with ring sideroblasts; RARS-T: Refractory
anemia with ring sideroblasts and marker thrombocytosis; PCR: Polymerase
chain reaction; H&E: Hematoxylin & Eosin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

W designed the study, performed the experiments, analyzed the data and
wrote the manuscript; AT performed experiments and edited the manuscript;
LZ performed statistical analysis; YP performed experiments and provided
technical expertise; EH and RM performed experiments and edited the
manuscript; KI and HK provided embryos of S/3b7 mice; MAS, and YS edited the
manuscript; JB analyzed RNA-sequencing data; DL provided expertise on mouse
model and edited the manuscript; HIR interpreted the data and edited the
manuscript; RVT designed the study, analyzed the data, interpreted the results
and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We are thankful to the following grant agencies for their support: Cleveland
Clinic Seed Support, American Cancer Society, Scott Hamilton CARES grant
(RVT), and Athymic Animal and Xenograft Core of the Case Comprehensive
Cancer Center (NCI P30 CA043703-23) (DL, PI Gerson).

This study was presented as an oral presentation at the 2013 American
Society of Hematology Annual Meeting.

Author details

'Department of Translational Hematology and Oncology Research, Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue R40, Cleveland, OH,
USA44195. 2Department of Medicine, University of California, School of
Medicine, San Francisco, CA, USA. *Center for Integrative Medical Sciences
(IMS), RIKEN, Yokohama Institute, Yokohama, Japan. YLeukemia Program,
Department of Hematology and Oncology, Taussig Cancer Institute,
Cleveland Clinic, Cleveland, OH, USA. 5Department of Quantitative Health
Sciences, Cleveland Clinic, Cleveland, OH, USA. ®Department of Laboratory
Medicine, Cleveland Clinic, Cleveland, OH, USA.

Received: 13 October 2014 Accepted: 15 November 2014
Published online: 07 December 2014

References

1. Swerdlow SH, Campo E, Harris NE, Jaffe ES, Pileri SA, Stein H, Thiele J,
Vardiman JW: WHO classification of tumours of haematopoietic and
lymphoid tissues. In Refractory Anaemia with Ring Sideroblasts. 4th edition.
Edited by Hasserjian RP, Gattermann N, Bennett JM, Brunning RD, Thiele J.
Lyon: IARG; 2008:96-97.

2. Szpurka H, Tiu R, Murugesan G, Aboudola S, Hsi ED, Theil KS, Sekeres MA,
Maciejewski JP: Refractory anemia with ringed sideroblasts associated
with marked thrombocytosis (RARS-T), another myeloproliferative
condition characterized by JAK2 V617F mutation. Blood 2006,
108:2173-2181.

Page 9 of 10

Ceesay MM, Lea NC, Ingram W, Westwood NB, Gaken J, Mohamedali A,
Cervera J, Germing U, Gattermann N, Giagounidis A, Garcia-Casado Z,

Sanz G, Mufti GJ: The JAK2 V617F mutation is rare in RARS but common
in RARS-T. Leukemia 2006, 20:2060-2061.

Flach J, Dicker F, Schnittger S, Kohlmann A, Haferlach T, Haferlach C:
Mutations of JAK2 and TET2, but not CBL are detectable in a high
portion of patients with refractory anemia with ring sideroblasts and
thrombocytosis. Haematologica 2010, 95:518-519.

Hellstrom-Lindberg E, Cazzola M: The role of JAK2 mutations in RARS and
other MDS. Hematol Am Soc Hematol Educ Program 2008, 2008:52-59.
doi:10.1182/asheducation-2008.1.52ASH Education Book.

Boultwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H,
Littlewood TJ, Malcovati L, Della Porta MG, Jadersten M, Killick S,
Giagounidis A, Bowen D, Hellstrom-Lindberg E, Cazzola M, Wainscoat JS:
The role of the iron transporter ABCB7 in refractory anemia with ring
sideroblasts. PLoS One 2008, 3:1970.

Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S,
Campbell LJ, Wang L, Langford CF, Fidler C, Oscier D, Aul C, Wainscoat JS,
Boultwood J: Gene expression profiles of CD34+ cells in myelodysplastic
syndromes: involvement of interferon-stimulated genes and correlation
to FAB subtype and karyotype. Blood 2006, 108:337-345.

Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y,
Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M,
Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K,
Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP,
Shih LY, Haferlach T, Chiba S, Nakauchi H, et al- Frequent pathway mutations
of splicing machinery in myelodysplasia. Nature 2011, 478:64-69.
Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D,
Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C,
Godfrey AL, Rapado I, Cvejic A, Rance R, McGee C, Ellis P, Mudie LJ,
Stephens PJ, McLaren S, Massie CE, Tarpey PS, Varela |, Nik-Zainal S,

Davies HR, Shlien A, Jones D, Raine K, Hinton J, Butler AP, Teague JW:
Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Eng/
J Med 2011, 365:1384-1395.

Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A, O'Keefe C,
Rogers HJ, Sekeres MA, Maciejewski JP, Tiu RV: SF3B1, a splicing factor is
frequently mutated in refractory anemia with ring sideroblasts. Leukemia
2012, 26:542-545.

Visconte V, Tabarroki A, Rogers HJ, Hasrouni E, Traina F, Makishima H,
Hamilton BK, Liu Y, O'Keefe C, Lichtin A, Horwitz L, Sekeres MA, Hsieh FH,
Tiu RV: SF3B1 mutations are infrequently found in non-myelodysplastic
bone marrow failure syndromes and mast cell diseases but, if present,
are associated with the ring sideroblast phenotype. Haematologica 2013,
98:2105-107.

Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A,
Przychodzen B, Bupathi M, Guinta K, Afable MG, Sekeres MA, Padgett RA,
Tiu RV, Maciejewski JP: Mutations in the spliccosome machinery, a novel
and ubiquitous pathway in leukemogenesis. Blood 2012, 119:3203-3210.
Maciejewski JP, Padgett RA: Defects in spliceosomal machinery: a new
pathway of leukaemogenesis. Br J Haematol 2012, 158:165-173.

Visconte V, Makishima H, Maciejewski JP, Tiu RV: Emerging roles of the
spliceosomal machinery in myelodysplastic syndromes and other
hematological disorders. Leukemia 2012, 26:2447-54.

Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, McMahon J,
Makishima H, Szpurka H, Jankowska A, Jerez A, Sekeres MA, Saunthararajah Y,
Advani AS, Copelan E, Koseki H, Isono K, Padgett RA, Osman S, Koide K, O'Keefe
C, Maciejewski JP, Tiu RV: SF3B1 haploinsufficiency leads to formation of ring
sideroblasts in myelodysplastic syndromes. Blood 2012, 120:3173-3186.
Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H:
Mammalian polycomb-mediated repression of Hox genes requires the
essential spliceosomal protein Sf3b1. Genes Dev 2005, 19:536-541.
Beachy SH, Aplan PD: Mouse models of myelodysplastic syndromes.
Hematol Oncol Clin North Am 2010, 24:361-375.

Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L,
Sivachenko A, Deluca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM,
Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S,
Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR,
Getz G, Wu CJ: SF3B1 and other novel cancer genes in chronic lymphocytic
leukemia. N Engl J Med 2011, 365:2497-2506.

Mian SA, Rouault-Pierre K, Smith AS, Seidl T, Kulasekararaj AG, Mohamedali
AM, Shinde S, Bonnet D, Mufti GJ: SF3BT mutant clones from patients with


http://www.jhoonline.org/content/supplementary/s13045-014-0089-x-s10.jpeg

Visconte et al. Journal of Hematology & Oncology 2014, 7:89
http://www.jhoonline.org/content/7/1/89

refractory anaemia with ringed sideroblasts (RARS) originate from the
early haematopoietic stem cells and maintain their engraftment
potential. Blood (ASH Annual Meeting) 2013, 122:262.

20. Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM: Reduced
NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative
neoplasms in mice. Blood 2011, 117:2681-90.

21. Wegrzyn J, Lam JC, Karsan A: Mouse models of myelodysplastic
syndromes. Leuk Res 2011, 35:853-62.

22. Matsunawa M, Yamamoto R, Sanada M, Sato-Otsubo A, Shiozawa Y, Yoshida K,
Otsu M, Shiraishi Y, Miyano S, Isono K, Koseki H, Nakauchi H, Ogawa S:
Haploinsufficiency of Sf3b1 leads to compromised stem cell function but
not to myelodysplasia. Leukemia 2014, 28:1844. doi:10.1038/leu.2014.73.

23.  Sekeres MA, Schoonen WM, Kantarjian H, List A, Fryzek J, Paquette R,
Maciejewski JP: Characteristics of US patients with myelodysplastic
syndromes: results of six cross-sectional physician surveys. J Nat/ Cancer
Inst 2008, 100:1542-51.

24, Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY, Tseng MH, Huang CF,
Lai YJ, Chiang YC, Lee FY, Liu MC, Liu CW, Liu CY, Yao M, Huang SY, Ko BS,
Hsu SC, Wu SJ, Tsay W, Chen YC, Tien HF: Dynamics of ASXL1 mutation and
other associated genetic alterations during disease progression in patients
with primary myelodysplastic syndrome. Blood Cancer Journal 2014, 4:¢177.

25. Wang J, Li Z, He Y, Pan F, Chen S, Rhodes S, Nguyen L, Yuan J, Jiang L,
Yang X, Weeks O, Liu Z, Zhou J, Ni H, Cai CL, Xu M, Yang FC: Loss of AsxI1
leads to myelodysplastic syndrome-like disease in mice. Blood 2014,
123:541-53.

26.  Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y,
Nakajima H, Nosaka T, Inaba T, Kitamura T: AML1 mutations induced MDS
and MDS/AML in a mouse BMT model. Blood 2008, 111:4297-308.

27. Robinson MD, Oshlack A: A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol 2010, 11:R25.

28. Law CW, Chen Y, Shi W, Smyth GK: Voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol 2014, 15:R29.

29. Benjamini YHY: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Statis Soc B 1995, 57:289-300.

30. Wu D, Smyth GK: Camera: a competitive gene set test accounting for
inter-gene correlation. Nucleic Acids Res 2012, 40:e133.

31. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,
Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics
2011, 27:1739-1740.

doi:10.1186/5s13045-014-0089-x

Cite this article as: Visconte et al.: Splicing factor 3b subunit 1 (5f3b7)
haploinsufficient mice display features of low risk Myelodysplastic
syndromes with ring sideroblasts. Journal of Hematology & Oncology
2014 7:89.

Page 10 of 10

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	Genomic analysis of Sf3b1 mice
	Hematologic findings of Sf3b1+/− mice
	Histological examination of bone marrow, spleen, and liver
	RNA-sequencing analysis showed overexpression of Jak2 and other hematopoietic-related gene sets

	Discussion
	Conclusions
	Methods
	Mice
	Genotyping
	Long-term evaluation of Sf3b1+/− mice
	Histomorphological analysis and Prussian blue staining
	RNA Sequencing (RNA-Seq) analysis
	Mapping
	Differential gene expression analysis
	Differential exon usage analysis
	Gene set differential expression analysis

	Statistical analysis

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

