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Abstract

Despite administration of novel therapies, multiple myeloma (MM) remains incurable with resistance to drugs leading
to relapse in most patients. Thus, it is critical to understand the detailed mechanisms underlying the drug resistance of
MM and develop more effective therapeutic strategies. Genetic abnormalities are well known to play a central role in MM
pathogenesis and therapy resistance; however, epigenetic aberrations mainly affecting the patterns of DNA methylation/
histone modifications of genes (especially tumor suppressors) and miRNAs have also been shown to be involved.
Importantly, while epigenetic silencing of miRNAs in MM is well documented, some epigenetic markers are
known to be direct targets of miRNAs particularly the recently described “epimiRNAs". Drugs targeting epigenetic
modifiers (e.g, HDACs, EZH2) can sensitize MM-resistant cells to anti-myeloma drugs and reversibility of epigenetic
changes makes these drugs promising therapeutic agents. Therefore, combination of miRNA mimics with inhibitors of
epigenetic modifiers would be a more potent therapeutic strategy in MM patients in relapse or refractory to treatments.
In this review, we will discuss the findings of recent investigations on epigenetics/miRNA regulatory axis in development
of drug resistance in MM and highlight possible approaches for therapeutic applications of such interaction.
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Background

Multiple myeloma (MM) is a clonal expansion of plasma
cells that is characterized by proliferation of malignant
clones producing defective monoclonal immunoglobulins
in the bone marrow. Current therapies such as prote-
asome inhibitors (PIs) and immunomodulatory drugs
(IMiDs) have improved the outcome of patients. Never-
theless, not all patients respond well to the drug, and even
in responding patients usually relapse occurs. Thus, multi-
drug resistance is still the major problem for the effective
treatment of multiple myeloma with conventional drugs
[1, 2]. Researches to decipher the molecular mechanisms
underlying drug resistance (DR) of MM are keeping an
unstoppable trend with miRNAs and epigenetics leading a
fast-growing front. Indeed miRNAs and epigenetic
markers have been identified as critical regulators of ex-
pression and function of oncogenes/tumor suppressors in
cancers including MM [3]. In line with this notion, wealth
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of evidence supports that epigenetic dysregulations such
as aberrant DNA and histone methylation, histone deace-
tylation and abnormal miRNA expression are involved in
the pathogenesis of MM [4—6] (listed in Table 1). This has
pushed several studies in recent and past years toward as-
sessment of epigenetic inhibitors in clinical trials of MM
[7-9]. Moreover, since the epigenetic alterations are re-
versible, inhibition of epigenetic changes could have a
promising therapeutic potential [10]. Importantly, al-
though aberrant miRNA expression in MM due to epigen-
etic silencing mechanisms is well documented [11],
miRNAs have also been shown to impact epigenetic modi-
fiers in cancers [12-14] highlighting a regulatory circuit
between these two regulatory systems. This concept will
introduce an exciting venue to DR investigation and thera-
peutic targeting in MM. However, while miRNAs can play
regulatory roles in drug response of MM cells [15], further
studies are still required to fully elucidate whether inter-
action of epigenetic modulations with miRNAs contrib-
utes to DR in MM. Here to present a new mechanistic
picture based on the most recent findings, we discuss epi-
genetic abnormalities associated with miRNAs that are
involved in DR of MM.
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Table 1 Aberrant miRNAs involved in pathogenesis or drug resistance of MM
miRNAs Dysregulation Outcome Refs.
miR-21 Upregulation Inhibition of apoptosis and increase drug resistance [74]
miR-125b Upregulation Reduction of cell death in dexamethasone induced MM [75]
(drug resistance)
miR-15a Downregulation Regulation of MM cell proliferation in vitro and in vivo [76, 771
miR-16 Downregulated in patients with relapsed/refractory disease
(drug resistance)
miR-221/222 Upregulation Inhibition of apoptosis and modulation of drug influx-efflux (36]
and ABC transporters (drug resistance)
miR-27a Downregulation Downregulated in MM patients with bortezomib-refractory [46]
status (drug resistance)
miR-149 Downregulation Downregulated in glucocorticoid resistant MM cells by disturbing [78]
epigenetic landscape, leading to overexpression of MMP-9 gene
which is involved in bone remodeling and tumor invasion in MM
miR-631 Downregulation Modulates UbcH10/MDR1 pathway which is associated with the [79]
development of BTZ resistance in myeloma cells
miR-202 Downregulation Involved on drug resistance of MM cells by targeting JNK/SAPK [80]
signaling pathway
miR-30c Downregulation Downregulated as a result of interaction between MM cells and [81]
bone marrow stromal cells, which in turn activation of oncogenic
Wnt/[-catenin/BCL9 pathway and promote MM cell proliferation,
drug resistance and formation of MM cancer stem cells.
miR-137/197 Downregulation Modulates MCL-1 which is dysregulated in multiple myeloma cells [51]
and overexpression of MCL-1 is associated with relapse and poor
survival
miR-17-92 cluster Upregulation High level is associated with shorter overall survival [82]
miR-106~363 cluster
miR-148a & miR-20a Upregulation Shorter relapse-free survival [83]
let-7e, miR-125a-5p, and miR-99b cluster Upregulation Overexpression in t(4;14) patients [84]
miR-140-3p Downregulation Altered expression due to the occurrence of several allelic [84]
imbalances or loss of heterozygosity in 162 region
miR-32 and miR-17~92 cluster Upregulation Upregulated in MM patients and cell lines but not in MGUS or [85]
healthy PCs
miR-19a and 19b Upregulation Inhibition of IL-6 growth signaling [85]
miR106b~25 cluster, miR-181a/b, miR-32 Upregulation Targeting of the genes which involved in p53 regulation [85]
miR-1/miR-133a cluster Upregulation Overexpressed in MM patients with t(14;16) [86]
miR-135b and miR-146a Downregulation Downregulated in MM with t(4;14) and targeted the genes which [86]
are involved in IL-1 signaling pathway
miR-214 Downregulation Positive regulation of P53 and inhibition of DNA replication [87]
miR-29b Downregulation Reduction of apoptosis by upregulation of MCL1 [88]
mMiR-192, MiR-194, miR-215 Downregulation p53-inducible microRNAs which modulate MDM2 expression [89]

regulate IGF pathway and enhance migration of plasma cells
into bone marrow

Epigenetic dysregulation and DR in MM

Although the molecular mechanisms of DR in MM are
not fully understood, epigenetic abnormalities have been
suggested to play an important role [16]. In fact the role
of DNA methylation, histone modifications, and chro-
matin remodeling in MM development/progression have
been well described [3—-6]; however, the mechanistic role
of these alterations in DR/relapse of MM has not been
fully investigated. Dysregulation of DNA methylation is
one of the most studied epigenetic mechanisms in DR of

different types of cancers including MM as evidenced by
higher frequency of hypermethylation of some tumor
suppressor genes, such as CDKN2A and CDKN2B, in
relapsed than in newly diagnosed MM patients [17].

In addition, DNA hypermethylation has been detected
in some tumor suppressor, cell signaling, and cell adhesion
molecule genes in plasma cell leukemia (PCL) cells [18].
Analyzing data from thousands of cancer cell lines and tu-
mors showed that suppressed expression of one or more
19S proteasome subunits caused by DNA methylation led
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to intrinsic proteasome inhibitor resistance [19]. Further-
more, bone marrow microenvironment-mediated global
DNA hypermethylation has been suggested to be involved
in DR of MM by upregulating DNA methyl transferases
(DNMTs) [20]. Interestingly, it was shown that the oxida-
tive epigenetic agent, RRx-001, inhibited DNMTs and re-
duced global hypermethylation leading to decrease in
viability of MM cells and overcame DR. Of note, micro-
array screening for genes silenced by DNA methylation
revealed an association between gene inactivation by DNA
hypermethylation and dexamethasone resistance in MM
and treating MM cells with demethylating agent 5-aza-2’-
deoxycytidine restored sensitivity to dexamethasone [21].
In addition to DNA methylation, histone modification is
also critical in cellular programming and dysregulation of
the histone-modifying enzymes is involved in the patho-
genesis of MM. Histone deacetylases (HDACs) are dysreg-
ulated in MM, and aberrant overexpression of class I
HDAC: is correlated with reduced overall survival of pa-
tients with MM [22]. HDAC inhibitors, including panobi-
nostat and vorinostat, have been evaluated in the
treatment of MM and recently approved by Food and
Drug Administration for the treatment of relapsed and re-
fractory MM [23]. HDAC inhibitors in combination with
bortezomib (BTZ) have synergistic cytotoxic effects on
MM cells by disruption of protein degradation and inhib-
ition of the interaction of MM cells with the tumor micro-
environment [24].

Furthermore, alterations in histone methyltransferases
can also mediate chemotherapy resistance in MM in-
cluding cell adhesion-mediated drug resistance (CAM-
DR) which is a rather complex and poorly explored form
of DR in MM. Kikuchi et al. demonstrated that direct
adhesion to bone marrow stromal cells inactivated
(phosphorylated) the histone methyltransferase enhancer
of zeste homolog 2 (EZH2) which resulted in H3K27
(histone H3-Lysine 27) hypomethylation. This in turn
led to sustained expression of anti-apoptotic genes such
as IGF1, BCL2, and hypoxia inducible factor 1-a
(HIF1A) [25]. The above study identifies stroma-induced
histone hypomethylation as a mechanism of CAMDR in
MM hence a tumor suppressor function of EZH2. In
addition, CDK1-dependent inactivation (phosphoryl-
ation) of EZH2 and subsequent H3K27 hypomethylation
also leads to resistance to tyrosine kinase inhibitors
(TKIs) and cytotoxic drugs in AML [26].

On the other hand, oncogenic functions of EZH2 have
also been reported by some studies. For instance, it was
shown that silenced polycomb target genes were more
frequent in MM and ChIP-seq profiling data revealed in-
creased number of silenced H3K27me3 (Histone H3 ly-
sine 27 trimethylation) target genes in MM patients at
advanced stages of the disease, and the expression pat-
tern of H3K27me3-marked genes was correlated with
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poor patient survival [27, 28]. In addition, pharmaco-
logical inhibition of EZH2 reduced the expression of
some MM-associated oncogenes [29], it also caused re-
duction of H3K27me3 level in EZH2 target genes in
MM cells promoting the expression of EZH2-repressed
tumor suppressor genes and subsequently blocked the
cell proliferation and invasion [30, 31]. In addition to
EZH2, the histone methyltransferase MMSET/WHSCI1,
which is overexpressed in MM patients with t(4;14), is
known to be a driving factor in the pathogenesis of this
MM subtype. Shah et al. showed that MMSET/WHSC1
could enhance DNA damage repair and lead to DR in
MM and that depletion of MMSET enhanced the effi-
cacy of chemotherapy, inhibited tumor growth, and ex-
tended survival in a mouse xenograft of t(4;14) KMS11
MM cells [32].

It is important to note that most studies concerning
epigenetics in MM pathogenesis focused on EZH2-
mediated transcription repression of target genes and
it is not clear whether somatic mutations causing
EZH2 gain or loss of function could also play a role
in MMDR. Indeed, both types of mutations have been
reported in other hematologic malignancies leading to
biologic and clinical outcomes that indicate context-
dependent tumor suppressor or oncogenic function of
EZH?2 [33]. Taken together, epigenetic mechanisms in-
cluding DNA methylation and histone methylation/
deacetylation play an important role in MM patho-
genesis particularly DR by regulating expression of
target genes with established functions in cell viability
and apoptosis.

A triad of “miRNA-drug-target” shapes the drug response
of MM cells

Many studies have demonstrated that miRNAs could be
involved in DR of MM (listed in Table 1). It has recently
been suggested that miRNAs can indirectly affect the ef-
ficacy of an anti-tumor drug depending on whether their
target has negative or positive impact on the drug func-
tion [34]. This concept extends the function of miRNAs
beyond what we know as stunning performers in the
genome regulating expression of genes and denotes a
significant role of these small molecules in DR of tumor
cells [15]. However, miRNA expression pattern which
would possibly be altered by the neoplastic context is the
determining factor. This means downregulated miRNA
(TS-miRNA) can boost or lower the efficacy of the drug,
respectively, if the protein targeted by a specific miRNA
promotes or dampens drug effects. The contrasting sce-
nario will apply when the expression level of miRNAs in
tumor context is high (OncomiR). MiR-221/222 and miR-
21 are two known oncogenic miRNAs with high expres-
sion in MM [35-38] and other cancers [39-42]. They
target the tumor suppressor PTEN and pro-apoptotic
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PUMA, two proteins known to be upregulated by BTZ
[43, 44]. In addition, miR-451 regulates stemness of MM
side population and inhibition of this miRNA enhances
anti-myeloma agents’ effectiveness, through increasing
cells apoptosis and reducing MDR1 (multidrug resistance
1) gene expression [45]. These miRNA-target interactions
had negative impact on drug function in tumor cells,
hence occurrence of DR. Notably, synthetic inhibitors of
the oncomiRs miR-21 and miR221/222 have been success-
fully administered to preclinical models of MM yielding
prominent anti-tumor effects [35-38]. MiR-27a was iden-
tified as a tumor suppressor to be downregulated in MM
[46] and leukemia [47] cells and targeted the oncogenes
CDKS5 and P-glycoprotein, respectively, which were highly
expressed in tumor cells culminating in the same outcome
as above. MiR-29b is another example of TS-miRNAs
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which was significantly reduced in BTZ-resistant cells as
well as in cells resistant to second-generation Pls carfilzo-
mib and ixazomib. miR-29b targeted the proteasome acti-
vator PA20 and disrupted aggresome/autophagosome
formation to enhance the anti-myeloma effects of BTZ
[48]. It is not surprising to expect that the target of the
miRNA in this triad could also be an epigenetic modifying
enzyme like EZH2 or HDACs whereby their interaction
would possibly function through an established loop to
sustain MM cell drug response (see below for further ex-
planations). These statements highlight the notion that
the function of an anti-myeloma drug, e.g., BTZ, or how
the MM cells respond to the drug can be shaped by the
pattern of miRNA-target interaction which in some cases
will end in therapy resistance. The above scenario has
been illustrated in Fig. 1.

MM cell

Protein
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(Apoptosis)
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Fig. 1 Schematic illustration of miRNA-target-drug axis in MM cells. When MM cells are exposed to the anti-myeloma drugs, through as-yet unclear
mechanisms, the drugs may interact with either miRNA processing machinery (genomic or post-transcriptional) or their targets. In the context of TS-miRs
(e.g, miR-29b, miR-27a), their oncogenic targets, e.g, MYC or CDK5, will be overexpressed leading to induction of cell proliferation or inhibition of
apoptosis (attenuation of drug effect). On the other hand, when the context is dealing with oncomiRs, e.g, miR-21 or miR-221/222, their TS targets (p53,
PTEN) will be suppressed culminating in the same outcome as above. It is still unclear whether the expression of two types of miRNAs is in fact governed
initially by the oncogenic process or the drug exposure “manipulates” the genome or post-transcriptional system to modulate miRNA expression
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Epigenetic modifications and miRNAs interplay: a

scenario in the context of anti-myeloma drug

MiRNAs have a large impact on tumorigenesis by modulat-
ing expression of various oncogenes or tumor suppressors
and also contribute to DR. Hence identifying the regulatory
mechanisms of miRNA expression will be very helpful to
understand underlying mechanisms of DR in MM and to
find more effective therapeutic targets. Recent epigenetic
investigations have identified promoter hypermethylation of
tumor suppressor miRNAs (TS-miRNAs) in many cancer
types including MM [11]. MiR-34a/b/c, miR-124-1, miR-
194-2-192, miR-203, miR-152, and miR-10b-5p in MM
were reported to be silenced by DNA hypermethylation
[11, 49, 50]. Importantly, most target genes of these miR-
NAs encode for proteins involved in survival, proliferation,
and DR. For instance, hypermethylation-mediated inactiva-
tion of miR-34a/b/c attenuates tumor suppressor activity of
p53, as these miRNAs are known to be direct transcrip-
tional targets and tumor-suppressive effectors downstream
to p53. This in turn will lead to loss of translational repres-
sion of miR-34a/b/c targets, BCL-2, CCND1, CCNE2,
CDK4, CDK®6, E2F, and v-MYC.

Studies from our group [51, 52] and others [53] have
identified miR-137 as a TS-miRNA whose overexpres-
sion in MM cells sensitizes them to anti-myeloma drugs.
MiR-137 in MM was silenced by promoter hypermethy-
lation which was associated with chromosomal instabil-
ity (CIN) and resistance to BTZ in MM cells. AURKA, a
gene coding for proteins involved in mitosis and cell
proliferation, was identified as a direct target of miR-
137. Ectopic expression of miR-137 sensitized the cells
to BTZ by upregulating p53 and downregulating ATM/
Chk2 indicating that epigenetically regulated miR-137
plays role in DR of MM cells by maintaining a prolifera-
tion or survival pathway [52].

Moreover, some oncogenes are targeted by hypermethy-
lated miRNAs in MM and hypomethylation of miRNA
genes by using DNMT inhibitors can downregulate those
oncogenes and inhibit cell growth and induce apoptosis in
MM cells. For example, RecQ helicases (DNA unwinding
enzymes involved in the maintenance of chromosome sta-
bility) are significantly upregulated in MM and protect MM
cells from melphalan and bortezomib cytotoxicity. DNMT
inhibitor treatment of MM cells results in RECQ1 down-
regulation through miR-203 demethylation and sensitizes
cells to anti-tumor drugs suggesting that epigenetic modi-
fier could be useful for treatment of relapsed cases [54].

Resistance to drugs could also be associated with histone
modifications (deacetylation, methylation) of miRNA pro-
moters, another epigenetic mechanism regulating expres-
sion of miRNAs in cancers [14, 55, 56], although far less
investigated in MM. For instance, the HDACs 1, 2, 3, and
4, DNMTs, acetylated H2B, and acetylated H3 were direct
targets of several miRNAs in doxorubicin-resistant lung
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cancer cell lines and were in fact in a functional interaction
with these miRNAs [14]. The histone methyl transferase
MMSET is overexpressed in about 15% of MM patients
due to the t(4;14) translocation. MMSET overexpression
induced c-MYC expression in MM cells by repressing
miR-126* which targeted c-MYC, hence increase in prolif-
eration of MM cells. It was shown that MMSET bound to
miR-126* promoter which was indicated by increased
H3K9 trimethylation and decreased H3 acetylation, leading
to miR-126* repression [57]. Although drug response of
MM cells was not explored in this setting, it may be specu-
lated that resistance to drug could also happen due to c-
MYC-mediated increased proliferation of MM cells. In
support of this, cell cycle-mediated drug resistance has
been suggested as a critical phenomenon impeding com-
bined chemotherapies, which warrants development and
incorporation of cell-cycle inhibitors [58].

The chromatin remodeling enzyme EZH2 is probably the
most attractive epigenetic modifier in cancers [33, 59, 60]
which has been shown to induce DR in tumor cells by si-
lencing miRNAs and establishing a functional mutual inter-
action with miRNAs [13]. EZH2 has also been shown to
interact with transcription factors which are targets of
tumor suppressor miRNAs, such as MYC in lymphomas
[61] and in MM [29]. Alzrigat et al. demonstrated that
pharmacologic inhibition of EZH2 in MM cell lines and
primary cells suppressed transcription factors with onco-
genic activity in MM including IRF-4, XBP-1, PRDM1/
BLIMP-1, and c-MYC. In parallel, EZH2 inhibition reacti-
vated the expression of TS-miRNAs, miR-125a-3p, and
miR-320c, which were also targets of EZH2 and H3K27m3
[29]. Additionally, miR-138 that targets EZH2 is suppressed
in drug-resistant phenotypes of MM cells, restoration of
this miRNA using EZH?2 silencing or pharmacologic inhib-
ition reverses DR and sensitizes MM cells to drug-induced
toxic effects (our unpublished data). These observations
provide evidence that the epigenetic modifier EZH2 con-
tributes significantly to MM cell proliferation and DR by
targeting TS-miRNAs. Figure 2 illustrates the miRNA/epi-
genetic modifier enzyme interactions which are involved in
MMDR.

It is interesting to note that a group of miRNAs,
termed “epi-miRNAs”, has been reported to reciprocally
modulate epigenetic regulators, suggesting the existence
of a regulatory circuit between miRNAs and epigenetic
modifiers [62]. The best example in MM is miR-29b
which was shown to specifically target HDAC4 in a mu-
tually functional loop [63, 64]. Silencing/inhibition of
HDAC4 triggered apoptosis, enhanced drug (bortezomib
and dexamethasone)-induced cell death, and upregulated
miR-29b in MM cells (by promoter hyperacetylation).
On the contrary, overexpression or inhibition of miR-
29b, respectively, antagonized or potentiated the anti-
myeloma effects of the pan-HDAC inhibitor SAHA
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Resistance

Table 2 Summary of key epigenetic modifiers found in MM and their miRNA targets

Sample source Epigenetic miRNAs Targets/pathways Functional outcomes Refs.
modifiers targeted modulated by miRNA

MM cell lines (NCI-H929, U266, DNA methylation miR-137 AURKA/p-ATM, p-Chk2 Induction of drug resistance to [52]
KMS11, OPM2, RPMI8226, MM1.S) (DNMTs) bortezomib and epirubicin,
and MM primary samples chromosomal instability
MM cell lines (MM1S, H929, OPM-2,  DNA methylation miR-214 PSMD10 & ASF1B/p53- A significant enrichment for DNA [87]
JIN3, and RPMI 2886) (DNMTs) MDM2 replication and induction of cell

proliferation, and as a consequence

also in cell survival
MM cell lines (NCI-H929 and U-266, DNA methylation miR-124-1 CDK6 Induction of cell proliferation [50]
KMS-12-PE, LP-1, OPM-2) and MM (DNMTSs)
primary samples
MM cell lines (KMS11, SKMM1, and  HDACs miR-29b Mcl1/SP1 and HDAC4 Induction of cell growth by upregulation [63]
NCI-H929) and PCL and MM primary of pro-survival proteins (MCL-1 and SP1)
samples
MM cell lines (MM.1S, LP1, H929, HDACs miR-9-5p IGF2BP3/CD44 CD44 overexpression, a glycoprotein that  [90]
and JIN3) has been associated with lenalidomide

and dexamethasone resistance in myeloma
MM cell lines (INA-6, LP-1, L363, EZH2 miR-125a-3p RF-4, XBP-1, BLIMP-1, Upregulation of oncogenes and inhibit [29]
KMS-11) and MM primary samples & miR-320c  c-MYC apoptosis
MM cell lines RPMI8226 and U266 EZH2 miR-101 E-cadherin, MMP9, c-Myc,  Induction of cell proliferation and inhibit [91]

cyclin D3, CDK4, and CDK6 apoptosis
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confirming that HDAC4-miR-29b axis modulates the ef-
fects of anti-myeloma drugs. The key epigenetic modi-
fiers found in MM and their miRNA targets are
summarized in Table 2.

Taken all together, in the setting of MM cells, the mu-
tual interaction between miRNAs and epigenetic markers
plays an important role in regulation of drug response of
MM cells.

Clinical application of epigenetic inhibitors in combination
with miRNAs in MM

Strategies for clinical application of epigenetic inhibitors
including DNMT, HDAC, and HAT inhibitors in MM
therapy have been reviewed elsewhere [65, 66]. Gener-
ally, these inhibitors have been administered in combin-
ation regimens in MM. For instance, EZH2 inhibitors
have been applied to clinical trials in lymphoma and are
suggested as promising therapeutic strategy in MM in
combination with IMiDs [8] and proteasome inhibitors
[67]. Kikuchi et al. showed that HDACs were critical tar-
gets of BTZ and knockdown of HDAC1 enhanced BTZ-
induced apoptosis, whereas HDAC1 overexpression con-
ferred resistance to BTZ in MM cells, suggesting that
combination of BTZ and HDAC inhibitors could be a
more efficient treatment strategy for MM [68]. Indeed,
HDAC inhibitors have also been applied to clinical ther-
apies of MM in combination with IMiDs or proteasome
inhibitors [69, 70]. While miRNA mimics have been
tested in many pre-clinical studies in MM, obstacles to
apply these agents to MM clinical trials still persist [71].
Efficient delivery of nucleic acids into tumor tissues and
their uptake specifically by the tumor cells have been
stressed to be the challenging issues. On the other hand,
considering an established functional interaction be-
tween miRNAs and epigenetic regulators, which regu-
lates MM cell drug responses, combination of miRNA
mimics with inhibitors of these modifiers could be a
more potent therapeutic strategy in MM patients in re-
lapse or refractory to treatments.

Conclusions

Current era of MM therapy is witnessing the significant
progress of strategies and approaches aiming mostly at
overcoming the DR. While most novel treatments in-
cluding proteasome inhibitors especially in combination
modalities have proved to increase the survival of pa-
tients, MM still remains to be drug resistant and most
patients relapse or become refractory. Studies have dem-
onstrated that miRNA may be applied for the targeted
delivery of personalized medicine to improve the out-
come of MM patients [72]. Furthermore, the number of
studies focusing on pre-clinical applications of miRNAs
in MM is increasing; however, concerns and obstacles to
these approaches in terms of translation to clinic still
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persist [71]. Epigenetics is perhaps taking an exciting
and promising position at the frontier of MMDR mecha-
nisms. Taking advantage of epigenetic regulation of miR-
NAs, future studies should attempt to examine therapeutic
application of epigenetic markers to restore TS-miRNAs in
MM pre-clinical models. This strategy will especially be
promising when MM cases with resistance to HDAC in-
hibitors are dealt with [73].

In conclusion, epigenetics-miRNA axis plays a crucial
role in MM pathogenesis and could provide potential
therapeutic targets. However; due to limited studies, fur-
ther in-depth studies in this regard are required to open
a novel and exiting venue to understand the underlying
mechanism of DR in MM, which tends to be the out-
standing obstacle to MM therapy.

Abbreviations

AML: Acute myeloid leukemia; AURKA: Aurora kinase A; BCL-2: B cell lymphoma 2;
BTZ: Bortezomib; CAM-DR: Cell adhesion-mediated drug resistance; CCND1: Cyclin
D1; CCNE2: Cyclin E2; CDK4,5,6: Cyclin-dependent kinase 4,5,6; CDKN2A,B: Cyclin-
dependent kinase inhibitor 2 A,B; ChIP-seq: Chromatin immunoprecipitation
followed by sequencing; CIN: Chromosomal instability; DNMT: DNA
methyl transferase; DR: Drug resistance; EZH2: Enhancer of zeste
homolog 2; HAT: Histone acetyl transferase; HDAC: Histone deacetylase;
HIF1A: Hypoxia inducible factor 1-q; IFR4: Interferon regulatory factor 4;
IGF1: Insulin growth factor 1; IMiDs: Immunomodulatory drugs;

MDR1: Multidrug resistance 1; MM: Multiple myeloma; MMDR: Multiple
myeloma drug resistance; MMSET/WHSC1: Multiple myeloma SET domain/Wolf-
Hirschhorn syndrome candidate 1; PCL: Plasma cell leukemia; PI: Proteasome
inhibitor; PRDM1/BLIMP1: PR domain zinc finger protein 1/B lymphocyte
inducer of maturation program 1; PTEN: Phosphatase and tensin homolog;
PUMA: P53 upregulated modulator of apoptosis; TKI: Tyrosine kinase inhibitor;
TS-miRNA: Tumor suppressor micro-RNA
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