Skip to main content
Fig. 2 | Journal of Hematology & Oncology

Fig. 2

From: Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer

Fig. 2

HBXIP induces TAM resistance by increasing the protein level of HOXB13. a IHC staining of HBXIP and HOXB13 in normal breast tissues (N) and breast carcinomas (T) from ER+ breast tissue microarray. Scale bar, 20 μm. b The association between HBXIP and HOXB13 expression levels in the abovementioned tissue microarray was statistically analyzed by Pearson chi-square independence test, χ2 = 23.08, P < 0.01. c Immunoblotting analysis of HBXIP and HOXB13 in different breast cancer cell lines (lower panel). The upper panel is the quantification of the intensity relative to β-actin. MDA-MB-468 is a triple-negative breast cancer cell line. d Immunoblotting analysis of HOXB13 in MCF-7 and BT474 cells transiently transfected with the indicated plasmids or siRNA (lower panel). The upper panel is the quantification of the intensity relative to β-actin. e Cell viability assay in MCF-7 cells treated with indicated concentrations of TAM after being transiently transfected with the displayed plasmids or siRNAs. Error bars represent ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001 (HBXIP compared with HBXIP+si-HOXB13) by two-tailed Student’s t test. f A colony photograph and the colony forming efficiency of MCF-7 cells treated with DMSO or TAM (1 μM) after being transiently transfected with the displayed plasmids or siRNA. All experiments were repeated at least three times. Error bars represent ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001 by two-tailed Student’s t test

Back to article page