Skip to main content
Fig. 1 | Journal of Hematology & Oncology

Fig. 1

From: Memory T cells skew toward terminal differentiation in the CD8+ T cell population in patients with acute myeloid leukemia

Fig. 1

Gating strategy for identifying the CD4+ and CD8+ T cells and the percentage of memory T cell subsets in the patients with AML and healthy individuals. a, d CD4+ (a) and CD8+ T (d) cells were differentiated into four subsets based on the expression of CCR7 and CD45RO in one HI-PB, one AML-PB, and one AML-BM patient: central memory T cells (CCR7+CD45RO+), effector memory T cells (CCR7−CD45RO+), and effector T cells (CCR7−CD45RO−). In the CCR7+CD45RO− subset, the expression of CD28 and CD95 was used to identify naïve T cells (CD28+CD95−) and TSCM cells (CD28+CD95+). b, e Frequency of the TSCM, TCM, TEM, and TEF subsets in the CD4+ (b) and CD8+ (e) T cell populations from 27 HIs and 20 AML patients. c, f The subsets within the CD4+ (c) and CD8+ (f) T cell populations from PB and matched BM from seven AML patients, including different AML subtypes (M1, M2, M2b, M3, and M5), were compared. g Summary of the altered distributions within the CD4 and CD8 naive and memory T cell subsets in the AMLy, AMLo, and AML-CR groups compared with HIs. HIy (n = 13), AMLy (n = 10), AML-CR (n = 9), HIo (n = 14), AMLo (n = 10). HIs, healthy individuals; AML, acute myeloid leukemia; AML-CR, AML patients who achieved complete remission; PB, peripheral blood; BM, bone marrow; y, younger than 60 years; and o, older than 60 years. The differences in the different T cell populations in each of the T cell subsets were tested by two independent-sample Wilcoxon tests. Medians were calculated to represent all of the data. P values < 0.05 were considered statistically significant

Back to article page