Fig. 2
From: 3D chromatin architecture and transcription regulation in cancer

3D chromatin organisation and deregulated transcription in tumorigenesis. Schematic depiction of the different levels of chromatin organisation including chromosome territories in the nucleus, lamina-associated domains (LADs) near the nuclear envelope, A and B compartments corresponding to open and closed chromatin, and a topologically associated domain (TAD) with the 3D chromatin looping in the TADs that can be visualised as chromatin interaction maps (red triangles in TAD). Tumorigenesis involves a range of changes impacting 3D chromatin architecture such as LAD defects, TAD boundary defects, and changes in enhancer–promoter (E–P) interactions regulating gene induction or silencing, as well as lower-order chromatin changes involving transcription factor availability, histone modifications, DNA methylation/hydroxymethylation, nucleosome occupancy, and involvement of long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs)