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Abstract

Wnt canonical signaling pathway plays a diverse role in embryonic development and maintenance of organs and
tissues in adults. It has been observed that Wnt/b-catenin signaling pathway is involved in the pathogenesis of
many carcinomas. Moreover, Wnt/b-catenin pathway has been revealed to be associated with angiogenesis.
Wnt canonical pathway signaling has great potential as a therapeutic target. It has been disclosed that some
hematological malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, may occur partly due to
the constitutive activation of Wnt canonical signaling pathway. This review will summarize the latest development
in Wnt canonical signaling pathway and its roles in tumorigenesis and angiogenesis.

Introduction
Wnt canonical signaling pathway acts a significant part
in embryonic development and in maintenance of
organs and tissues in adults. In the past two decades,
medical scientists have devoted themselves to under-
standing the cellular and molecular mechanisms of Wnt
signaling. A lot of studies indicate that Wnt canonical
pathway involves in the pathogenesis of a range of dis-
ease including many kinds of carcinomas. Hematological
malignancies are the types of carcinoma that affect
blood, bone marrow and lymph nodes. They may derive
from either of the two major blood cell lineages:
myeloid and lymphoid cell lines. The incidence of hema-
tological malignancies has been increasing steadily in the
world for the past years, but their etiology and patho-
genesis has not been well understood involving areas of
chromosome aberrations, apoptosis inhibition, abnormal
activation of signaling pathways, angiogenesis, et al. In
this review, we focus on the role of Wnt canonical
signaling in carcinomas, especially in hematological
malignancies, and then disclose potential therapeutic
opportunities of this pathway in hematological
malignancies.

Wnt canonical pathway
Wnt signaling pathways are categorized as “canonical” and
“non-canonical” Wnt pathways, which are b-catenin-

dependent and b-catenin-independent signaling pathways,
respectively. Here we will emphatically point out the role
of Wnt canonical pathway in hematological malignancies.
A simplified model of Wnt canonical pathway is deli-
neated in Fig. 1. Wnts is a group of secreted cysteine-rich
glycoproteins, which includes at least 19 identified
members in diverse species ranging from round worm and
insects to human [1]. In the absence of a Wnt ligand bind-
ing to its receptor complex, the cytoplasmic b-catenin is
degraded by the “destruction complex”. In this complex,
Axin acts as an scaffold protein, which adenomatous poly-
posis coli (APC), glycogen synthase kinase 3b (GSK-3b)
and casein kinase 1a (CK1a) bind to facilitate the sequen-
tial phophorylation of b-catenin in 45serine by kinase
CK1a and 41′threonine, 37′,33′serine by GSK-3b [2,3].
Accordingly, phosphorylated b-catenin is recognized by
b-transducin-repeat-containing protein (b-TrCP) and con-
stantly degraded by the ubiquitin-proteasome pathway.
Wnt signaling is activated via ligation of Wnts to their
respective dimeric cell surface receptors composed of the
seven transmembrane frizzled (Fz) proteins and the low-
density lipoprotein receptor-related protein 5/6 (LRP5/6).
Upon ligation to their receptors, the cytoplasmic protein
disheveled (Dvl) is recruited, phosphorylated and activated.
Activation of Dvl induces the dissociation of GSK-3b from
Axin and leads to the inhibition of GSK-3b. Next, the
phosphorylation and degradation of b-catenin is inhibited
as a result of the inactivation of the “destruction complex”.
Subsequently, stabilized b-catenin translocates into the
nucleus. Nuclear b-catenin is the ultimate effector, binding
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to Tcf/Lef (T cell factor and lymphoid-enhancing factor)
transcription factors that lead to changes in different
target gene expressions that regulate cell proliferation, differ-
entiation and survival, cell polarity and even angiogenesis.

Role of Wnt canonical signaling in carcinomas
Wnt canonical signaling is involved in pathogenesis of
several carcinomas and the mechanisms of its over-acti-
vation are varied. Dysregulation of Wnt/b-catenin sig-
naling plays a central role in early events in colorectal
carcinogenesis. The APC protein which acts as a tumor
suppressor protein can down-regulate the transcriptional
activation mediated by Wnt/b-catenin. Therefore, inacti-
vation of APC tumor suppressor gene caused by muta-
tion is related to the initiation of colorectal neoplasia
and its protein products lose the function of down-regu-
lation of Wnt signaling. Then, colorectal cancer occurs.
Furthermore, mutations of b-catenin in the functionally
significant phosphorylation sites have been detected in
colorectal tumors [4]. In melanoma cell lines, abnor-
mally high amounts and stabilization of b-catenin
accompanied by mutations in b-catenin or alteration/
missing of APC have been detected. Thus, genetic
defects that result in up-regulation of b-catenin may
play a role in melanoma progression [5]. Wnt canonical
pathway has been confirmed to be related to initiation,
development, progression and skeletal metastasis of
prostate cancer in both human cancers and mouse mod-
els. It may result from mutation or altered expression of

components of this pathway such as b-catenin and APC,
which have been found in some types of prostate
tumors and cancer cells [6,7]. Therefore, Wnt/b-catenin
provides an attractive target for developing therapeutics
of prostate cancers. Canonical Wnt pathway participates
in many physiologic events in embryogenesis and is
involved in embryogenic development of the ovary [8].
It also has an impact upon ovarian tumorigenesis espe-
cially a histologic subtype of epithelial ovarian cancer
[9,10]. Non-small cell lung cancer(NSCLC) is one of the
most common human carcinomas with a poor prog-
nosis. Recent studies have revealed that the Wnt-1 over-
expression, resulting in an aberrant and stabilized b-
catenin expression, is associated with the expression of
tumor-associated Wnt-targets(c-Myc, CyclinD1, Matrix
Metalloproteinase 7), tumor proliferation, angiogenesis
and a poor prognosis factor in NSCLC [11]. In addition,
alterations of canonical Wnt signaling pathway due to
frequent mutations in b-catenin have been detected in a
wide range of other tumors, including hepatocellular
carcinomas [12] and Wilms’ tumors [13]. Mutations in
the scaffold protein Axin [14] have been verified in
some malignancies. Besides these mutations in intracel-
lular signaling components, several tumors display a
missing of expression of the secreted Wnt antagonists
sFRPs and WIF1 resulting from silencing by promoter
hypermethylation [15].
Since aberrant activation of Wnt canonical signaling

pathway is diversely involved in pathogenesis of

Figure 1 Wnt canonical pathway. (a) In the absence of a Wnt ligand, the cytoplasmic b-catenin is degraded by the “destruction complex”. In
this complex, Axin acts as an scaffold protein, which APC, GSK-3b and CK1a bind to facilitate the sequential phophorylation of b-catenin by
kinase CK1a and GSK-3b. Accordingly, phosphorylated b-catenin is recognized by b-TrCP and constantly degraded by the ubiquitin-proteasome
pathway. (b) Upon ligation of Wnts to their receptors composed of Fz proteins and LRP5/6, the cytoplasmic protein Dvl is recruited,
phosphorylated and activated. Activation of Dvl induces the dissociation of GSK-3b from Axin and leads to the inhibition of GSK-3b. Next, the
phosphorylation and degradation of b-catenin is inhibited as a result of the inactivation of the “destruction complex”. Subsequently, stabilized
b-catenin translocates into the nucleus. Nuclear b-catenin is the ultimate effector, binding to Tcf/Lef transcription factors to lead to changes in
different target gene expressions.
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carcinomas, there has been great interest in developing
therapeutics that circumvent it either by inhibiting Wnt
mediated transcription or by inactivating the target
genes. In some carcinomas, Wnt canonical signaling
pathway has become the potential therapeutic target.
The stabilized nuclear b-catenin due to the aberrant
activation of Wnt signaling is an attractive therapeutic
target for human cancers. Non-steroid anti-inflamma-
tory drugs(NSAIDs) can suppress the activity of b-cate-
nin. These drugs may inhibit Wnt/b-catenin signaling at
multiple levels, including induction of b-catenin degra-
dation [16] and disruption of the Tcf/b-catenin complex
[17]. In addition, the transcriptional activity of Wnt/b-
catenin can be inhibited by quercetin, a famous anti-
tumor agent, in SW480 cell lines and also in HEK293
cells transiently transfected with constitutively active
mutant b-catenin gene. The inhibitory mechanism is
due to the decreased nuclear b-catenin and Tcf-4
proteins [18]. The way in which nuclear b-catenin and
Tcf proteins were decreased needs to be further studied.
The Wnt-Frizzled interaction can be antagonized by
several secreted proteins, including Dickkopf1 (Dkk1),
Wnt inhibitory factor 1(WIF-1) and secreted frizzled-
related protein (sFRP) family members. Wnt/b-catenin
pathway can become the potential therapeutic target of
cancer achieved by expression of secreted antagonists of
the pathway, such as Dkk1. In addition, small interfer-
ence of RNA (siRNA) may eliminate components of
Wnt/b-catenin signaling and can also be used to block
this signaling. Others include small molecule inhibitors
which can interfere the formation of the Tcf/b-catenin
complex [19] or disturb the interaction of b-catenin
with other co-activators [20] and monoclonal antibodies
targeting the upstream signaling components such as
Wnts ligands [21,22] or frizzled receptors, et al. The fact
is that Wnt/b-catenin signaling pathway has great thera-
peutic potential in carcinomas.

Canonical Wnt signaling and angiogenesis
Wnt signaling pathway has been observed to make a dif-
ference in vessel development and pathology and in sur-
vival and proliferation of primary endothelial cells.
Several Wnt ligands have been demonstrated to be
expressed in vascular endothelial cells in vitro, including
Wnt-7a, Wnt-10b and in vascular smooth muscle cells
including Wnt-5a [23]. In vivo, the fetal vessels of the
placenta express Wnt-2 [24] and the blood vessels of
the mouse embryonic yolk sac express Wnt-5a and
Wnt-10b [25]. Other components of this pathway such
as Fz receptors have been demonstrated to be expressed
in cultured endothelial cells and vascular smooth muscle
cells [26,27]. During human embryonic development,
nuclear and/or cytoplasmic b-catenin can be detected in
placental villus capillaries, fetal capillaries, arteries and

veins [28]. Furthermore, Wnt/b-catenin signaling may
promote proliferation and survival in human endothelial
cells via the induction of known angiogenic regulators;
such as Interleukin-8 which is another transcriptional
target of canonical Wnt pathway [29].
Angoigenesis is essential for tumor growth and meta-

stasis. Studies have revealed the close relationship
between canonical Wnt signaling pathway and angiogen-
esis of carcinomas. b-catenin accumulation has been
involved in angiogenesis in brain cancer. b-catenin is
found in the cytoplasm and nucleus of endothelium in
neovessels of rat N-ethyl-N-nitrosurea-induced gliomas
[30] and in the neovascular endothelial cells of medullo-
blastomas and other tumors of central nervous system
[31]. However, accumulation of b-catenin in the cyto-
plasm or nucleus is rarely seen in cells of the normal
adult brain vasculature [32]. A role for Wnt/b-catenin
signaling in the vasculature is further supported by the
identification of Wnt target genes that encode angio-
genic regulators. Vascular endothelial growth factor A
(VEGF-A) is a potent and widely distributed angiogenic
peptide and has confirmed to be associated with the
tumor angiogenesis and a poor prognosis [33,34]. It is
also a target of canonical Wnt/b-catenin signaling
pathway [35]. Seven b-catenin/Tcf binding sites occur in
the VEGF-A promoter [36]. A recent study on NSCLC
has disclosed that the Wnt1 expression correlates with
the intratumoral VEGF-A expression with the action of
elevating the activity of Wnt/b-catenin pathway [10].
In the meantime, a significant proportion of human
colorectal cancers have an activating mutation in Wnt/
b-catenin pathway resulting in the abnormal expression
of VEGF [37].
It is believed that Wnt signaling pathway is vital for

tumor neovascularization and is a great potential in
blocking tumor invasion and metastasis. To further
confirm the role of Wnt/b-catenin signaling pathway
in tumor angiogenesis and growth, Wnt antagonists
WIF1-Fc and sFRP1-Fc were used to treat hepatocellular
carcinoma tumors. They revealed that these two fusion
proteins could inhibit Wnt signaling and exerted potent
antineoplastic activity by increasing apoptosis of tumor
cells and by impairing tumor vascularization; including
reducing the microvessel density, decreasing expression
of vascular endothelial growth factor and stromal
cell-derived factor-1 [38].

Role of Wnt canonical pathway in hematological
malignancies
Hematopoiesis is a continuous process in which stem/
progenitor cells develop into mature blood cellular com-
ponents. Wnt/b-catenin signaling pathway has been
shown to have an effect on controlling the proliferation,
survival and differentiation of hematopoietic cells [39].
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The gene products of the Wnt family, functioning as
hematopoietic growth factors, may exhibit higher speci-
ficity for earlier progenitor cells [40]. Wnts have addi-
tionally been shown to participate in hematopoiesis in
which Wnt-11 induced bone marrow cells to develop
into a variety of different lymphoid cell types [41].
Wnt3a signaling not only provides proliferative stimuli
such as for immature thymocytes, but also regulates cell
fate decisions of HSC during hematopoiesis [42]. More
recently, gain of function studies have demonstrated
that constitutively activated b-catenin in hematopoietic
stem cells blocks multilineage differentiation; including
B cell differentiation at early stages, suggesting the
importance of fine tuning of Wnt/b-catenin signaling
pathway for normal B cell development and function
[43,44]. Frizzled 9 knockout in mice leads to abnormal
B-cell development [45]. Wnt signaling is required for
thymocyte development [46] and plays a key role in the
maintenance of stemness in mature memory CD8+T
cells [47]. Constitutive activation of b-catenin promotes
the expansion of multipotential HSCs [44,48]. However,
the influence of Wnt/b-catenin pathway on mature B
cells is not obvious because they do not express TCF/
LEF factors [43]. Excessive stimulation of the Wnt cas-
cade may lead to transformation of HSCs [44,48] and is
noticeable in the neoplasms of myeloid and lymphoid
lineages. Thus any aberrant signaling through this path-
way may have a negative influence on hematopoiesis
and may involve in lymphomagenesis.
Aberration of Wnt pathway and the related proteins

are detected in many hematological patients [49]. Acti-
vation of Wnt signaling pathway has been implicated in
the pathogenesis of leukemia. More recently, b-catenin
activation coupled with GSK3b inactivation, has been
demonstrated in chronic myeloid leukemia(CML) in
blast crisis and precursor B-cell acute lymphoblastic
leukemia(ALL) [50]. The function of canonical Wnt
pathway is epigenetically regulated by methylation of
Wnt antagonists and has prognostic relevance in acute
myeloid leukemia(AML) [51]. Secreted Frizzled-related
protein genes (sFRPs), functioning as Wnt signalling
antagonists, have been found to be downregulated or
inactivated by promoter hypermethylation in ALL and
AML [52]. In addition, small molecule inhibitors of Wnt
signaling effectively induce apoptosis in AML cells. Con-
sequently, targeting this pathway seems to be an innova-
tive approach in the treatment of AML [53]. Studies
have demonstrated that deregulation of Wnt signaling
pathway plays a role in the pathogenesis of CML. How-
ever, b-catenin amino-terminal mutations are not
observed or are very rare and therefore are not the
underlying mechanism of activated Wnt signaling in
CML [54]. There must be other mechanisms for deregu-
lating canonical Wnt signaling in CML. Wnt signaling

genes are also overexpressed and may be pathologically
reactivated in other neoplastic transformation of mature
B cells, such as chronic lymphocytic leukemia (B-CLL).
Uncontrolled Wnt signaling may contribute to defects
in apoptosis that characterizes this malignancy [55,56].
Epstein-Barr Virus (EBV) is consistently detected in the

endemic form of Burkitt’s lymphoma (BL). An increase
in both free and total b-catenin was seen in EBV-infected
BL cells compared to EBV-negative cells [57]. The invol-
vement of Wnt/b-catenin pathway in cell-cycle regula-
tion, proliferation and invasion contributing to enhanced
proliferative and metastatic properties of multiple mye-
loma (MM), were documented [58]. Furthermore, b-cate-
nin small interfering RNA treatment inhibited the
growth of multiple myeloma tumors in a xenograft
model. As a result, b-catenin is the attractive novel target
for treating multiple myeloma and other hematologic
malignancies with aberrant canonical Wnt signaling [59].
Aberration of Wnt canonical pathway (WCP) may exist
in mantle cell lymphoma(MCL) and appears to promote
tumorigenesis in MCL. MCL tumors and cell lines highly
and consistently expressed Wnt3 and Wnt10. Then, b-
catenin was localized to the nucleus and transcriptionally
active in MCL cell lines examined and more than half of
the MCL tumors showed nuclear localization of b-cate-
nin by immunohistochemistry, which obviously corre-
lated with the expression of the phosphorylated/inactive
form of GSK-3b(pGSK-3b) [60]. Of the clinical para-
meters, continuous pGSK-3b status had a significant cor-
relation with absolute lymphocyte count in blood and
negative pGSK-3b expression was significantly correlated
with a longer overall survival in MCL [61]. Frequent b-
catenin overexpression and accumulation may play an
important part in the development of cutaneous lympho-
mas and it’s mechanisms may not be associated with
exon 3 mutation but others [62]. Nuclear localization of
b-catenin was detected in extranodal marginal zone lym-
phoma by immunohistochemistry [63]. Scientists have
revealed that esearchethacrynic acid (EA) and the anti-
fungal agent ciclopiroxolamine (cic) could inhibit Wnt/b-
catenin signalling in the myeloma cell line OPM-2 and
three lymphoma cell lines (OCI-LY8-LAM-53, SU-DHL-
4 and Raji) in vitro and led to apoptosis and a significant
decrease of viability in lymphoma and its cell lines [64].
The Hedgehog (Hh) inhibitor, cyclopamine, and the Wnt
inhibitor, quercetin, could suppress the growth of a num-
ber of leukemia and lymphoma cells [65]. Therefore,
there is great potential that Wnt/b-catenin pathway can
act as a therapeutic target of lymphoma and myeloma.

Conclusion and future directions
Wnt canonical signaling pathway is not only involved in
cell survival, differentiation, apoptosis and maintenance
of homeostasis, but also related to the pathogenesis of
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many carcinomas and hematological malignancies.
Moreover, Wnt/b-catenin pathway has been revealed to
be associated with angiogenesis of tumors. Its aberration
has been detected in leukemia, myeloma and lymphoma.
Canonical Wnt signaling may act as a potentially useful
therapeutic target for hematological malignancies.
Ultimately, further investigation is needed to interfere
with Wnt signaling which may lead to new anti-cancer
therapies.
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