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Abstract

Background: Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and
characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified
their significant role in both benign and malignant human diseases including PC progression and metastasis.
However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues
from PC patients.

Methods: In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC
progression in (KrasG12D;Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to
pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR.

Results: In agreement with previous studies on human PC, we observed a progressive increase in the expression of
mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of
PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the
increased expression of inflammatory cytokines IFN-γ (p < 0.0062), CXCL1 (p < 0.00014) and CXCL2 (p < 0.08) in the
pancreas of KC mice, which are known to induce mucin expression. Further, we also observed progressive increase
in inflammation in pancreas of KC mice from 10 to 50 weeks of age as indicated by the increase in the
macrophage infiltration. Overall, this study corroborates with previous human studies that indicated the aberrant
overexpression of MUC1, MUC4 and MUC5AC mucins during the progression of PC.

Conclusions: Our study reinforces the potential utility of the KC murine model for determining the functional role
of mucins in PC pathogenesis by crossing KC mice with corresponding mucin knockout mice and evaluating mucin
based diagnostic and therapeutic approaches for lethal PC.
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Introduction
Pancreatic cancer (PC) has an extremely poor prognosis
with a five year survival rate of less than 6% [1] and a
median survival of approximately 5-6 months after being
diagnosed. This high mortality rate of PC is due to its
late clinical presentation with approximately 80% of the
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patients having metastatic disease at the time of diagno-
sis [2]. Further, PC exhibits an unusual resistance to
current chemo- and radiotherapies, which are mainly
directed for palliative care [3]. Early detection of PC
remains a clinical challenge because of its silent nature,
retroperitoneal location, small size of precursor lesions
and unavailability of early stage tissue and serum sam-
ples from PC patients.
Molecules that are specifically overexpressed in tumor

tissues not only serve as useful diagnostic markers but
also as potential targets for therapeutic intervention.
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Serum-based molecular markers such as cancer antigen
125 (CA125), antigen SC6 (SC6-Ag), pyruvate kinase
isoenzyme type 2 (M2-PK), macrophage inhibitory cyto-
kine 1 (MIC-1) [4] and the most commonly used PC
marker CA19-9 lack sensitivity, specificity or reproduci-
bility and hence cannot be used routinely for diagnosing
PC. Due to unavailability of early stage PC tissues, genet-
ically engineered mouse models of PC progression serve
as a reliable source of early stage lesions and serum sam-
ples and can potentially help in understanding the mo-
lecular alterations at the earliest stages of the disease for
identifying potential biomarkers and novel targets for
therapeutic intervention.
Mucins are high molecular weight glycoproteins that

form a physical barrier to protect the epithelial cells
under normal physiological conditions. However, altera-
tions in mucin expression, localization or glycosylation
patterns have been associated with cancer development
and contribute to enhanced transformation, cancer cell
growth, and decreased immune surveillance [5,6]. Fur-
ther, due to their aberrant overexpression in several epi-
thelial malignancies [7,8], mucins are recognized as
attractive targets for therapy and diagnosis [9]. Our pre-
vious studies have established that human PC is charac-
terized by an altered pattern of mucin expression at
different stages of tumor progression [10,11].
MUC1, MUC4, MUC5AC are the most differentially

overexpressed mucins in human PC [8,10,11]. While
MUC4 and MUC5AC are undetectable in benign pan-
creatic diseases and normal pancreas [10,11], their ex-
pression increases progressively with the advancement
of PC to an extent that both genes are among the top
differentially overexpressed genes in PC [12]. Import-
antly, overexpression of MUC1, MUC4 and MUC5AC
are associated with poor survival [13,14] and serve as
potential tumor markers for PC [15]. MUC1 is a trans-
membrane glycoprotein that is expressed in normal pan-
creas [16] but overexpressed and aberrantly glycosylated
in >90% of metastatic PDAC and its aberrant expression
has been associated with increased metastasis and poor
prognosis of PC and other cancers [8,17-19]. Knock-
down of MUC1 and MUC4 expression decreases growth
and metastatic potential of PC cells indicating that
mucins play a functional role in PC progression
[5,20,21].
While mucins have been studied extensively in late

stage clinical samples and PC cell lines, limited informa-
tion is available on early stage lesions of PC because pre-
cursor lesions observed in patient samples are in tandem
with the aggressive form of the disease. Thus, mucin ex-
pression in these early lesions is suggestive but not de-
finitive as an early event in PC. Due to the lack of
availability of early-stage tissues and samples from
patients, the expression profiles of mucins and their true
potential as early biomarkers of PC remains to be tested.
Since MUC1, MUC4 and MUC5AC have considerable
homology with their murine counterparts [22-25], the
present study was aimed to determine the expression
profile of Muc1, Muc4 and Muc5ac in KrasG12D spon-
taneous mouse model for PC. This mouse model closely
recapitulate the genetic and histopathological features of
human PC, and therefore it can potentially help in
understanding the molecular alterations at earliest stages
of the malignant disease for identifying potential biomar-
kers and novel therapeutic targets. Hence, they serve as
suitable preclinical models to evaluate therapeutic and
preventive strategies and provide a rare opportunity to
identify and validate mucin based early biomarkers for
PC [26].

Methods
Experimental animals
The B6.129-Krastm4Tyj (01XJ6) and B6. FVB-Tg (Ipf1-
cre)1Tuv (01XL5) mice were obtained from the
NCI Mouse Models of Human Cancers Consortium
(MMHCC) (Frederick, MD, USA). These animals (LSL-
KrasG12D and Pdx1-Cre) were crossed to remove the
LSL cassette in order to activate KrasG12D (KrasG12D;
Pdx1-Cre/floxed KrasG12D) allele in the pancreas of the
mouse. The F1 progeny was genotyped for Kras as well
as Pdx1-Cre by using specific primers for Kras and
Pdx1-Cre by Polymerase chain reaction (PCR). Animals
that were positive for KrasG12D and Pdx1-Cre expressed
the mutated KrasG12D allele in the pancreas. The floxed
KrasG12D animals (positive for both Kras and Pdx1-Cre)
and their contemporary littermates positive for either
LSLKrasG12D or Pdx1-Cre were euthanized at 7, 10, 25,
30, 40 and 50 weeks of age (eight animals/group/time
point). Throughout the experiment, animals were pro-
vided with food and water ad libitum and subjected to a
12-h dark/light cycle. Animal studies were performed in
accordance with the U.S. Public Health Service “Guide-
lines for the Care and Use of Laboratory Animals” under
an approved protocol by the University of Nebraska
Medical Center Institutional Animal Care and Use Com-
mittee (IACUC).

DNA isolation and genotyping
Animals were tail clipped at 10-14 days of age and DNA
was isolated using standard protocol (Maxwell 16 mouse
tail DNA purification kit, Promega, Madison, WI, USA).
The genotyping of Kras and Pdx1-Cre was performed by
PCR using the following primer sequences Kras K006F-
5’-CCT TTA CAA GCG CAC GCA GAC TGT AGA-3’,
Kras K005R-5’- AGC TAG CCA CCA TGG CTT GAG
TAA GTC TGC A-3’ and Pdx1-Cre F-5’-CTG GAC
TAC ATC TTG AGT TGC -3’ and Pdx1-Cre R-5’-GGT
GTA CGG TCA GTA AAT TTG -3’. The PCR



Table 1 Real time PCR primer sequences

Gene Primer Sequence

IFN-γ For: 5’-ACTGGCAAAAGGATGGTGAC-3’

Rev: 5’-TGAGCTCATTGAATGCTTGG-3’

CXCL-1 For: 5’-CTTGCCTTGACCCTGAAGC-3’

Rev: 5’-AGGTGCCATCAGAGCAGTCT-3’

CXCL-2 For: 5’-TCAAGAACATCCAGAGCTTGAG-3’

Rev: 5’-TTCAGGGTCAAGGCAAACTT-3’

Muc5AC For: 5’-CCTCTCAGAGGAATGTGACTCTGCGC-

3’Rev:5’-CCAGGCAGCCACACTTCTCAACCT-3’

mMuc4 For: 5’-GAGGGCTACTGTCACAATGGAGGC-3’

Rev:5’-AGGGTTCCGAAGAGGATCCCGTAG-3’

mMuc1 For: 5’-CCCTACCTACCACACTCACGGACG-3’

Rev:5’-GTGGTCACCACAGCTGGGTTGGTA-3’
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amplification reaction contained 1 μl of genomic DNA
(100 ng), 0.3 μl 10 pmol of each primer, 10 μl of 2X PCR
master mix (DNA Polymerase, 400 μM each of dATP,
dGTP, dCTP, dTTP and 3 mM MgCl2) and 8.4 μl of auto-
claved water. PCR amplification was carried out in a
programmable thermal cycler (MJ Research, Minnesota,
USA) using the following program: denaturation for 5 min
at 95°C, followed by 40 cycles of amplification by denatur-
ation for 1 min at 94°C, annealing at 2 min at 59°C, elong-
ation for 45 sec at 72°C and a final extension of 10 min at
72°C. The PCR products were resolved on 1.5% agarose gel
to confirm the genotype of each animal based on the amp-
lification of target regions.

Isolation of RNA
Total RNA was isolated from the pancreas of floxed
KrasG12D (KrasG12D;Pdx1-Cre) and unfloxed KrasG12D

(LSLKrasG12D) by using the mirVana™ miRNA Isolation
Kit (Applied Biosystems/Ambion, Austin, TX, USA). RNA
concentration was measured by using a NanoDrop™

Spectrophotometer (NanoDrop Technologies Inc., Wil-
mington, DE, USA), and the quality was analyzed with a
bioanalyzer (Agilent technologies, Waldbronn, Germany).
Samples with good integrity were used for cDNA
synthesis.

cDNA synthesis and real time PCR
Total RNA was isolated from the pancreas and the cDNA
was synthesized by reverse transcription. Reverse transcrip-
tion of RNA was performed by adding 10 μl of (2000 ng)
total RNA, 1 μl of Oligo (dT) and 1 μl of 10 mM dNTP
incubated at 65°C for 5 min and immediately chilled on
ice. Then, the master mix containing the following compo-
nents were added (4 μl of (5X) first strand RT buffer, 1 μl
of 0.1 M DTT, 1 μl of RNaseOUT (RNase Inhibitor) and
incubated at 42°C for 2 min. Finally, 1 μl (50 units) of
SuperScript II RT was then added to each tube mix, and
incubated at 42°C for 50 min followed by 70°C for 15 min
in order to destroy the superscript II RT (Invitrogen, Carls-
bad, CA, USA).
Real time primers for all the mouse genes (Muc1, Muc4,

Muc5AC, IFN-γ, CXCL1, and CXCL2) were designed using
Primer 3 software (Table 1). Real-time PCR was performed
on the Light cycler 480 II PCR System, (Roche Applied Sci-
ence, Indianapolis, IN, USA). Real-time PCR reactions
were performed in triplicate, and non-template controls
(NTCs) and standard curve were run for each assay under
similar conditions. Real time PCR was performed in a
10 μl reaction volume containing 5 μl 2X SBYR green Mas-
ter mix (Roche applied science, Indianapolis, IN, USA),
3.2 μl of autoclaved nuclease free water, 1 μl of diluted RT
product (1:10) and 0.2 μl each of forward and reverse pri-
mer (5pmol/μl). The cycling conditions were as follows:
95°C for 10 min, followed by 40 cycles of 95°C for 15 sec
and 60°C for 1 min. Gene expression levels were normal-
ized to the level of β-actin expression and were reported
relative to the expression level in RNA from corresponding
normal controls.

Antibodies
Anti-mouse Muc1 (mouse monoclonal antibody recog-
nizing the cytoplasmic tail of Muc1), and Anti-mouse
Muc5AC (mouse monoclonal) antibody were purchased
from AbcamW (Cambridge, MA, USA). The anti-Muc4
(4A-rabbit polyclonal) antibody used in this study was
designed by us and developed by GenScript (Piscataway,
NJ, USA). Rabbits were immunized with a 15 amino-
acid peptide specific to the tandem repeat region of
mouse Muc4 (CAGYRPPRPAWTFGD). Analysis of tis-
sue sections pre-incubated with the blocking peptide
was conducted in order to confirm the specificity of the
antibody.

Hematoxylin and eosin staining (H&E)
The F1 progeny of (N=8) floxed KrasG12D (KrasG12D;
Pdx1-Cre) and unfloxed KrasG12D (LSLKrasG12D) animals
were sacrificed at 7, 10, 25, 30, 40 and 50 weeks of age. A
section of the pancreas from these animals was fixed in
10% formalin (Fisher Scientific, Fair Lawn, NJ, USA). The
tissues were then embedded in paraffin and serial tissue
sections (4 μm thick) were cut. The sections were depar-
affinized using EZ-DeWaxTM (Bio genex, San Roman
CA, USA) and dehydrated gradually. Subsequently, the
sections were stained with hematoxylin and eosin (H&E)
stains and examined under a light microscope as
described [27].

Immunohistochemistry (IHC) analysis
Pancreatic tissues isolated from transgenic mice of dif-
ferent ages were embedded in paraffin after being fixed
in 10% formalin for at least 48 h. Subsequently, 4 μm
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sections of paraffin-embedded pancreas were sliced and
prepared for histological analysis. After placing the slides
in an oven at 56°C overnight, these were deparaffinized
after washing several times in xylene (Fisher Scientific,
Fair Lawn, NJ, USA). Tissues were then rehydrated with
decreasing concentrations of ethanol. After incubating
the tissues for 30 min in the presence of 5% H2O2 in
methanol to block the endogenous peroxidase, tissue
sections were blocked in 2.5% horse serum for 2 h.
Without washing the tissue sections, the corresponding
primary antibodies were added at the optimum concen-
trations, which were determined after standardization
experiments. The corresponding dilutions used in these
sections were: 1:200 anti-Muc1, 1:4000 anti-Muc4, 1:400
anti-Muc5AC. Following overnight incubation, sections
were washed three times with PBST and the horseradish
peroxidase-conjugated secondary antibody was added
for 30 min. IHC staining of the respective mucins
were developed after colorimetric detection with a 3,3’-
diaminobenzidine (DAB) reagent kit (Vector Laboratories,
Burlingame, CA, USA) followed by hematoxylin staining.
Tissues were then dehydrated with increasing concentra-
tions of ethanol followed by a xylene wash. IHC staining
was evaluated by a pathologist after mounting with Per-
mount mounting medium (Fisher Scientific, Fair Lawn,
NJ, USA). Expression of each mucin was scored on a
scale of 0–3 where 0-negative, 1-weak, 2-moderate and
3- represented strong immunoreactivity to the antibody
used. Further the percentage of cells positive for the
antibody was scored on a scale of 1–4 where 1: 0–25%
cells positive; 2: 26–50% positive; 3: 51–75% positive;
and 4: 76–100% positive. The composite score was
then obtained by multiplying the staining intensity and
the percentage of immunoreactive cells and it ranged
from 0 to 12.

Statistical analyses
Fold change in the mRNA expression of various genes
were calculated by ΔΔCt method. Mouse β-actin was
used for normalization. A change of 2 fold or more (on
the log scale 0.3 or more) was considered statistically
significant. A Student’s t-test was used to calculate the
significance in the staining pattern for each mucin at dif-
ferent stages of PC progression. All p-values <0.05 were
considered statistically significant.

Results
Pancreatic cancer progression
The floxed KrasG12D animals (i.e. positive for both
KrasG12D and Pdx1-Cre) and their contemporary litter-
mates harboring either LSLKrasG12D or Pdx1-Cre were
euthanized at 7, 10, 25, 30, 40 and 50 weeks of age (N =
8 for each time point) and individual pancreas was
resected and weighed. The average weight of the
pancreas in the KrasG12D;Pdx1-Cre animals was signifi-
cantly higher (p < 0.0001) than those of age-matched
LSLKrasG12D control animals. Importantly, the average
pancreas weight increased from 25 weeks (475 mg) to
50 weeks (863 mg) of age in KrasG12D;Pdx1-Cre while
no significant change was observed in control animals
(Figure 1A). These differences in the pancreas weight
suggested the occurrence of pathological changes in
KrasG12D;Pdx1-Cre mice.
Upon microscopic examination of the H&E stained tis-

sue sections, no lesions were observed in the pancreas of
LSLKrasG12D mice (Figure 1B1-1B4), while KrasG12D;
Pdx1-Cre mice pancreas showed the presence of PanIN
lesions as early as 10 weeks of age, which progressively
developed into PDAC by 50 weeks of age (Figure 1B5-
1B8). Specifically, at 10 weeks of age, mostly PanIN-I
lesions were observed (Figure 1B5), which progressed to
PanIN-II and III lesions at 25 weeks of age, replacing the
majority of pancreatic parenchyma (Figure 1B6). At
40 weeks of age, the majority of parenchyma was
replaced by advanced PanIN III lesions and extensive
desmoplasia (Figure 1B7), and at 50 weeks of age,
the pancreas parenchyma was replaced with PDAC
(Figure 1B8). Metastatic lesions involving liver, lung and
small intestines were observed at 50 weeks of age in 60-
70% of the KrasG12D;Pdx1-Cre mice (Figure 1C-1E).

Muc1 expression during pancreatic cancer progression in
KrasG12D mouse model
Previous reports have shown that MUC1 is overex-
pressed during the progression of human PC and it plays
an important role in cancer invasion and metastasis [6].
In this study, real time-PCR analysis showed an increase
in the expression of Muc1 from 10 weeks (fold change
2.5) to 50 weeks (fold change 6.9) of age in the pancreas
of KrasG12D;Pdx1-Cre mice in comparison to the
LSLKrasG12D control mice (Figure 2A). The pancreas of
unfloxed KrasG12D mice expressed basal level of Muc1
(Figure 2A). IHC analysis showed an elevated protein ex-
pression of Muc1 in the pancreas of KrasG12D;Pdx1-Cre
mice starting from 10 weeks of age (Figure 2B-2G). The
intensity of Muc1 expression increased in pancreatic tis-
sues isolated from 10 weeks to 50 weeks of age with an
increase in composite score from 3.6 to 11 (p < 0.0001)
(Figure 2H). Muc1 protein was predominately loca-
lized at the membrane of pancreatic ductal cells. The
IHC results are in agreement with real time-PCR data,
as a basal level expression of Muc1 was observed in
the pancreas of unfloxed LSLKrasG12D mice, which did
not increase even in 50 weeks old mice (Figure 2I).
Further, Muc1 expression was also observed in the
metastatic lesions involving liver, small intestines and
lungs at 50 weeks of age in KrasG12D;Pdx1-Cre animals
(Figure 2J-2L).



Figure 1 Changes in the pancreas weight and histology during the progression of pancreatic cancer in KrasG12D mouse model. (A)
Weight of pancreas during the mice pancreatic cancer progression in KrasG12D transgenic mouse model compared to LSL-KrasG12D mice
(*** p-value <0.0001). (B1-B4) Light microscopic pictures (100x) of H&E stained pancreatic sections from unfloxed KrasG12D (LSL-KrasG12D) at 10, 25,
40 and 50 weeks of age, respectively. (B5-B8) Light microscopic pictures (100x) of H&E stained pancreatic sections showing PanIN lesions from
floxed KrasG12D (KrasG12D;Pdx1-Cre) at 10, 25, 40 and 50 weeks of age, respectively. (C, D, E) Metastatic lesions from liver, small intestines and lung
stained with H&E (100x).
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Expression of Muc4 during pancreatic cancer progression
in KrasG12D mouse model
Previous studies from our lab have shown that MUC4 is
aberrantly overexpressed in human PC [6] and has a role
in the progression and metastasis of PC cells [5,20,28].
We determined the expression pattern of Muc4 glyco-
protein during the initiation and progression of PC in
the KrasG12D;Pdx1-Cre mouse model (10-50 weeks) by
real time-PCR and IHC. A significant increase in Muc4
transcripts was observed in the pancreas of KrasG12D;
Pdx1-Cre mice from 10 (fold change 2.9) to 50 weeks
(fold change 54) of age (Figure 3A). Similar to normal
human pancreas, no expression of Muc4 was observed
in the pancreas of LSLKrasG12D mice. Similarly, IHC
analysis showed a progressive increase in Muc4 protein
levels in the pancreas of KrasG12D;Pdx1-Cre mice from 7
to 50 weeks of age (Figure 3B-3G). These results were in
agreement with real time-PCR results as there was a sig-
nificant (p < 0.0001) increase in the composite score for
Muc4 expression in the pancreas of KrasG12D;Pdx1-Cre
mice from 1.6 at 10 weeks to 7.0 by 50 weeks of age
(Figure 3H). Muc4 expression was observed in both
membrane and cytoplasm of pancreatic ductal cells asso-
ciated with PanIN lesions, while no expression was
detected in the adjoining acinar and stromal cells. The
pancreas of LSLKrasG12D mice was completely negative
for Muc4 even at 50 weeks of age (Figure 3I). High ex-
pression of Muc4 was also observed in the metastatic
lesions involving small intestines as well as liver and
lungs of 50 weeks old KrasG12D;Pdx1-Cre mice
(Figure 3J-3L).

Expression of Muc5ac during pancreatic cancer
progression in KrasG12D mouse model
It has been previously established that the expression
of MUC5AC, a gel-forming secretory mucin increases
in tandem with the increase in grade of PanIN lesions
and PDAC. However no expression of MUC5AC has
been detected in the normal human pancreas [19,29].
In the present study, real time-PCR analysis showed
an increase in the expression of Muc5AC in the pan-
creas of KrasG12D;Pdx1-Cre mice from 10 weeks (fold
change 1.2) to 50 weeks (fold change 3.0) of age when
compared to LSLKrasG12D mice (Figure 4A). Real
time-PCR analysis in the pancreas of LSLKrasG12D

mice showed no change in the expression of Muc5AC
across the different age groups (Figure 4A). Similarly,
IHC analysis showed a gradual increase in the protein
expression of Muc5AC in the pancreas of KrasG12D;
Pdx1-Cre mice (Figure 4B-4G). The composite scores



Figure 2 Expression pattern of Muc1 during the progression of pancreatic cancer in KrasG12D mouse model. (A) Muc1 mRNA expression
was determined by quantitative real time PCR. (B, C, D, E, F, and G) Muc1 protein expression during the progression of pancreatic cancer in
KrasG12D mouse model was analyzed by IHC. The formalin fixed pancreatic tissue collected during mouse PC progression (10 weeks to 50 weeks)
were paraffin embedded and 4 μm tissue sections were cut and stained with anti-Muc1 antibody. Light microscopic pictures (200x) are shown.
(H) Composite scores of pancreatic tissues of KrasG12D;Pdx1-Cre mice stained with anti-Muc1 antibody. (I) Normal pancreas isolated from 50 week
old mice showing expression of Muc1 in normal ducts. (J, K, L) Muc1, expression in the metastatic lesions involving liver, small intestines and
lungs, respectively isolated from 50 week KrasG12D mice.
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for Muc5AC expression in pancreatic tissues increased
from 0.8 (i.e. no expression) at 10 weeks of age to 9.5
(p < 0.0001) in 50 weeks old KrasG12D;Pdx1-Cre mice.
No expression of Muc5AC was detected in the pancreas
of age-matched unfloxed LSLKrasG12D mice (Figure 4I).
The IHC analysis of metastatic lesions involving liver,
small intestines and lungs at 50 weeks of age showed
strong Muc5AC expression (Figure 4J-4L).

Inflammation during the progression of pancreatic cancer
Oncogenic Kras has been implicated in the activation
of the NF-κB pathway which induces inflammatory
responses in PC [30] and the production of cytokines
from tumor cells which result in the generation of a
pro-inflammatory tumor microenvironment in the
bronchiolar epithelium [31]. As mucin genes are
known to be regulated under inflammatory conditions
[32-34], we wanted to investigate whether immune
infiltration occurred early during PC development.
There was no inflammation in the pancreas at 7 weeks
of age (postnatal), but at 10 weeks of age, mild
inflammation reaction was observed in 5% of the
pancreatic tissues (Figure 5A). Subsequently, chronic
inflammation was observed in 65% of the pancreatic
tissues in 25-30 weeks old KrasG12D;Pdx1-Cre mice
which increases to 75% by 40-50 weeks of age with a
strong desmoplastic reaction (Figure 5A). This inflam-
mation scoring was further corroborated with the in-
filtration of macrophages (F4/80) in the cancer tissue
(Figure 5G and 5H) with a composite score of 4.5
(p < 0.05) (Figure 5D) compared to 10 weeks of age
(Figure 5E and 5F), where mostly PanIN I were
observed.
Expression of inflammatory cytokines/chemokines

such as IFN-γ, CXCL1 and CXCL2 were measured by
performing real time-PCR using total RNA isolated from



Figure 3 Expression pattern of Muc4 during the progression of pancreatic cancer in KrasG12D mouse model. (A) Muc4 mRNA expression
was determined by quantitative real time PCR. (B, C, D, E, F, and G) Muc4 protein expression during the progression of pancreatic cancer in
KrasG12D mouse model (H) Composite scores of pancreatic tissues of KrasG12D;Pdx1-Cre mice stained with Muc4 antibody. (I) Normal pancreas
from 50 week old mice were negative for Muc4 expression. (J, K, L) Muc4 expression in the metastatic lesions involving liver, small intestines and
lungs, respectively in 50 weeks old KrasG12D mice.
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mouse pancreas collected at 50 weeks of age. We observed
a significantly higher expression of CXCL1 (p < 0.00013),
CXCL2 (p < 0.085) and IFN-γ (p < 0.0062) in KrasG12D;
Pdx1-Cre animals compared to LSLKrasG12D control ani-
mals (Figure 5B). Correspondingly, an increased infiltra-
tion of lymphocytes in pancreatic tissues of KrasG12D;
Pdx1-Cre mice correlated with the increased inflamma-
tion and increased inflammatory cytokines detected in
the pancreas of KrasG12D;Pdx1-Cre mice (Figure 5C).

Discussion
PC is an extremely lethal disease, with a five year survival
rate of less than 5% and a median survival period of 5-
6 months. At the time of diagnosis, PC metastasizes to re-
gional lymph nodes and distant organs and responds
poorly to current chemo- and radiation therapies resulting
in a high recurrence rate [1-3]. The poor prognosis and
weak therapeutic responses are a consequence of late
diagnosis of the majority of PC patients, primarily due to
lack of early symptoms and reliable early diagnostic mar-
kers [2]. Therefore, there is an urgent need to identify spe-
cific early biomarkers for early diagnosis and molecular
targets for effective treatment of PC.
Previous studies done in human tissues have indicated

an aberrant overexpression of various mucins in several
epithelial malignancies including pancreatic, ovarian and
lung cancers [7,10]. Thus, not surprisingly, their poten-
tial in the diagnosis and targeted treatment of PC has
been suggested and tested over the last decades [35,36].
In cancer cells, mucins play an important role in cell
growth, differentiation, transformation, adhesion, inva-
sion and immune evasion [5,8,20]. In human PC tissues,
MUC1, MUC4, and MUC5AC are aberrantly upregu-
lated and their expression has been linked to the pro-
gression and poor prognosis of the disease. However,
due to the late diagnosis of PC, the status of mucin ex-
pression in the earliest stages of the disease remains
unknown.



Figure 4 Expression pattern of Muc5AC during the progression of pancreatic cancer in KrasG12D mouse model. (A) Muc5AC mRNA
expression was determined by quantitative Real Time PCR. (***p-value =0.0002) (B, C, D, E, F, and G) Muc5AC protein expression during the
progression of pancreatic cancer in KrasG12D mouse model was analyzed by IHC. (H) Composite scores of pancreatic tissues of KrasG12D;Pdx1-Cre
mice stained with Muc5AC antibody. (I) Normal pancreas from control mice (50 weeks) was stained negative for Muc5ac expression. (J, K, L)
Muc5AC expression in the metastatic lesions involving liver, small intestines and lungs, respectively, in KrasG12D;Pdx1-Cre mice.
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Genetically engineered mouse models can facilitate the
discovery of tumor biomarkers in order to design power-
ful techniques to diagnose, treat, and monitor thera-
peutic efficacy in cancer patients more effectively [37].
Mouse Muc1 shares 34% homology with human MUC1
in the tandem repeat region mainly sharing threonine,
serine and O-linked sugars but it is 87% homologous at
transmembrane and cytoplasmic regions. Due to high
degree of conservation in the promoter region (74%),
the patterns of expression of mouse Muc1 is quite simi-
lar to human MUC1 [25]. Similarly, the mouse and
human MUC4 have identical exon/intron structure [38].
Further, human MUC4 homology analysis with mouse,
dog, rat, and chicken Muc4 revealed that NIDOgen-like
(NIDO), Adhesion associated domain of MUC4 and
Other Proteins (AMOP), von Willebrand factor D
(vWD), Epidermal Growth Factor (EGF), transmembrane
(TM), and cytoplasmic tail (CT) domains are highly con-
served across the species suggesting that individual
domains evolved from common ancestral domains and
share common functions [22]. In the case of mouse
Muc5AC (located on chromosome 7), it shares 52%
homology with human MUC5AC (located on human
chromosome 11) and TATA box regions in both the spe-
cies are fully conserved [39]. Because mucin genes are
conserved between humans and mice, such mouse mod-
els provide a unique opportunity to examine the expres-
sion profile and possibly functional role of mucin genes
at the earliest stages of the disease.
We used a well characterized KrasG12D;Pdx1-Cre

spontaneous PDAC mouse model, which recapitulates
human PC genetically, histologically and pathologically
[40], to investigate if the expression pattern of murine
mucins (i.e. Muc1, Muc4 and Muc5AC) mirrors the
altered mucin profile of the human disease. The
KrasG12D;Pdx1-Cre genetically engineered mouse PDAC
model was chosen over other spontaneous PDAC mod-
els because it recapitulates the full spectrum of human
PanIN lesions, which are recognized as early events in
PC. Moreover, mass spectrometry proteomics analysis in



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Inflammation during the progression of pancreatic cancer in KrasG12D mouse model. (A) Percentage of inflammation in the
pancreas of 7 to 50 weeks old KrasG12D;Pdx1-Cre mice evaluated on H&E stained tissue sections. (B) Expression of mRNA of the inflammatory
cytokines/chemokines IFNγ, CXCL1 and CXCL2 in the pancreas of 50 weeks old KrasG12D;Pdx1-Cre mice compared to LSLKrasG12D (i.e. normal,
unfloxed) animals. (C) Infiltration of lymphocytes into the pancreas of KrasG12D;Pdx1-Cre mice. Lymphocytes (L) that infiltrated into the pancreas of
KrasG12D;Pdx1-Cre mice are shown within the blue boundaries in the H&E stained tissues. Light microscopic pictures are magnified 200x for each
age group. D) Composite scores of pancreatic tissues of KrasG12D;Pdx1-Cre mice stained with F4/80 antibody for macrophages. (E, F, G, H) F4/80
marker expression for macrophages during the progression of pancreatic cancer in KrasG12D;Pdx1-Cre mouse model was analyzed by IHC.
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this mouse model identified a distinct serum proteome
having preinvasive PanIN lesions compared to healthy
controls [40], emphasizing its utility as a suitable plat-
form to understand early stages of PC that may lead to
the optimization of diagnostic and therapeutic techni-
ques against this malignancy.
MUC1 is a transmembrane mucin with basal level ex-

pression in normal epithelial cells lining various organs
including the pancreas. It has been shown to be overex-
pressed and aberrantly glycosylated in PC and play a role
in the invasion and metastasis of PC [6,8,19]. Overex-
pression of MUC1 has been observed during the early
stages of PC development, with a subsequent increase in
expression in invasive carcinoma, both in humans and
p48; KrasG12D; MUC1.Tg mouse model [18,41]. Simi-
larly, IPMNs like lesions from KrasG12D;TGFα;Pdx-1-Cre
transgenic mice showed elevated Muc1 and Muc5AC
expression at 3 months of age [42] and recent reports
also revealed that KrasG12D;P48-Cre; Muc1KO mice had
slower tumor progression and metastasis compared to
both KrasG12D;P48-Cre and KrasG12D;P48-Cre; MUC1
transgenic animals [43]. On the other hand, Muc1 null
mice are phenotypically normal and exhibit normal
reproduction and survival rate [17]. Previous studies in
human pancreatic tissues also reported an increase in
MUC1 expression which correlated with grade of PanIN
lesions and PDAC [44]. In our study, mRNA and protein
levels of Muc1 progressively increased from 10 weeks to
50 weeks of age in the pancreas of KrasG12D;Pdx1-Cre
mice compared to unfloxed LSLKrasG12D mice, and cor-
related with the development of PDAC from PanIN pre-
cursor lesions (Figure 2). Thus, the expression of Muc1 in
the KrasG12D;Pdx-1-Cre spontaneous PDAC progression
model corroborates its resemblance with the human
disease.
MUC4 is a high molecular weight, type I transmem-

brane glycoprotein that is overexpressed in PC but ab-
sent in normal pancreas and chronic pancreatitis [10].
Although previous studies in human specimens have
shown an increased expression of MUC4 in PC progres-
sion and metastasis [10,11], it remains unknown if
MUC4 overexpression is an early event in PC. MUC4
expression has been observed in precursor PanIN lesions
in clinical samples [45], which is suggestive of, but not a
definitive proof of MUC4 overexpression as an early
event in PC. In the present study, we observed that
Muc4 mRNA and protein levels increased progressively
from 10 weeks of age, which is when we observed the
appearance of PanIN I lesions and continued to increase
up to 40 weeks of age where we observed advanced
PanIN III lesions (Figure 3). Our findings establish that
Muc4 expression is indeed an early event in PC progres-
sion, which recapitulates the MUC4 expression profile in
human PC. Future studies using Muc4 knock out and
MUC4 transgenic animals on the KrasG12D murine back-
ground will help delineate the molecular mechanisms
and contribution of Muc4 in PC progression and metas-
tasis. Nonetheless, the present study establishes the suit-
ability of KrasG12D model for evaluating the potential of
Muc4 as an early diagnostic marker and therapeutic
target.
The expression of the gel-forming secretory mucin

MUC5AC in human PC increases progressively with the
increase in grade of PanIN lesions and PDAC, whereas it
is undetected in normal pancreas [19,29]. Similar to the
expression of the transmembrane mucins MUC1 and
MUC4, MUC5AC expression has also been related to
PC progression [46] and it is associated with a shorter
survival period of PC patients [13]. In the present study,
Muc5AC expression in the pancreas of KrasG12D;Pdx1-
Cre spontaneous PDAC mice increased progressively
from 10 to 50 weeks of age (Figure 4) as compared to
unfloxed LSLKrasG12D mice, corroborating studies of the
human disease. It is important to emphasize the particu-
lar usefulness of the detection of Muc5AC in early
lesions of PC, as its secretory nature is advantageous for
non-invasive serum based diagnostics.
Previous studies with human tissues have implicated

Kras activation in rigorous inflammatory responses in
PC, mainly by activating the NF-κB pathway [30]. In
agreement with these studies, recent studies reported
the observation of proinflammatory responses in the
KrasG12D;PdxCre spontaneous PDAC mouse model,
which suggested that chronic inflammation is indeed a
precursor and potentially a key factor in promoting PC
[47]. These studies suggested that constitutive NF-κB ac-
tivation and inflammatory responses induced by onco-
genic Kras are one of the earliest events in PC
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development. Mucins are known to be transcriptionally
regulated by inflammatory cytokines like IFN-γ (MUC4)
[32] and neutrophil elastase (MUC1 and MUC5AC),
which is a serine proteinase secreted by neutrophils dur-
ing inflammation [33,48]. Moreover, a recent study
demonstrated that glycosylation of mucins can be altered
in response to proinflammatory conditions in PC cells
[34]. Given the functional and pathological significance
of MUC1, MUC4 and MUC5AC in PC progression and
their regulation by inflammatory environment in the
human disease, we analyzed the inflammation in the
pancreas of KrasG12D;Pdx1-Cre mice. Increased inflamma-
tion in the pancreas of KrasG12D;Pdx1-Cre spontaneous
PDAC mice correlated with an increase in inflammatory
cytokines/chemokines such as INFγ (p < 0.0062), CXCL1
(p < 0.00014), CXCL2 (p < 0.08) and lymphocyte (Figure 5C)
and macrophage infiltration (Figure 5D, G-H). These
results correlate with an increase in the expression of
Muc1, Muc4 and Muc5AC in the pancreas of KrasG12D;
Pdx1-Cre spontaneous PDAC mouse model, suggesting a
possible link between inflammation and mucin expres-
sion, which further recapitulates the studies done in the
human disease.

Conclusions
Our studies are the first to establish that KrasG12D;Pdx1-
Cre mouse model recapitulates the alterations in mucin
expression observed during the progression of human
PC. Although Kras was the first oncogene identified to
play a critical role in PDAC development, its activity is
involved in PanIN initiation but not sufficient to induce
PDAC by itself [49]. Inflammatory signaling pathways
triggered by oncogenic Kras may synergize with other
critical molecules to upregulate mucin expression during
the early development of PC. The present study provides
the basis to investigate the functional role of specific
mucins in PC initiation and progression by generating
corresponding transgenic and knockout animals and
crossing them with spontaneous models of PC. It will
also be interesting to study the fate of mucin expression
in the mouse pancreas in response to inflammatory
stimuli like smoking and alcohol that induce pancreatic
pathologies. Our studies also establish that KrasG12D;
Pdx1-Cre mouse model is ideally suited to investigate
mucin-based biomarkers and targeted therapies for PC.
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