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Abstract

Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation,
adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly
activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized
as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and
selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed
into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with
advanced indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. In this review, we summarized the
major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent
small-molecule PI3K inhibitors.
Introduction
Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases
that play central role in regulation of cell cycle, apoptosis,
DNA repair, senescence, angiogenesis, cellular metabolism,
and motility [1]. They act as intermediate signaling mol-
ecules and are most well known for their roles in the
PI3K/AKT/mTOR signaling pathway [2,3]. PI3Ks trans-
mit signals from the cell surface to the cytoplasm by
generating second messengers – phosphorylated phospha-
tidylinositols – which in turn activate multiple effector
kinase pathways, including BTK, AKT, PKC, NF-kappa-B,
and JNK/SAPK pathways, and ultimately result in survival
and growth of normal cells [1-5] (Figure 1). Although
the activity of PI3Ks is tightly regulated in normal cells
by internal signals such as PTEN (phosphatase and tensin
homolog deleted from chromosome 10), it has been
recognized that deregulation of the PI3K signaling
pathway is associated with development in one-third of
human cancers [6-9]. Aberrantly activated PI3K pathway
promotes carcinogenesis and tumor angiogenesis [3,10-12].
For example, approximately 30% of breast cancers demon-
strated activating missense mutations of PIK3CA, the gene
encoding the catalytic p110α subunit of class I PI3K, and
the mutated gene provides cells with a growth advantage
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and promotes tumorigenesis [13]. In addition, dysregulated
PI3K pathway signaling has been implicated in conferring
resistance to conventional therapies including biologics,
hormonal therapy, tyrosine kinase inhibitors, radiation, and
cytotoxics in breast cancer, glioblastoma, and non-small
cell lung cancer [2,14]. Other genetic aberrations that drive
the PI3K pathway in cancer include gene amplification
of PI3Ks, loss of the regulatory activity of PTEN, and
activating mutations of receptor tyrosine kinases (RTKs)
such as EGFR and HER2 [13,15-18]. With this background,
PI3K has become recognized within the last decade as a
viable target for novel anti-cancer therapy. Successful drug
design has yielded several classes of potent, selective, and
efficacious small molecule PI3K inhibitors that are cur-
rently at different stages of development. Idelalisib, which
represents the first-in-class oral PI3K p110-δ inhibitor,
was efficacious with an acceptable safety and tolerability
profile in early phase studies, and has progressed into
phase III clinical trials in patients with advanced indolent
non-Hodgkin’s lymphoma (iNHL), chronic lymphocytic
leukemia (CLL) and mantle cell lymphoma (MCL) [19-23].
In this comprehensive review, we provide an overview of
the PI3K signaling pathway in tumorigenesis and highlight
recent advances in the design of small-molecule inhibitors
of PI3K as novel anti-cancer therapies. In addition, this
review discusses the most recent preclinical and clinical
studies of inhibitors targeting the different isoforms of the
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Figure 1 The class I PI3K family. Class I PI3Ks are heterodimeric proteins and comprised of a catalytic p110 subunit complexed with a
regulatory p85 or p101 subunit. The catalytic p110 subunit exists in four isoforms (α, β, δ, and γ), whereas the regulatory p85 subunit in three
isoforms – p85, p55, and p50. Their corresponding upstream receptors and adaptor proteins are also indicated. RTK: receptor tyrosine kinase;
GPCR: G-protein coupled receptors.

Akinleye et al. Journal of Hematology & Oncology 2013, 6:88 Page 2 of 17
http://www.jhoonline.org/content/6/1/88
PI3K enzymes in the treatment of hematological and solid
malignancies.

PI3K signaling pathway in health and tumorigenesis
PI3Ks represent a family of lipid kinases that lie upstream
of complex, intricate, interconnected intracellular signaling
networks [1] (Figure 2). They transduce signals from trans-
membrane receptors such as RTKs and G-protein coupled
receptors (GPCRs) to the cytoplasm – through production
of phosphorylated lipids – to regulate key cellular processes
including proliferation, differentiation, senescence, motility,
and survival [13].
PI3Ks are enzymes of approximately 200–300 kDa in

molecular weight (Figure 3). In human, three distinct
classes of PI3Ks (I – III) have been identified (Table 1).
They differ on basis of their structural characteristics,
substrate specificities, and nature of lipid end-products.
Class I PI3Ks are heterodimers and further divided into 2
subfamilies, IA and IB. Class IA PI3Ks are the most studied
and frequently implicated in cancer [24,25]. Structurally,
class IA PI3Ks comprise of catalytic p110 complexed with
regulatory p85 subunits. The catalytic p110 isoforms
(α, β, and δ) are encoded by the genes PIK3CA, PIK3CB,
and PIK3CD respectively, whereas the regulatory p85
subunit– p85, p55, and p50 isoforms – are encoded by
PIK3R1, PIK3R2, and PIK3R3 genes, respectively [26,27].
Class IB PI3Ks also consist of catalytic p110γ and regulatory
p101, and p84/p87PIKAP subunits [27]. Likewise, class
III PI3Ks are heterodimeric proteins having a catalytic
(hVps34) subunit associated with regulatory (p150) subunit.
The regulatory subunit subserves 2 functions [28]. Upon
receptor activation, it recruits the catalytic subunit to
tyrosine phosphorylated proteins (RTKs, adaptors) at the
plasma membrane where the catalytic subunit phosphory-
lates its lipid substrates [27]. In addition, the enzymatic
activity of the catalytic subunit is constitutively inhibited
by the regulatory subunit in quiescent cells [28]. Class II
PI3K enzymes also exist in 3 isoforms (PI3KC2α, PI3KC2β
and PI3KC2γ). However, these are monomers with high
molecular weight, lack regulatory subunits, and possess
single catalytic unit that directly interacts with phosphory-
lated adapter proteins [26,29]. The catalytic units of PI3Ks
possess an N-terminal sequence, a central region, and
a C-terminus; however the modular organizations are
distinctive. The N-terminus of class IA p110 (α, β, and δ)
enzymes harbors the p85- binding domain (PI3K-ABD),
which constitutively interacts with the SH2 domain of
the regulatory subunit, and also houses the Ras-binding
domain (PI3K-RBD) which mediates interaction with
Ras-GTPases. The central region is comprised of the
C2 PI3K-type and PIK helical domains, whereas the C-
terminus contains the catalytic apparatus (PI3K/PI4K
kinase domain). The PI3K-RBD domain is the most
divergent region of the class IA enzymes [25]. The class IB
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Figure 2 Schematic representation of the PI3K signaling pathway. Four major extracellular signals, growth factors, cytokines, hormones/
chemokines, and integrins, activate PI3K, which transmit the signals through appropriate pathways to control diverse cellular processes, including
cell cycle, apoptosis, DNA repair, senescence, angiogenesis, cellular metabolism, autophagy, and motility. The multiple effector kinase pathways
activated by PI3K are highlighted in the figure.
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enzyme, p110γ, is similar in structural organization to
the class IA p110 proteins but also contains a putative
N-terminus PH domain [30]. In class II enzymes, however,
the central region is made-up of four domains (PI3K-RBD,
C2 PI3K-type, PIK helical, PI3K/PI4K kinase), and the
p85
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Figure 3 The structural organization of p110-α enzyme. The catalytic s
and C-terminus of varying lengths with distinctive modular organization. Th
(PI3K-ABD) and the Ras-binding domain (PI3K-RBD) which mediates interac
tral region is composed of the C2 PI3K-type and PIK helical domains, where
domain). Common cancer-associated mutations within each domain of the
C-terminal sequence composed of the C2, and PX domains.
The N-termini of class II PI3Ks are more distantly related.
This region contains the binding site for GRB2 (Growth
factor receptor-bound protein 2), an adapter protein that
often complexes with SOS and Ras-GTPases, and facilitates
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ubunit (p110-α) of PI3Ks possesses a central region flanked by the N-
e N-terminus of p110-α enzyme harbors the p85-binding domain
tion with the regulatory p85 and the Ras-GTPases respectively. The cen-
as the C-terminus houses the enzymatic apparatus (PI3K/PI4K kinase
enzyme is indicated.



Table 1 Phosphatidylinositol-3 kinase genes and proteins

Class Gene Chromosomal location Protein Mass (kDa) Sequence length (AA)

Class I

IA PIK3CA 3q26.3 p110-α 124.28 1068

PIK3CB 3q22.3 p110-β 122.76 1070

PIK3CD 1p36.2 p110-δ 119.48 1044

PIK3R1 5q13.1 p85-α 83.60 724

PIK3R2 19p13.1 p85-β 81.55 728

PIK3R3 1p34.1 p55-γ 54.45 461

IB

PIK3CG 7q22.3 π110−γ 126.45 1102

PIK3R5 17p13.1 p101 97.35 880

PIK3R6 17p13.1 p84/p87PIKAP 84.26 754

Class II

PIK3C2A 11p15.1 PIK-C2α 190.68 1686

PIK3C2B 1q32.1 PIK-C2β 184.77 1634

PIK3C2G 12p12.3 PIK-C2γ 165.72 1445

Class III

PIK3C3 18q12.3 hVps34 101.55 887

PIK3R4 3q22.1 p150 153.10 1358

Abbreviations: AA amino acids; kDa kilodalton.
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recruitment and activation of PI3KC2α and PI3KC2β by
activated growth factor receptors [31]. In addition, the
N-terminal sequence of PI3KC2α also serves as major
binding site for clathrin trimers and thereby independently
modulating clathrin distribution and function [32,33]. Class
III catalytic enzyme, hVps34, is characterized by an
N-terminal C2 PI3K-type domain, a centrally located
PIK helical domain, and a C-terminus PI3K/PI4K kinase
domain [34].
P110α and p100β are ubiquitously expressed in all tissues,

whereas p110δ is mostly confined to hematopoietic cells,
where it plays an important role in B-cell homeostasis and
functioning. These enzymes integrate inputs from acti-
vated RTKs and GPCRs [25]. The p110γ, predominantly
expressed by pancreas, skeletal muscles, liver and heart,
mediates signaling downstream of GPCRs [30]. Class II
PI3Ks are widely expressed at varying levels in all tissues,
and activated by RTKs, cytokine receptors, chemokine
receptors, and integrins [31,32]. Similarly, hVps34 is
ubiquitously expressed, with the highest expression in
skeletal muscle, and plays a key role in diverse intracellular
trafficking in the cytosolic compartment of the cells [35].
PI3Ks are predominantly cytosolic, non-phosphorylated

and catalytically inactive in quiescent cells except class II
PI3Ks which preferentially associate with membrane frac-
tion of cells [32]. In response to growth factor stimulation,
tyrosine phosphate motifs of activated receptors recruit
PI3Ks to the plasma membrane by direct interaction with
the SH2 domains of the regulatory subunit [36]. This
interaction also alters the conformation of the regulatory
subunit, abrogates its inhibitory activity, and causes
full activation of the enzymatic activity of the catalytic
subunit [28]. PI3Ks can also be stimulated by activated
Ras-GTPases that exist in a complex with phosphorylated
adapter proteins (GRB2, SOS) [8,26,31]. These activated
PI3Ks then catalyze the generation of second messen-
gers – phosphorylated phosphatidylinositols (PI) – which
in turn activate multiple downstream signaling pathways
[1]. In vitro, class I PI3Ks are capable of phosphorylating
PI to PI 3-phosphate; PI 4-phosphate to PI 3,4-bispho-
sphate; and PI 4,5-bisphosphate to PI 3,4,5-trisphosphate.
However PI 4,5-bisphosphate (PIP2) is the preferred lipid
substrate in vivo [27]. hVps34, the class III PI3K enzyme,
mainly catalyzes the conversion of PI to PI 3-phosphate
to mediate cellular trafficking processes [27,34], while
class II enzymes utilize PI, PIP2, and PI 4-phosphate as
substrates to generate PIP3 and PI 3,4-bisphosphate
in vivo [32,37-39].
PI3K signaling regulates a wide range of cellular processes

including protein synthesis, cell survival, proliferation,
differentiation, senescence, motility, angiogenesis and
metabolism. Upon generation of second messengers (PIP3,
PI 3,4-bisphosphate), the PI3K signaling impinges on a di-
verse array of pleckstrin homology (PH) domain-containing
intracellular signaling proteins, and indirectly triggers a
cascade of events that culminates in activation of multiple
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effector kinase pathways, including the mTOR, ERK1/2,
p38 MAPK, NF-kappa-B, and JNK/SAPK pathways
[1,40,41]. These signaling proteins include serine-threonine
kinases (AKT and PDK1), protein tyrosine kinases (Tec/
BTK family), exchange factors for GTP-binding proteins
(Grp1 and Rac exchange factors), cytoskeletal proteins, and
adapter proteins (GAB-1) [4,27]. Of note, PIP3 binds to the
PH domains of AKT and PDK1, recruits both molecules to
the plasma membrane in close proximity where AKT is
activated by phosphorylation at Tyr-308 by PDK1 [42-44].
PI3K-AKT signaling pathway promotes cell growth and
survival by several mechanisms. Recent studies suggest that
activated AKT has direct effect on the apoptosis pathway
by targeting and downregulating the pro-apoptotic activity
of Bcl-2 family members BAD and BAX resulting in cell
survival [1]. Furthermore, PI3K-AKT signaling controls
cell death and survival through NF-kappa-B regulation of
pro- and anti-apoptotic genes [45]. AKT also signals to a
few other proteins, such as mammalian target of rapamycin
(mTOR) –containing protein complex mTORC1, GSK3
(glycogen synthase kinase 3), TSC (tuberous sclerosis
complex), and FOXOs (the forkhead family of transcription
factors), and thereby regulates cell proliferation, protein
synthesis and glucose metabolism [46-48]. Besides the
PI3K-AKT pathway, several other pathways, such as those
of BTK/Tec kinases, have also recently been characterized
[4]. The PI3K-BTK signaling plays an essential role in
orderly B-cell development, proliferation and survival
through recruitment and activation by CD19 [49,50]. In
response to CD28 costimulation, PI3K upregulates BCL-XL
expression in T-cells, and confers resistance to apoptosis
during their activation [51]. In addition to its pro-survival
and growth-promoting roles, the PI3K pathway is essential
in endothelial cell migration during angiogenesis through
VEGF-A signaling [52,53], required for lymphatic vascu-
lature development via signaling by EGF and FGF2, and
also participates in cardiomyogenesis from embryonic
stem cells [54].
The lipid end-products of PI3Ks are barely detectable

in unstimulated cells. The cellular levels of the second
messengers are tightly regulated by the opposing action
of at least three different types of phosphatases. PTEN
can reduce the cellular pool of PIP3 by converting PIP3
back to inactive PIP2 through dephosphorylation at the D3
position, whereas the Src-homology 2 (SH2)-containing
phosphatases (SHIP1 and SHIP2) specifically hydrolyze the
D5 phosphate group of PIP3 to produce PI 3,4-bispho-
sphate [55]. The activity of SHIP1 and SHIP2 only partially
downregulate PI3K signaling as PI 3,4-bisphosphate
can also mediate PI3K-dependent responses independent
of those stimulated by PIP3 [1]. Full termination of PI3K
signaling is carried out by the concerted actions of inositol
polyphosphate 4-phosphatase type II (INPP4B) and myotu-
bularin, which preferentially hydrolyze PI 3,4-bisphosphate
to PI 3-phosphate, and PI 3-phosphate to PI respect-
ively [56-58].
Given its pivotal role in preventing apoptosis and stimu-

lating proliferation in normal cells, it is not surprising that
the PI3K signaling pathway is dysregulated frequently in
human cancers, and exploited by tumor cells for increased
proliferative potential, evasion of apoptosis, tissue invasion,
and metastasis [3,27]. The PI3K signaling is aberrantly
activated by at least three major mechanisms including
activating mutations or amplification of catalytic subunits
of PI3Ks, inactivation of the lipid phosphatase PTEN, and
receptor amplification or mutations (RTKs, GPCR [12,16].
For instance, approximately 30% of breast cancers are
associated with activating missense mutations of PIK3CA,
the gene encoding the catalytic p110α subunit of class IA
PI3K, which provides cells with a growth advantage and
promotes tumor progression [13]. Somatic loss of PTEN
activity by gene mutation, epigenetic silencing or deletion is
associated with significantly greater Gleason score, poorer
prognosis, and higher rate of metastasis in prostate cancer
[59,60]. Increased p110 β activity due to gene amplification
is frequent in human colon cancer (70%), and confers
limitless growth potential [61]. Recent cancer genomic
analysis showed that PIK3R1, the gene encoding the
p85α regulatory subunit, was mutated in up to 10% of
human glioblastomas [62].
PI3Ks have therefore emerged as viable targets for novel

anti-cancer therapy. Successful drug design has yielded
three classes of potent and selective small molecule inhibi-
tors that have progressed from advanced preclinical test-
ing to different stages of clinical development. Idelalisib,
which represents the first-in-class oral PI3K p110-δ in-
hibitor, demonstrated high efficacy and a good safety
profile in early phase studies. It has progressed into
phase III clinical trials in patients with advanced indolent
non-Hodgkin’s lymphoma (iNHL) and mantle cell lymph-
oma (MCL) [19-23,63].

PI3K inhibitors in clinical development
PI3K inhibitors are divided into three classes, pan-class I,
isoform-selective and dual PI3K/mTOR inhibitors, based
on pharmacokinetic properties and isoform selectivity
for the ATP binding site of PI3Ks [64,65] (Table 2). In
the pan-class I PI3K inhibitors, wortmannin and LY294002
represent the first generation inhibitors with highly po-
tent PI3K-inhibitory property. Notably, wortmannin and
LY294002 inhibit PI3Ks activity in vitro at IC50 of 1 nM
and 1.4 uM, respectively [66-68]. However, these com-
pounds demonstrated considerable toxicities in animal
studies and were not advanced to clinical evaluation
because of this pharmaceutical limitation [69,70]. Nonethe-
less, at least 15 agents are in various stages of clinical devel-
opment, with favorable safety, efficacy, pharmacokinetics,
and pharmacodynamics profiles. GDC-0941 was first



Table 2 PI3K inhibitors in clinical trials

Drug Target(s) Tumors Toxicities Clinical trials References

Idelalisib (CAL-101) p110-δ CLL/SLL, iNHL, MCL Pyrexia, nausea, decrease
appetite, fatigue

III [76,77,80,83,86,88-90]

Buparlisib (BKM-120) p110-α,-β, -δ,-γ Breast, GBM, NSCLC Rash, hyperglycemia diarrhea,
anorexia

IB/II [103-109]

GDC-0941 p110-α,-β, -δ,-γ Breast, NSCLC, melanoma
endometrial, pancreatic

Nausea, diarrhea, rash
vomiting, anorexia

IB/II [117-123]

PX-866 p110-α,-β, -δ,-γ Ovarian, prostate,
GBM NSCLC

Fatigue, diarrhea
thromboembolism

II [126-129]

GDC-0032 p110-α, -δ,-γ Breast, NSCLC Diarrhea, hyperglycemia fatigue,
nausea, decreased appetite

I [132]

BAY 80-6946 p110-α,-β NHL, esophageal,
sarcoma pancreatic

Alopecia, dysgeusia
anemia, mucositis

I [135-137]

IPI-145 p110-δ,-γ CLL/SLL, iNHL, MCL Cytopenias liver enzyme
elevations

I [138,139]

BEZ-235 p110-α,-β, -δ,-γ/mTOR Breast, GBM Mucositis IB/II [149-152]

BYL-719 p110-α Breast, cervical,
endometrial ovarian, H&N

Nausea, diarrhea
hyperglycemia, vomiting

IB/II [153-155]

BGT-226 p110-α,-β, -δ,-γ/mTOR Solid tumors, breast Nausea, vomiting diarrhea I/II [156]

PF-04691502 p110-α,-β, -δ,-γ/mTOR Endometrial Fatigue, nausea, vomiting
decreased appetite, rash

II [162]

GDC-0980 p110-α,-β, -δ,-γ/mTOR Prostate Hyperglycemia, rash mucositis IB/II [167,168]

GSK-2126458 p110-α,-β, -δ,-γ/mTOR RCC, bladder Nausea, vomiting diarrhea I [169,170]

PF-05212384 p110-α,-γ/mTOR Solid tumor, CRC Rash, mucositis transaminitis,
hyperglycemia

II [172]

XL-765 p110-α,-β, -δ,-γ/mTOR NSCLC, gliomas Nausea, diarrhea elevated
liver enzymes

IB/II [176-178]

XL-147 p110-α,-β, -δ,-γ Solid tumor, GBM Nausea, vomiting diarrhea I/II [180-183]

Abbreviations: CLL/SLL chronic lymphocytic leukemia/small lymphocytic leukemia; CRC colorectal cancer; GBM glioblastoma multiforme; H&N head and neck cancer;
iNHL indolent non-Hodgkin’s lymphoma; MCL mantle cell lymphoma; NHL non-Hodgkin’s lymphoma; NSCLC non-small cell lung cancer; RCC renal cell cancer.
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to enter clinical trials but idelalisib is now the most
advanced.

Idelalisib (CAL-101, GS-1101)
Idelalisib (formerly CAL-101, GS-1101) is an oral, first-
in-class, highly selective inhibitor of PI3K p110-δ isoform
that was identified in a kinome-wide screen using purified
enzymes [19,71]. A phenylquinazolin derivative, idelalisib
demonstrated 240- to 2500-fold selectivity for p110δ over
the other class I PI3K isoforms in cell-based assays [71],
exerted far greater pro-apoptotic activity in B-ALL and
CLL cell lines compared with AML cells in a dose- and
time-dependent fashion [71,72], and inhibited CLL cell
chemotaxis toward CXCL12 and CXCL13 [73]. The com-
pound also suppresses survival signals provided by the
microenvironment in CLL cell lines [71]. Treatment
with idelalisib induces cell cycle arrest and apoptosis in
Hodgkin’s lymphoma cell lines [74]. In addition, idelalisib
demonstrated cytotoxicity against LB and INA-6 myeloma
cell lines [75]. Importantly, idelalisib does not increase
apoptosis in normal T / NK cells, nor does it block
antibody-dependent cellular cytotoxicity, but the inhibitor
can decrease the level of various inflammatory and anti-
apoptotic cytokines from activated T cells [72]. These
studies provided strong rationale for clinical trials of idela-
lisib as a targeted therapy for B-cell lymphoproliferative
disorders.
It was reported that single agent idelalisib at doses of

50–350 mg BID demonstrated acceptable toxicity profile,
positive pharmacodynamic effects, and favorable clinical ac-
tivity in heavily pretreated patients with relapsed/refractory
CLL, including those with adverse cytogenetics [76,77].
The final results of this phase I trial, presented at the 2013
American Society of Clinical Oncology (ASCO) meeting,
showed an impressive 56% overall response rate (ORR),
17 months median progression free survival (PFS), and
18 months median duration of response (DOR) in patients
treated with idelalisib alone [20]. Clearly, this study
demonstrated that the activity of single-agent idelalisib in
relapsed/refractory CLL is superior to current standard
therapies [78,79]. Serious adverse events of pneumonia,
neutropenia, thrombocytopenia, neutropenic fever, anemia,
and ALT/AST elevations were observed with idelalisib
treatment. A dose of 150 mg BID was brought forward
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for subsequent studies [20]. Idelalisib has also shown
promising single-agent activity in relapsed/refractory MCL
[21,80], yielding response rates similar to those previously
reported for standard single-agent therapies in this setting
[81,82]. Long term data reported by Spurgeon et al. showed
that idelalisib given to patients with relapsed/refractory
MCL resulted in an overall response rate of 40%, with
higher rates in patients dosed at ≥100 mg BID [21]. Trial
results of single-agent idelalisib in patients with indolent
non-Hodgkin’s lymphoma (including FL, SLL, LPL/WM,
MZL) showed an overall response rate (ORR) of 48%
across all cohorts [63]. Among 11 patients with SLL, the
response rate was 64%, whereas five of the 9 patients with
LPL/WM responded, suggesting that idelalisib could be
more effective in these subgroups [63].
Subsequently, a number of trials have examined idelalisib

in combination regimens with a view to achieving clinically
meaningful benefit. When idelalisib (I) was combined
with rituximab (R) and/or bendamustine (B) in heavily-
pretreated relapsed/refractory CLL patients, Coutre and
coworkers documented an impressive response rates of
78, 82, and 87 percents for IR, IB, and IRB regimens
respectively [83]. These combinations appear to be more
effective than responses reported for RB (rituximab
plus bendamustine) in previous studies of patients with
relapsed/refractory CLL [84,85]. In the updated efficacy
analysis of the current study, responses appear to be very
durable [22]. The 2-year PFS and OS were 62% and 85%
respectively [22]. Safety analysis indicated no overlap of
key toxicities [22]. One study evaluated idelalisib plus
ofatumumab as salvage therapy in relapsed/refractory
CLL [86]. The study was small, evaluating only 20 patients,
but interestingly, ORR was 94% in patients who had
received 6 cycles or more, and appears to be superior
to ofatumumab alone in this patient population [87].
The regimen was well tolerated and associated with
marked and rapid reductions in lymphadenopathy
within the first 2 cycles [86]. Given these favorable results,
a phase III randomized, double-blind, placebo-controlled
study has been initiated to assess the efficacy and
safety of idelalisib in combination with bendamustine
and rituximab versus placebo plus bendamustine and
rituximab for previously treated CLL patients [88]. Like-
wise, another phase III randomized, controlled study is
currently recruiting to examine idelalisib in combination
with ofatumumab compared with ofatumumab alone in
same patient population who had progressed after a purine
analog and/or bendamustine [89].
In addition, a phase I trial employing the IR, IB, and IRB

combination approaches was noteworthy for its associated
response rates of 77%, 85%, and 79% respectively in patients
with iNHL [90]. Though responses were high, it appears
that they were not better than the 90% response rate
achieved by the landmark study by Rummel et al. with
rituximab and bendamustine in patients with relapsed/
refractory iNHL [91]. Therefore, head-to-head comparison
between idelalisib plus bendamustine and rituximab versus
placebo plus bendamustine and rituximab in heavily-
pretreated patients with iNHL has been initiated in a
phase III trial [92]. At the same time, another phase III
randomized trial will be comparing idelalisib plus rituxi-
mab versus placebo plus rituximab in similar patient
population [93]. The primary endpoint of these studies is
progression-free survival (PFS) [93].
The clear benefit of idelalisib in combination with

chemotherapy and/or immunotherapy in CLL has lent
support for the development of these approaches in
patients with MCL. Preliminary results of a phase I study
of 22 patients showed that the combinations of idelalisib
and everolimus (IE), bortezomib (IV), or bendamustine plus
rituximab (IRB) were active and tolerable in previously-
treated patients with MCL [94]. Response rates were 25%
for IE, 50% for IV, and 100% for IRB. Given that BR has
been shown to elicit responses of 75 to 92 percent in simi-
lar patient population, the activity of IRB appears to be
similar to what can be achieved with RB alone [91,95].
Nonetheless, these findings are preliminary and further
research is required before any conclusions can be drawn.
The optimal first-line therapy for elderly patients with

CLL is not currently known as most treatment options
have not been directly compared. This remains the subject
of multiple ongoing studies [19,96-98]. Based partly on the
impressive response rate of idelalisib plus rituximab in
the relapsed/refractory CLL setting [83], O’Brien et al.
are addressing whether this IR regimen (R 375 mg/m2

weekly × 8 and idelalisib 150 mg bid continuously for
48 weeks) can be used in treatment-naïve, elderly patients
with CLL/SLL [23]. Interim data regarding safety showed
that the combination was tolerable, with diarrhea, pyrexia,
chills, and fatigue being the most frequently reported
adverse events. Of 48 patients evaluated for efficacy,
the ORR was 96%, and estimated 24-month PFS is 91%,
indicating that this approach is highly durable and
paved the way for further study as upfront therapy in
treatment-naïve elderly patients with CLL. Of note, six
patients with del17p included in the study displayed 1 CR
and 5 PR [23].
Overall, idelalisib looks impressive as both a single agent

and when given in combination with standard therapies
across multiple subtypes of non-Hodgkin’s lymphoma.

Buparlisib (BKM 120, NVP-BKM120)
Buparlisib, also known as BKM 120 and NVP-BKM120,
is an orally bioavailable, small molecule compound with
potent, pan-class I PI3K inhibitory property against p110-
α,-β, -δ, and -γ enzymes at IC50 of 52 nM, 166 nM, 116
nM, and 262 nM respectively [99]. As a derivative of pyri-
dinamine, buparlisib shows great anti-proliferative activity
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in human gastric cancer cell lines, induces apoptotic cell
death in multiple myeloma cells (ARP1, ARK, MM.1S,
MM1.R and U266), and significantly reduces tumor
volume and level of circulating human kappa light chain
at 5 μM/kg/day in ARP1 SCID mouse model [99,100].
In vivo studies have also shown that buparlisib potently
inhibits the growth of human xenografts models of meta-
static brain melanoma, uterine endometriod carcinoma
and carcinosarcoma, concomitant with suppression of
PI3K phosphorylation [101,102]. Based on these promis-
ing preclinical data, buparlisib was advanced into clinical
development.
The safety and preliminary clinical activity of buparlisib

was first evaluated in a phase I study of 35 patients with
advanced solid tumors by employing a dose-escalating
design [103]. Overall, the compound was well tolerated.
Dose limiting toxicities (DLTs) included grade 3/4 hypergly-
cemia, rash and mood alteration. The maximum tolerated
dose (MTD) of 100 mg/day is deemed to be suitable
for future studies. Aberrant PI3K signaling is common
in glioblastoma multiforme (GBM) and confers worse
prognosis [104], however buparlisib has demonstrated an
ability to cross the blood–brain barrier in preclinical
models. The preliminary results from two early phase
trials of buparlisib in patients with relapsed/refractory
GBM have been recently reported. Shih and colleagues
found that buparlisib at 60 mg/day in combination with
standard dose of bevacizumab was well tolerated [105].
Wen et al. showed that single-agent buparlisib at 100 mg/
day is generally safe in patients with recurrent GBM.
Major grade 3/4 toxicities were similar to those previously
reported for the compound [106]. Buparlisib has also been
evaluated in a number of other patient populations for
which positive results have been reported. A combination
of buparlisib and letrozole demonstrated activity at clinic-
ally relevant doses of each agent in hormone receptor
(HR)–positive metastatic breast cancer (MBC) patients
who had received prior aromatase-inhibitor therapy in a
phase I study [107]. This potential superiority yielded by
adding buparlisib to standard therapy in MBC has led to
the initiation of two phase III trials. BELLE-2 and BELLE-3
are evaluating buparlisib with fulvestrant in postmeno-
pausal women with HR+/HER2- advanced/ metastatic
breast cancer after failure of aromatase inhibitor alone
or aromatase inhibitor plus mTOR inhibitor treatment
respectively [108]. A placebo-controlled phase II trial of
buparlisib with paclitaxel in the first-line treatment of
HER2-negative MBC (BELLE-4) is underway. A recent
neoadjuvant phase II study of paclitaxel plus trastuzumab,
with and without buparlisib (Neo-PHOEBE) in HER2-
overexpressing breast cancer patients is also accruing.
Though buparlisib in combination with geftinib was found
to be safe, high frequency of severe late toxicities, including
rash and diarrhea was noted in patients with EGFR TKI-
resistant NSCLC in a phase IB study, and alternative
dosing schedules are thus warranted in subsequent
studies [109].
GDC-0941
GDC-0941, a thienopyrimidine derivative, is another orally
bioavailable, pan-class I PI3K inhibitor with equipotent
activity (IC50 = 3 nM) against p110-α and -δ enzymes,
and exhibits inhibitory action against p110-β and -γ at
low nanomolar concentrations in kinase assays [110].
GDC-0941, as a single agent or in combination with
other therapies, has demonstrated potent antitumor ac-
tivity against a panel of mouse xenograft models of human
glioblastoma, breast cancer, small bowel gastrointestinal
stromal tumor (GIST), follicular cell lymphoma, liposar-
coma, and NSCLC [110-116].
GDC-0941 is the first-in-human PI3K inhibitor to enter

clinical trials. GDC-0941 monotherapy is generally well
tolerated at doses below 450 mg once or twice a day in
patients with advanced solid tumors [117]. The most
common adverse events were nausea, diarrhea, vomiting,
fatigue, decreased appetite, dysgeusia, and rash. In the
updated efficacy analyses, clinically meaningful responses
have been achieved with single-agent GDC-0941 in patients
with endocervical carcinoma, breast cancer, soft tissue
sarcoma, ovarian carcinoma, small bowel GIST and V600E
mutant melanoma [117-120]. Given the single-agent
activity of GDC-0941 in earlier studies, testing the drug in
combination was seen as a logical step to maximize benefit.
Concurrent administration of GDC-0941 and GDC-0973,
a potent, selective, MEK1/2 inhibitor was well tolerated in
patients with advanced solid tumors. No new safety signal
has emerged, and clinical responses have been observed
in patients with melanoma, pancreatic cancer, NSCLC,
prostate cancer, and endometrioid cancer [121,122]. The
synergistic efficacy of GDC-0941 and anti-VEGF directed
therapy is being evaluated in a phase IB trial of GDC-0941
with paclitaxel and carboplatin, with and without bevacizu-
mab in patients with advanced NSCLC. Partial responses
were seen in 44% patients, including 1 pathologic CR upon
resection of the primary lung lesion [123]. Phase II studies
of GDC-0941 are underway.
PX-866
PX-866 is a semisynthetic analogue of wortmannin with
potent, irreversible, pan-class I PI3K inhibitory property
against purified p110-α, -δ, and –γ enzymes at nanomolar
concentrations in biochemical assays. Unlike wortmannin,
PX-866 is a poor inhibitor of p110-β [124,125]. In preclin-
ical studies, the compound alone or in combination with
chemotherapy, radiation or other targeted cancer drugs,
exhibited in vivo antitumor activity against numerous
mouse xenograft models of human cancers [124,125].
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Safety results from 52 patients indicated that PX-866
was well tolerated, with diarrhea being the DLT, and no
drug-related serious hematologic adverse events reported
[126]. The MTD of 8 mg was recommended for subse-
quent studies. Updated antitumor results of this trial
demonstrated that PX-866 in combination with docetaxel
was efficacious in patients with NSCLC and ovarian cancer
(2 PR) [127]. Preliminary results from two randomized
phase II clinical trials of PX-866 have been recently
reported. In the first study, PX-866 displayed a very
low ORR of 3% in 33 patients with recurrent GBM [128].
A second study explored the efficacy of PX-866 as
second- or third-line treatment of docetaxel-naïve patients
with recurrent or metastatic castration-resistant prostate
cancer (CRPC). Of 16 patients evaluated for efficacy, no
objective response was observed [129]. Other phase II
trials are currently ongoing in a variety of tumor types.

GDC-0032
GDC-0032 is a selective inhibitor of class I PI3K-α, - δ,
and -γ isoforms in subnanomolar concentrations. It is an
orally bioavailable small molecule with β isoform sparing
inhibitory property. Treatment with GDC-0032 enhances
activity of fulvestrant, resulting in tumor regressions and
growth delay in preclinical animal models of human breast
cancer [130,131]. A first-in-human phase IA clinical trial
has been undertaken to assess the safety, pharmacokinetics
and pharmacodynamics of GDC-0032 in 34 patients with
locally advanced or metastatic solid tumors [132]. Results
of this study indicated that the drug was well tolerated with
hyperglycemia and fatigue being the dose-limiting toxic-
ities. Five partial responses were observed in breast and
NSCLC. Additional phase I trials are accruing patients.

BAY 80–6946
BAY 80–6946 is a carboxamide derivative with potent
antineoplastic activity characterized by reversible inhibition
of p110-α and -β with IC50 of 0.469 nM and 3.72 nM
respectively in biochemical assays, and growth-inhibitory
effects in B-cell lymphoma and biliary tract carcinoma cell
lines [133,134].
BAY 80–6946 was administered intravenously as 1-hour

infusion once weekly for 3 weeks every month in a phase I
dose-escalation trial of 17 patients with advanced solid
tumors, including sarcoma, pancreatic, and esophageal
cancers. It was well-tolerated [135,136]. Acute left ven-
tricular dysfunction, liver dysfunction, renal insufficiency,
hyperglycemia, and rash were the DLTs. The MTD was
0.8 mg/kg [136]. In a MTD expansion cohort study, 5
heavily pretreated patients demonstrated a PR to therapy
[137]. More so, BAY 80–6946 has also demonstrated
efficacy and safety among patients with both indolent and
aggressive NHLs. These data have fuelled the enthusiasm
for further clinical development of this compound either
as a single agent or in combination regimens in patients
with NHL [135].

IPI-145
IPI-145 (formerly INK1197) is an oral, selective inhibitor
of p110- δ and -γ isoforms at picomolar concentrations
in enzyme assays. IPI-145 was initially developed as
anti-inflammatory compound, displaying potent suppres-
sion of both B- and T-cell proliferation, and demonstrating
dose-dependent anti-inflammatory effect in rat collagen
induced arthritis (CIA) and adjuvant induced polyarthritis
models.
The pharmacokinetics, safety and efficacy of IPI-145

have been studied in early phase clinical trials that in-
cluded healthy subjects as well as patients with advanced
hematologic malignancies [138,139]. The compound was
well tolerated at doses up to 25 mg BID, exhibited excellent
target inhibition (CD63 expression), and showed initial
clinical activity in patients with iNHL, MCL, and CLL
[139]. The main DLT was grade 4 neutropenia. Additional
safety and efficacy data are expected from the ongoing
trials.

BEZ-235
BEZ-235 (formerly NVP-BEZ235), a novel imidazo-
quinoline derivative, is a dual ATP-competitive PI3K and
mTOR inhibitor with potent antagonist activity against
p110-α, -β, -γ, -δ isoforms and mTOR (p70S6K) in nano-
molar concentrations [140]. In vitro, BEZ-235 possesses
strong anti-proliferative activity characterized by robust
growth arrest in the G1 phase of many PTEN-negative
malignancies, both in cell lines and in ex vivo cells
[140,141]. Also BEZ-235 potently inhibits VEGF-induced
cell proliferation and survival in vitro and VEGF-induced
angiogenesis in vivo [142], and effectively reverses lapati-
nib-resistance in HER2 breast cancer cells [143]. Addition-
ally, BEZ-235 as a single therapy or in combination with
other agents exhibited antitumor activity against numerous
mouse xenograft models of human cancers including
gliomas, pancreatic cancer, sarcoma, ovarian cancer,
renal cell carcinoma, breast cancer, and hepatocellular
carcinoma [144-148].
The phase I study conducted by Arkenau et al. to

determine the safety of single-agent BEZ-235 included
12 patients with advanced solid tumor with dose-level
randomization into 4 cohorts [149]. Preliminary results of
this study showed that BEZ-235 at 600 mg BID was well
tolerated with mucositis being the most frequent DLT
[149]. The combination of BEZ-235 and trastuzumab has
been evaluated in a phase IB/II clinical trial in trastuzu-
mab-resistant HER2+ MBC [150]. The doublet therapy
demonstrated an acceptable safety profile and early sign of
clinical activity. Preliminary safety data from another phase
IB/II combination study of BEZ-235 with everolimus
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indicated that the regimen is safe, with no DLTs observed so
far and the trial remains open to further accrual [151,152].

BYL-719
BYL-719, a dicarboxamide analogue, is the first, orally
bioavailable, potent selective inhibitor of PI3K-α with IC50
of 5 nM in kinase assays. Preclinical data suggested that
the compound prevents phosphorylation of AKT and
inhibits growth and PI3K signaling in breast cancer cell
lines harboring PIK3CA mutations [153]. Dose-dependent
antitumor activity was shown in a PIK3CA-mutant mouse
xenograft models [153]. Treatment of MCF7 breast cancer
cells and mouse xenograft models with BYL-719 and
ganitumab, a fully human antibody against IGF1-R, resulted
in synergistic, concentration-dependent growth arrest and
tumor regression [154].
Based on these results, a phase I trial enrolled patients

with PIK3CA-mutant advanced solid tumors, including
estrogen receptor-positive (ER+) MBC [155]. Interim
results showed that hyperglycemia, nausea, vomiting, and
diarrhea were the DLTs, and 400 mg orally daily was
declared as the MTD. Partial responses were seen in
patients with breast, cervical, endometrial, ovarian, and
head and neck cancer [155].

BGT-226
BGT-226 (formerly NVP-BGT226) is another novel, dual
pan-class I PI3K/mTOR antagonist with inhibitory property
against p110-α, -β, and -γ isoforms with IC50 of 4 nM, 63
nM, and 38 nM in enzyme assays [156]. BGT-226 led to
cell cycle arrest in the G0/G1 phase and inhibited growth
in a variety of human cancer cell lines, including those that
harbor the PIK3CA mutation [156-159]. Robust cancer cell
death via apoptotic and non-apoptotic pathways, as well as
induction of autophagy through microtubule-associated
protein light chain 3B-II aggregation and p62 degradation
are also associated with BGT-226 treatment [157]. In vivo
studies have shown that oral doses of BGT-226 at 2.5
and 5 mg/kg for 3 weeks inhibit cytoplasmic expression
of p70 S6 kinase and enhance autophagosome formation,
translating into potent inhibition of tumor growth in
human xenograft models [157].
A dose finding phase I study of BGT-226 indicated that

the MTD was 125 mg per day or three times weekly, with
100 mg/day recommended as clinical dose for subsequent
studies [156]. Most common BGT226-related adverse
events included nausea, diarrhea, and vomiting. The best
response of stable was demonstrated in patients with
advanced solid tumors. The safety and efficacy data of
other trials are awaited with great interest.

PF-04691502
Like BGT-226, PF-04691502 is also a novel, ATP-
competitive, dual pan-class I PI3K/mTOR inhibitor with
activity against numerous human cancer cell lines at
nanomolar concentrations [160,161]. PF-04691502 re-
duces levels of phosphorylated AKT (pAKT) T308 and
S473, and its activity is not affected by presence of
PIK3CA or PTEN mutations [160]. The compound also
exhibits activity in animal models of KRAS-mutant
non-small cell lung carcinoma xenografts, and thus poten-
tially represents an effective therapeutic intervention
for NSCLC patients with gefitinib- or erlotinib-resistant
disease [160].
Updated data from the first-in-human phase I study

aimed to establish the MTD, clinical activity, pharmaco-
kinetics, and pharmacodynamics of PF-04691502 in 30
patients with advanced solid tumors. PF-04691502 appears
to be safe and tolerable at a variety of dose levels [162].
Eight milligrams once daily is established as the MTD,
and the most common adverse events noted were fatigue,
nausea, vomiting, decreased appetite and rash. A phase
II trial of PF-04691502 in combination with another
dual PI3K/mTOR inhibitor, PF-05212384, in advanced
endometrial cancer is currently recruiting.

GDC-0980
GDC-0980 (formerly RG7422) is a novel, oral, dual
PI3K/mTOR inhibitor synthesized using the GDC-0941
backbone [163]. In biochemical assays, GDC-0980 dem-
onstrates its ability to inhibit the enzymatic activities of
p110-α, -β, -δ, -γ and mTOR at IC50 of 5 nM, 27 nM,
7 nM, 14 nM, and 17 nM respectively [163]. In in-vitro
experiments, potent anti-proliferative and pro-apoptotic
effects of GDC-0980 were observed in prostate, breast
and NSCLC cell lines, whereas modest activities were
noted in pancreatic and melanoma cell lines [164]. In
general, GDC-0980 demonstrated significant tumor growth
inhibition in a wide range of xenografts derived from
prostate, breast, ovarian, and lung cancer cell lines at
doses of ≤7.5 mg/kg [163]. The compound was well
tolerated and clinically efficacious in animal models at
55 mg given once daily without significant toxicities
[165]. Recent preclinical studies have also shown that
GDC-0980 combined with ABT888 (PARP inhibitor) and
carboplatin seems to be approximately 2 times more potent
than GDC-0980 alone at growth suppression in BRCA-
competent triple negative breast cancer cell lines [166].
The safety, pharmacokinetics, pharmacodynamics and

efficacy of GDC-0980 were first assessed in 33 patients
with advanced solid malignancies in a dose-escalation
phase I study [167]. Patients were enrolled in seven cohorts
at dosage levels ranging from 2–70 mg once daily for 21
consecutive days of a 28-day cycle. Serious treatment-
related adverse events included grade 3 maculopapular
rash, symptomatic hyperglycemia, mucositis, and pneu-
monitis which resolved with drug cessation and medical
management. Pharmacodynamic assessments revealed >90%
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inhibition of pAKT levels at dosage levels of 16 mg or
above. GDC-0980 also showed promising antitumor
activity, with RECIST and/or FDG-PET partial response
rates up to 64% [167]. The recommended phase II dose
for single-agent GDC-0980 is 40 mg daily. Several phase
IB/II trials of GDC-0980 in combination with experimen-
tal or approved agents have been initiated. For example,
the safety and efficacy of combination of GDC-0980 and
abiraterone versus abiraterone alone are being evaluated
in castration-resistant prostate cancer patients [168].

GSK-2126458
GSK-2126458 is a potent, selective, second generation
inhibitor of p110-α, -β, -γ, -δ, mTORC1, and mTORC2.
It blocks PI3K/mTOR signaling at subnanomolar drug
concentrations. Relative potency of GSK-2126458 in
kinase assays is 100–1000 times greater than that of
GDC-0980 [169]. Additionally, inhibition of the PI3K/
mTOR pathway by this agent has shown activity in breast
cancer cells in preclinical studies, particularly the PIK3CA-
mutant subsets [169]. Dose-dependent antitumor activity
was shown in BT474 mouse xenograft model, with signifi-
cant response at a dose as low as 300 μg /kg.
While clinical experience with this compound is quite

limited to date, the preliminary results of an early phase
trial in seventy-eight patients with advanced solid tumors
indicated that GSK-2126458 was safe, demonstrated
on-target inhibition of PI3K, and diarrhea was the DLT
[170]. Two patients with renal cell carcinoma and bladder
cancer experienced partial response. When dosed once
daily, a MTD of 2.5 mg was observed. Another phase I
trial of GSK-2126458 in combination with oral MEK
inhibitor GSK1120212 is planned.

PF-05212384 (PKI-587)
Another novel, highly potent, dual PI3K/mTOR inhibitor
is PF-05212384 (also known as PKI-587), which selectively
binds to PI3K-α, PI3K-γ and mTOR and inhibits phos-
phorylation of both mTOR and AKT, and PI3K signaling.
PF-05212384 leads to cell cycle inhibition and subsequent
mitotic arrest, inhibition of proliferation, and apoptosis
[171]. In vivo pharmacokinetics and pharmacodynamics
suggested that intravenous PF-05212384 treatment is
associated with low plasma clearance, high volume of
distribution, long half-life, and robust antitumor efficacy
in xenograft mouse models.
PF-05213384 is the first intravenously formulated

PI3K/mTOR inhibitor to be tested in a clinical trial. In
a phase I trial, Millham and colleagues used a modified
continual reassessment method (CRM) for estimation of
MTD. PF-05212384 was administered weekly at doses
ranging from 10 mg to 319 mg [172]. A total of 47 pa-
tients with advanced or refractory solid tumors were
enrolled, including 8 patients with colorectal cancer.
DLTs included mucositis, rash, transaminase elevation,
and hyperglycemia. The MTD was 154 mg weekly. No
objective tumor response was observed, but 12 patients
achieved stable disease during the study [172]. Recruitment
to phase II trials is ongoing.

XL765
A methylbenzamide derivative, XL765 (also known as
SAR245409) is an orally active, multikinase (PI3K/mTOR)
inhibitor with highly potent activity particularly for the
p110-γ isoform in biochemical assays [173]. The compound
was shown to inhibit proliferation and induce apoptosis in
various tumor cell lines [173,174]. It demonstrated activity
as monotherapy and in combination with temozolamide
(TMZ) in GBM xenografts [175].
Data from a phase I dose escalation study of 34 patients

with advanced or metastatic solid tumors indicate that
XL765 is safe, and the most frequently observed adverse
events included elevated liver enzymes, nausea and diarrhea
[176]. XL765 combined with erlotinib demonstrated no
additive toxicity, and generally well tolerated at daily doses
up to 50 mg and 100 mg respectively [177]. Another trial
showed that XL765 in combination with fixed standard
dose of TMZ in 18 previously-treated patients with re-
lapsed/refractory WHO grade III and IV astrocytic tumors
was safe and generally well tolerated at doses up to 40 mg
once daily [178]. Notably, the most serious treatment-
related adverse events were rash, thrombocytopenia, and
brain edema. Phase IB/II clinical trials of XL765 as a single
agent and in combination with other targeted agents or
cytotoxic chemotherapy are planned.

XL147
XL147 (SAR245408) is an investigational methylbenze-
nesulfonamide derivative and a novel PI3K inhibitor.
Preclinical studies demonstrated that XL147 exhibits
pan-class I PI3K inhibitory property through reversible,
competitive inhibition with ATP for p110-α, -δ, -γ, and -β
enzymes at IC50 of 39 nM, 36 nM, 23 nM, and 383 nM
respectively [179]. Additional preclinical data indicated that
the main action of XL147 is inhibition of cell proliferation
and growth, accompanied by abrogation of AKT and S6
phosphorylation, and reduction in cyclin D1 and pRB
and an upregulation in levels of the CDK inhibitor p27
[179]. In a panel of HER2+ breast cancer cells, treatment
with trastuzumab or lapatinib sensitizes tumor cells to
the growth-inhibitory effect of XL147. Based on this
preclinical rationale, XL147 has been evaluated in phase I
and phase II clinical trials.
In an initial phase I trial with standard 3 + 3 dose-

escalation design, 68 patients with advanced solid tumor
were treated with XL147 administered on days 1–21 (21/7)
every 4 weeks per treatment cycle or as a continuous daily
dose (CDD) in 28-day cycle. The MTD, identified for both
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schedules, was 600 mg. Grade 3 rash was the DLT for the
21/7 schedule, whereas no DLTs were noted for the CDD
dosing [180]. Pharmacokinetic data from another phase I
study showed that treatment with XL147 plus erlotinib
is associated with no major interaction, well-tolerated,
and demonstrated robust concomitant EGFR and PI3K
inhibition [181]. A clinical regimen of XL147, paclitaxel
and carboplatin may synergistically augment suppression
of PI3K signaling and enhance clinical effect. Interim data
showed partial response rates of ≥ 42% by RECIST criteria
in four patients with advanced solid tumor [182]. A recently
presented study of patients with recurrent GBM has also
provided further insight into the cellular pharmacodynam-
ics and in vivo pharmacokinetics of XL147, where higher
tumor to plasma drug concentration ratios were noted in
resected tissue specimen, along with decreased Ki67 index
consistent with inhibition of proliferation [183]. Additional
clinical evaluation of this PI3K inhibitor is ongoing in phase
I/ II studies.

Conclusion and future directions
Phosphatidylinositol 3-kinases (PI3Ks) are attractive mo-
lecular targets for novel anti-cancer molecules. In the last
few years, several classes of potent and selective small
molecule PI3K inhibitors have been developed, and at
least fifteen compounds have progressed into clinical
trials as new anticancer drugs. Among these, idelalisib
looks impressive as both a single agent and when given
in combination with standard therapies across multiple
subtypes of non-Hodgkin’s lymphoma. Phase III clinical
trials are actively recruiting. Future trials of combining
novel small molecule inhibitors against different signaling
pathways as well as combination of these inhibitors with
biological and biochemical agents may further enhance
their clinical efficacy [41,184-189].
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