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Abstract

Background: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the
pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to
help unravel the disease.

Methods: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+
cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia
(AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2
or MRP8[NRASD12/hBCL-2], respectively.

Results: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not
their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA
replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating
these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered.
These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These
dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the
MDS mice but also in MDS CD34+ BM patient samples.

Conclusions: These two MDS models may thus provide useful preclinical models to target pathways previously
identified in MDS patients and to unravel novel pathways highlighted by this study.
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Background
Myelodysplastic syndrome (MDS) is an hematopoietic
stem cell disorder resulting in aberrant cell growth and
differentiation with enhanced genomic instability. The diag-
nosis of MDS is based on morphological features (dysplasia)
of the blood and bone marrow (BM) cells, cytopenias,
frequent excess of marrow blasts, and specific cytogenetic
abnormalities [1] such as deletions of chromosome 5, 7,
and trisomy 8. Transformation to acute myeloid leukemia
(AML) occurs in up to 40 % of MDS patients [2]. Major
advances have been acquired in the understanding of
MDS pathogenesis. Along with refined risk stratification
scores combining clinical and cytogenetic abnormalities,
whole-genome sequencing (WGS) and next-generation
sequencing (NGS) have identified mutations in genes
involved in signal transduction, splicing machinery, and
epigenetic or transcriptional pathways [3–11]. Gene ex-
pression profiling is a comprehensive approach taking
into account the majority of these altered pathways and
has contributed to a better definition of diagnosis and
prognosis in many diseases including MDS, when com-
bined with gene mutation or methylation data. [12–24].
Nevertheless, the survival of MDS patients, namely with
high-risk MDS remains extremely poor and therapy op-
tions scarce.
Animal models expressing MDS associated gene pheno-

copy either the MDS disease or more often its risk of
transformation to AML [25–27]. They have been instru-
mental to tackle other aspects of the disease such as the
involvement of the microenvironment [28], and we have
shown how they can be used to point at pathways to iden-
tify novel biomarkers and targeted therapies [29–35].
We therefore analyzed the gene expression pathways

and ontology functional groups in Sca1+ cells from two MDS
mouse models we have previously described [29, 30, 32–35].
These mice mimic human high-risk MDS (HR-MDS)

or AML post MDS depending on the promoter driving
the transgene (mutant NRASD12 or hBCL-2) expression
[32, 35]. BCL2 expression is required to drive the pheno-
type as inhibition of expression in conditional mice [32]
or inhibition by BH3 mimetic inhibitors [29] reverts the
phenotype. These models thus highlight the concept of
non-oncogene addiction [36] where cells bearing the
NRASD12 mutation require the BCL2 expression for sur-
vival and expansion. We have previously shown in these
mice a concomitant increase in reactive oxygen species
(ROS) with disease progression with a stepwise increase in
the frequency of DNA damage leading to an increased
frequency of error-prone repair of double-strand breaks
(DSB) by nonhomologous end-joining [35]. The observed
DNA damage and error-prone repair was decreased or re-
versed in vivo by N-acetyl cysteine antioxidant treatment
[35], stressing the relevance of these mice models to relate

genotype/phenotype to translational research. These
models have already allowed to identify novel biomarkers
of the disease in MDS patients such as the RAS:BCL-2
complex that links its localization at the plasma mem-
brane or the mitochondria with the apoptosis features
[30] and activates signaling protein profiles correlated
with disease and progression to AML [29]. Both diseases
are transplantable using BM or spleen cells from the dis-
eased mice, and both transgenes are expressed at the stem
cell level (Sca1+ compartment) [32]. Sca1− spleen cells
had a much longer latency period before developing
disease (Fig. 1e).
In this study, we found that the majority of the MDS-

dysregulated pathways that were unique to the MDS mice
and not the founder mice were close to those reported in
human MDS patients, underscoring the relevance of these
two mice models as preclinical models.

Results and discussion
Gene expression profile of the HR-MDS model
Establishment and characteristics of the HR-MDS model
are summarized in Fig. 1a–e. It is obtained by crossing
two single transgenic mice, expressing two human genes
known to be implicated in MDS, mutated NRASD12
and BCL2 (Fig. 1a). The clinical and biological features
of these transgenic mice have already been described
[29, 30, 32–35], and the co-expression of the two trans-
genes is required to establish the HR-MDS disease and
impact on survival, stressing the non-oncogenic addictive
effect of the BCL2 expression (Fig. 1b). The main charac-
teristics are pancytopenia, dysplasia, small percentage of
blasts in the spleen and bone marrow (BM) (Fig. 1a, c),
and increased apoptosis in the liver and spleen tissues
by TUNEL [29] or by whole body SPECT using 99Tc-
Annexin [29] (Fig. 1d). The model has been validated to
mimic the clinical (survival, response to treatment) and
biological features of HR-MDS in patients [29, 30, 32–35].
A novel biomarker, the NRASD12 and BCL2 plasma
membrane complex, correlates with apoptosis in spleen
and BM cells in the HR-MDS mice [32] and with apop-
tosis and low blast counts in MDS patients [30] under-
scoring the relevance of this model to study human
MDS.
Thus, to further exploit and complete the description

of this HR-MDS model, we performed gene expression
profile (GEP) analysis. GEP analysis was performed on
RNA extracted from Sca1+ cells from HR-MDS mice, the
founder mice (tethBCL2 and MRP8NRASD12) and normal
FVB/N mice (Fig. 2a–c). Sca1+ spleen cells were chosen
as we have shown that purified Sca1+ cells (from either
the spleen or the BM of HR-MDS mice) (Fig. 1e) [32] can
initiate the disease when transplanted in lethally irradiated
syngenic FVB/N mice, and the spleen of these mice yields
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more cells than the bone marrow, a prerequisite for both
RNA quality and quantity for the subsequent analyses. GEP
results were however validated on both spleen and bone
marrow samples (Figs. 2e and 4). Compared to normal
FVB/N mice, 1641 genes were significantly dysregulated in
HR-MDS mice, 1008 in the founder tethBCL2 mice and
2232 in the MRP8NRASD12 mice. Fifty-six percent of these
dysregulated genes were common and with similar levels of
expression between the HR-MDS mice and its founders
(MRP8NRASD12 and tethBCL2) and were not further ana-
lyzed in this study (Fig. 2a and Additional file 1: Table S1).
Gene set enrichment analysis (GSEA) was performed with
the 1641 genes significantly dysregulated in HR-MDS
mice compared to normal FVB/N mice, highlighting
enrichment in cell metabolism (energy; lipid metabolism),

cellular processes (DNA repair, cell cycle), angiogenesis,
signal transduction, and immune system (Table 1 and
Additional file 2: Figure S1A).
To select differentially expressed pathways implicated

in the initiation or maintenance of the disease, we focused
our study on a Database for Annotation, Visualization and
Integrated Discovery (DAVID) GEP analysis performed on
the 699 dysregulated genes that were unique to the HR-
MDS mice (Fig. 2a and Additional file 1: Table S2) and the
few dysregulated genes (n = 16) that were differentially
expressed (i.e., upregulated in the HR-MDS and downreg-
ulated in the founder mice and vice versa) (Fig. 2d and
Additional file 1: Table S3). Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis was per-
formed using DAVID. The results are detailed in the

Fig. 1 a Schematic representation of the HR-MDS mouse model. The characteristics of this model have previously been published [24-26;29]. b Decrease
of the HR-MDS mice survival compared to its single transgenic mice founders, MRP8NRASD12 and tethBCL-2 transgenic mice; c Increased level
of Lin-Sca1+-cKit+ (LSK) cells in the BM; d Increased apoptosis in the liver and spleen seen by whole body SPECT using 99Tc-Annexin (liver
and spleen region located above the kidneys); e The disease can be transplanted in normal FVB/N irradiated syngeneic mice with either the
Sca1+ cells of the spleen or BM of the HR-MDS mice resulting in 15 % blast infiltration in the BM blasts as in HR-MDS mice[24-26;29]
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Fig. 2 a Venn diagrams of co-expressed and uniquely dysregulated genes compared to control FVB/N mice in the HR-MDS, MRP8NRASD12, and

tethBCL-2 transgenic mice; b Heat map of the down- and upregulated genes performed on the Sca1+ cells of HR-MDS (n = 3) compared to control
FVB/N (n = 3) mice; c Distribution in % of the significantly dysregulated genes in the KEGG David annotation pathways; d Analysis of the differentially
expressed genes (i.e., upregulated in the HR-MDS transgenic mice and downregulated in the founder mice and vice versa). Genes in regular font are
expressed at lower levels and genes in bold font are expressed in higher levels. Examples of microarray data are shown for each intersection;
e Validation of microarray data. qRT-PCR fold change of angpt1 and abcb4 gene expression in the BM and spleen cells of a different set of
HR-MDS mice
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Additional file 1: Tables S4–S14. The most significantly
dysregulated genes were distributed into eight pathways
(Fig. 2c). These dysregulated pathways included gene pro-
cessing (namely DNA-RNA-protein processing) (Additional
file 1: Table S4), cellular processes (DNA repair, cell cycle,
survival/apoptosis) (Additional file 1: Tables S5–S7), signal
transduction (Additional file 1: Tables S8 and S9), intracel-
lular trafficking and membrane transporters (Additional
file 1: Table S10), and immune system (Additional file 1:
Table S11). Finally, around 38 % of dysregulated path-
ways concerned various pathways but with less genes in-
volved per pathway including energy and lipid metabolisms
(Additional file 1: Table S12), and epigenetic/splicing path-
ways (Additional file 1: Table S13)
Of the ten most significantly upregulated pathways

(Table 2), the pathway ranking first concerned genes of
the PSM family of the proteasome, namely genes coding
for different components of 26S. Increase in proteasome
activity has been reported in MDS patients, and various
studies have shown the potential benefit of combining
an inhibitor of proteasome, bortezomid, with conventional
MDS therapy [37, 38]. Equally significantly upregulated
were genes coding for cell metabolism (energy and lipids)
and the cell cycle/checkpoints/DNA repair. Genes coding
for components of the major complexes of the mitochon-
drial electron transport chain were also significantly up-
regulated (Fig. 3a). These included genes of complex I:

NADH deshydrogenase, complex IV: cytochrome c oxidase,
and complex V: ATPase (confirmed by quantitative reverse
transcription-PCR (qRT-PCR) in the BM and spleen cells
of HR-MDS mice Fig. 4). Oxidative phosphorylation is the
metabolic pathway in which mitochondria produce
ATP required by proliferating cells. Oxidative metabol-
ism also produces reactive oxygen species (ROS) such
as superoxide and hydrogen peroxide, leading to propa-
gation of free radicals, enhancement of antioxidant
pathways but also DNA damage. Genes of the ROS/
antioxidant pathways (such as Txn1, Gpx1, Cebpα) were
not significantly dysregulated in the HR-MDS mice com-
pared to the founder mice (Additional file 1: Table S14),
whereas cell cycle checkpoints, DNA damage/repair
genes were significantly upregulated (i.e., mad2l1, cdc25a,
mdm2, chek2, rad54b, brca1, fancm (Table 2, Additional
file 1: Tables S5 and S7). These pathways and genes have
also been shown altered in some GEP studies of MDS pa-
tients [12, 16]. Amongst the lipid metabolism upregulated
genes figured both those of ether lipid metabolism and
glycosphingolipid biosynthesis. Though increase of acyl-
glycerophospholipids and ether lipid metabolism have
been reported in cancers, (confirmed by qRT-PCR in
the BM and spleen cells of HR-MDS mice Fig. 4) with
loss of tumorigenicity when efficiently targeted [39], lit-
tle is known regarding MDS patients.
A survival/apoptosis pathway showed a significant

downregulation of genes coding for inhibitors of apop-
tosis (naip, tnfaip3, and madk9) in line with the apoptosis
observed in this HR-MDS model [29, 30, 32]. Downregu-
lation of genes of the PI3K family (class II) and Pten was
also significantly downregulated (Table 3). While Pten is a
well-known tumor suppressor, few reports link it with
MDS [40, 41]. Class II PI3K proteins are involved in the
translocation of proteins to the cell membrane and have
been shown instrumental in Shh signaling, a pathway im-
plicated in the relation of stem cell with its environment
[42]. Moreover, two other downregulated pathways in-
cluded genes coding for socs4, a member of the suppressor
of cytokine signaling family (confirmed by qRT-PCR in
the BM and spleen cells of HR-MDS mice Fig. 4), and reg-
ulators of the immune response such as CD19 and CD40,
also reported to be decreased in MDS [20, 22, 43]
When we separately studied the 16 genes that were

differentially expressed between the HR-MDS mice and
its founder single transgenic mice (i.e., upregulated in
the HR-MDS and downregulated in the founders or vice
versa), we found that the majority (14 out of 16) of these
differentially regulated genes were between the HR-MDS
and the founder tethBCL-2 mice (Fig. 2d and Additional
file 1: Table S3). The most significantly differentially dys-
regulated gene was angiopoietin, Angpt1, upregulated in
the HR-MDS mice (confirmed by qRT-PCR in the BM
and spleen cells of HR-MDS mice and CD34+ from

Table 1 Summary of the top pathways highlighted by GSEA on
the total differentially expressed genes

HR-MDS versus FVB/N AML post MDS versus FVB/N

Adipogenesis Adipogenesis

Androgen response Allograft rejection

Angiogenesis Androgen response

Bile acid metabolism Apical junction

Coagulation Bile acid metabolism

Complement Cholesterol homeostasis

E2F targets Coagulation

Estrogen response late Complement

Fatty acid metabolism E2F targets

G2M checkpoint epitheliall mesenchymal transition

Glycolysis G2M checkpoint

Kras signaling Glycolysis

Mitotic spindle Hedgehog-signaling

mTORC1 signaling Mitotic spindle

Myc targets Oxidative phosphorylation

Oxidative phosphorylation Pancreas beta cells

UV response-dn Spermatogenesis

Xenobiotic metabolism Xenobiotic metabolism

Italicized data indicate pathways in common between the two models; Bold
data indicate similar pathways found in the « unique » genes
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MDS patients Figs. 2e and 4). Angiogenesis in MDS has
been described, and some of the efficacy of Lenalido-
mide is related to its anti-angiogenic effect [44, 45]. The
other dysregulated genes were linked to gene processing
with transcription regulation genes such as Zbtb10 (a
Zinc finger/POZ domain gene), the Mms22l gene (a
stabilizer of the NFKB-like enhancer), the Rgl1 gene (the
Ral guanine nucleotide dissociation stimulator involved
in Ras and Ral signaling [46]), the Lrrc41 gene coding
for a substrate of RhoBTB-dependent cullin 3 ubiquitin
ligase complexes [47], and the Baiap2l1 gene that modu-
lates MDM2-mediated p53 low-level ubiquitination. This
latter gene is dysregulated in myelofibrosis and a fusion
partner of Fgfr3 in AML [48] membrane transporters
with an increased expression of the P-glycoprotein gene
(Abcb4-Mdr3) in the HR-MDS mice, gene linked to drug
resistance in MDS [49] (confirmed by qRT-PCR in the
BM and spleen cells of HR-MDS mice Fig. 4), cytokine
signaling (Socs4, and Rfx5, a regulatory factor for major

histocompatibility complex, altered in primary MHCI
deficiency [50]) and cell adhesion with the Troap gene
coding for the trophin-associated protein involved in
cell adhesion complexes [51]. Only one gene, Sumo2
(coding for a SUMO ligase) was significantly differentially
expressed (upregulated) between the HR-MDS mice
and its founder MRP8NRASD12 mice; SUMOylation is a
major post translation modification of key proteins in-
volved in cell control and carcinogenesis [52]. Finally,
only one gene, Tmem181a, was differentially expressed
between HR-MDS and its two founders, MRP8NRASD12
and tethBCL-2 mice (upregulated in the founders and
downregulated in HR-MDS mice). The function of
Tmem181a is still not fully defined; it is a transmem-
brane protein with a conserved domain of Wnt binding
factor required for Wnt secretion MIG-14 [53]. Abnor-
malities in the microenvironment and Wnt signaling
may well relate to our current knowledge of MDS dis-
ease initiation and/or maintenance [54].

Table 2 Top regulated pathways in the list of upregulated genes in HR-MDS mice

Functional pathway KEGG database n Up P value Upregulated genesa

Genetic information processing Proteasome 7 4.3E-04 PSMD14, PSMD12, PSMC4, PSMA5, PSMD2, POMP, PSME4

PSMD14, PSMD12, PSMC4, PSMA5, PSMD2, PSME4 : PSM family
(proteasome 26S subunit)

POMP: proteasome maturation protein

Energy Metabolism Oxidative phosphorylation 10 2.0E-03 NDUFB3, NDUFV2, ATP5C1, COX4I2, COX4I1, VDAC2, VDAC3,
ATP5J, SLC25A4, PPID

NDUFB3, NDUFV2: NADH Ubiquinone oxido reductase

ATP5C1, ATP5J: one of the subunits of mitochondria APTase

VDAC2, VDAC3: voltage dependent anion channel.

COX4I2, COX4I1cytochrome c oxidase subunit 4

SLC25A4: SOLUTE CARRIER FAMILY 25 mitochondrial ADP/ATP translocator

PPID: peptidylprolyl isomerase D

Lipid metabolismEther lipid metabolism 4 3.7E-02 PAFAH1B3, AGPAT4, PPAP2A, CHPT1

PAFAH1B3: platelet-activating factor acetylhydrolase 1b, catalytic subunit 3

AGPAT4: 1-acylglycerol-3-phosphate O-acyltransferase 4

PPAP2A: Phosphatidic Acid Phosphatase 2a

CHPT1: choline phosphor transferase 1

Lipid metabolism Glycosphingolipid biosynthesis 3 3.9E-02 SLC33A1, HEXB, GLB1

SLC33A1: solute carrier family 33 (acetyl-CoA transporter)

HEXB: hexosaminidase B (beta polypeptide)

GLB1 : Galactosidase, beta 1

Cellular processesCell cycle 7 5.4E-02 MAD2L1, CCNH, SKP2, MDM2, CHEK2, CDC25A, BUB3

MAD2L1, mitotic spindle assembly checkpoint (interacts with BUB1)

CCNH: cyclin H; SKP2 : S-phase kinase-associated protein 2

MDM2: mouse double minute 2 homolog (E3 ubiquitin-protein ligase);
CHEK2: checkpoint

BUB3: budding uninhibited by benzimidazole (checkpoint protein )
aGene card nomenclature
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Gene expression profile of the AML post MDS model
The same GEP and functional annotation studies were
performed in the AML post MDS model. The character-
istics of the AML post MDS model are summarized in
Fig. 5. The only difference in the establishment of the
AML post MDS mice compared to that of the HR-MDS
mice is the founder BCL2 mice where the promoter

driving the expression of the BCL2 transgene is MRP8
(Fig. 5a). The AML post MDS mice have been described
with the HR-MDS mice [29, 30, 32–35]. The co-
expression of the two transgenes is required to establish
the HR-MDS disease and impacts on survival (Fig. 5b).
The AML post MDS mice present features of AML with
major infiltration of blasts in the BM (Fig. 5a) and spleen,

Fig. 3 Schematic representation of dysregulated energy metabolism pathways. Dysregulated pathways are noted in red, if upregulated, and in
green, if downregulated. a HR-MDS; b AML post MDS
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a significant increase of immature cells Lin−Sca1+ckit+
(LSK) cells in the BM (Fig. 5c) and absence of apoptosis
by Tunel assay [29] and 99Tc-Annexin SPECT imaging
(Fig. 5d). Persistence of dysplasia in myeloid cells confers
the title of AML post MDS to the disease [25, 32]. We
have previously shown in these mice an increase in react-
ive oxygen species (ROS) and the frequency of DNA

damage [35]. Contrary to the HR-MDS mice, but in line
with the leukemic features of these mice, the RAS:BCL2
complex, is here found at the mitochondria membrane, fa-
voring BCL2 pathways and increased survival of blast cells
[32]. The mitochondrial localization of the RAS:BCL2
complex was also noted in MDS patients with high blast
count and low levels of apoptosis [30]. As for the HR-MDS

Fig. 4 qRT-PCR validation of the GEP microarray data (blue) in Sca1+ cells purified from BM or spleen of another set of HR-MDS mice (two different
hues of orange), and CD34+ cells purified from MDS patients (green) compared to FBV/N or CD34 BM cells, respectively. Data expressed as fold
change of expression of several genes of three pathways shown (angpt1 (signal transduction); cox4i1 and ndufv2 (oxidative metabolism); sdc1
(DNA processing)). qRT-PCR fold changes shown here are represented as the average of three experiments

Table 3 Top regulated pathways in the list of downregulated genes in HR-MDS mice

Functional pathway KEGG database n Down P value Downregulated genesa

Cellular processes Inhibition of Apoptosis 5 1.2E-2 NAIP6, NAIP5, NLRC4, MAPK9, TNFAIP3

NAIP6; NAIP5: NLR family, apoptosis inhibitory protein 6; NLRC4: NLR family
CARD domain-containing protein 4; MAPK9: Mitogen activated kinase 9;
TNFAIP3: Tumor necrosis factor, alpha-induced protein 3

Environmental adaptation Circadian rhythm 3 1.4E-2 NR1D1, PER1, CLOCK

NR1D1: nuclear receptor subfamily 1, group D, member 1

PER1: period circadian clock 1

CLOCK: circadian locomotor output cycles kaput

Signal transduction Phosphatidylinositol signaling system 5 2.2E-2 PIK3C2A, PIK3C2B, PIP4K2A, PTEN, ITPR1

PIK3C2A: phosphatidylinositol-4-phosphate 3-kinase

PIP4K2A: phosphatidylinositol-5-phosphate 4-kinase, type II,

PTEN: phosphatase and tensin homolog

ITPR1: inositol 1,4,5-trisphosphate receptor type 1

Human diseasesType II diabetes mellitus 4 3.2E-2 IRS2, MAPK9, CACNA1E, SOCS4

IRS2: insulin receptor substrate 2; MAPK9: mitogen activated kinase 9

CACNA1E: calcium channel, voltage-dependent, R type, alpha 1E subunit

SOCS4: suppressor of cytokine signaling 4

Human diseasesPrimary immunodeficiency 3 9.3E-2 CD19, RFX5, CD40

CD19: antigen receptor of B lymphocytes; RFX5: regulatory factor X;
CD40: TNF receptor superfamily member 5
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Fig. 5 a Schematic representation of the AML post MDS mouse model. The characteristics of these models have previously been published [24-26;29];
b Decrease of the survival of AML post MDS mice compared to the survival of the funders, MRP8NRASD12 and MRP8hBCL-2; c Increased level of
Lin-Sca1+-cKit+ (LSK) cells in the BM; d Decreased level of apoptosis in the liver by whole body SPECT using 99Tc-Annexin (liver and spleen region
located above the kidneys); e Validation of microarray data: Decreased levels of MEK isoforms in the AML post MDS spleen cells compared to FVB/N
control mice by the nanofluidic proteomic analysis; f The disease can be transplanted in normal FVB/N irradiated syngeneic mice with either the Sca1+
cells of the spleen or BM of the AML post MDS mice resulting in 54 % blast infiltration in the BM blasts as in AML post MDS mice.[24-26;29]
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model, we have shown that injection of Sca1+ spleen cells
from AML post MDS mice transfers the disease in syngen-
eic mice (Fig. 5f) [32].
The GEP of these mice shows a total of 8026 dysregu-

lated genes compared to normal FVB/N mice (Fig. 6a, b),
as most (67 %, n = 5352) of these dysregulated genes
were common and with similar levels of expression be-
tween the AML post MDS mice and the founders (the

MRP8NRASD12 or the MRP8hBCL2 single transgenic
mice) (Additional file 1: Table S15). Gene Set Enrich-
ment Analysis (GSEA) was performed with the 8026
genes significantly dysregulated in AML post MDS mice
compared with normal FVB/N mice, highlighting enrich-
ment in cellular processes (cell cycle/DNA damage-repair),
cell metabolism (energy; lipid metabolism), and immune
system (Table 1 and Additional file 2: Figure S1B).
As for the HR-MDS model, to select differentially

expressed pathways implicated in the initiation or main-
tenance of the disease, we focused our study on Database
for Annotation, Visualization and Integrated Discovery
(DAVID) GEP analysis, on the 2620 dysregulated genes
that were unique to the AML post MDS mice (Additional
file 1: Table S16) and the 54 dysregulated genes that were
differentially expressed (i.e., upregulated in the AML post
MDS and downregulated in the founder mice and vice
versa) (Fig. 6d and Additional file 1: Table S17).
We first analyzed the 2620 genes unique to the AML

post MDS mice (Additional file 1: Table S16). DAVID
and KEGG functional annotation distributed the AML
post MDS dysregulated genes in functions similar to
those noted for the HR-MDS model, underscoring the
malignant background of both models (Fig. 6c). Like the
HR-MDS mouse, the majority of the genes were distributed
in pathways implicated in gene processing (DNA-RNA-
protein) (Additional file 1: Table S18), DNA-repair
(Additional file 1: Tables S19), cellular processes (cell
cycle (Additional file 1: Tables S20), survival/apoptosis
(Additional file 1: Table S21), signal transduction (Additional
file 1: Tables S22, S23), intracellular trafficking, membrane
transporters (Additional file 1: Table S24)), and genes of the
immune system (Additional file 1: Tables S25, S26). Other
pathways included energy and lipid metabolism (Tables 4
and 5; Additional file 1: Table S28), kinases (Additional
file 1: Table S23), Rho/Wnt pathway (Table 6 and Additional
file 1: Table S23C), and genes of splicing and epigenetic en-
zymes (Additional file 1: Tables S18, S27).
KEGG analysis identified 13 significantly dysregulated

pathways (Tables 4 and 5). The most upregulated pathway
concerned cell metabolism (Table 4). Indeed, in this
model, all the components of the oxidative phosphoryl-
ation pathway were upregulated (Fig. 3b) (complex I:
NADH dehydrogenase, complex II: fumarate reductase,
complex III: cytochrome bc1 complex, complex IV:
cytochrome c oxidase, and complex V: ATPase). Amongst

the other upregulated cell metabolism pathways were
those of nucleotide/pyrimidine metabolism. The upregula-
tion of these pathways are in line with the up regulation of
other cellular processes pathways such as: cell cycle,
DNA replication and repair (blm, rad18, rad51, rad54),
and multiple histone family genes, signaling molecules
and signal transduction (cytokine and cytokine receptors
including Epo, chemokines, TNFs, JAK-STAT signaling),
and the immune system with Toll receptor and inter-
feron pathways. All these pathways find their place in
the active leukemia features found in this mouse model
and have to some extent been reported either in MDS
or AML patients [20, 22, 29, 30, 32–35, 43]. Interest-
ingly, one study also highlighted the upregulation of
histone genes coding for histones 2 and 1 in MDS
patients [55].
Intriguingly, of the five most downregulated pathways

(Table 5), three concern signal transduction pathways.
The most significantly downregulated pathway was repre-
sented by numerous kinases of the MAPK (MEK) pathway
(MAP2K1, MAPK2P2 MAKA4P2, MAP3K7). These MAPK
genes also cluster in two functional annotation signal
transduction pathways (signal transduction and pathways
in cancer) with other enzymes or proteins acting down-
stream of environmental signaling such as bmp, Tgfβ, or
Wnt signaling. We confirmed the decreased expression of
one of these MAPK, MAP2K, at the protein level in an-
other set of AML post MDS mice cells by nanofluidic
proteomic immunoassay (Fig. 5e). The Wnt pathway
(found in the annotation “cancer pathways”) is the most
targeted pathway with 23 dysregulated genes (Tables 4
and 6). Fourteen of these genes were downregulated (such
as Dvl, Ppp3ca, Csnk1a1, Smad4, Rock1) while two genes
coding for inhibitors of Wnt signaling, Icat (Ctnnbip1)
and Disabled (Dab2) were upregulated (the latter by
nearly sevenfold). Other pathways pointed to a potential
dysfunction of interaction with the environment, such the
Rho signaling pathway (Additional file 1: Table S23C) and
the CD44 gene (Table 6). The downregulation of the Wnt
canonical pathway has already been underscored in sev-
eral studies in MDS patients [14, 19, 20, 22, 24, 56, 57].
However, our analysis also highlights that genes of the
noncanonical Wnt pathway (Rock1, Can, Ppp3ca, and
Rho/Rac GEF) are also altered. These combined altered
pathways underscore the importance of the regulation of
genes of the microenvironment in this disease [58]. Fi-
nally, in this model, genes of the class II PI3K family and
Pten were also downregulated as observed in the HR-
MDS model (Tables 2, 4, and 5).
As in the HR-MDS GEP study, we analyzed the 54

genes that were differentially expressed between the AML
post MDS model and its founders (i.e., upregulated in the
AML post MDS and downregulated in the founders or
vice versa) (Fig. 6d and Additional file 1: Table S15). These
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Fig. 6 a Venn diagrams of co-expressed and uniquely dysregulated genes compared to control FVB/N mice in the AML post MDS, MRP8NRASD12
and MRP8hBCL-2 transgenic mice; b Heat Map of GEP performed on the Sca1+ cells of AML post MDS mice (n = 3) compared to control FVB/N
mice (n = 3); c Distribution in % of the significantly dysregulated genes in the KEGG DAVID annotation pathways; d Analysis of the differentially
expressed (i.e., upregulated in the AML post MDS transgenic mice and downregulated in the founder mice and vice versa). Genes in regular font
are expressed at lower levels and genes in bold font are expressed in higher levels. Examples of microarray data are shown for each intersection
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genes predominated in the functional pathway gene pro-
cessing (DNA-RNA-protein) such as pmf1, btf3l4, bptf,
npm3, pol2rc, ncbp1, Ufm1, hnrnpf, and Hif1α. Several of
these genes are implicated in leukemogenesis such as
the npm genes (nmp1 and nmp3). HIF1α is a key part-
ner of glycolysis (Fig. 3b) [59] and a target gene of E2F3

[60]. Both HIF1α (Additional file 1: Table S17) and
E2F3 (Additional file 1: Table S16) genes are upregu-
lated in the AML post MDS. MDS patients have been
reported to express high levels of E2F3 and dhfr [61]
and Hif1α [62] underscoring the relevance of the mice
model. Genes of cellular processes such as survival/

Table 4 Top regulated pathways in the list of upregulated genes in AML post MDS mice

Functional pathway KEGG database n Up P Value Upregulated genesa

Cell metabolismOxidative
phosphorylation

18 1.0E-03 NDUFB5, NDUFB6, NDUFB8, ATP5B, COX4I1, NDUFC1, COX5A, LHPP, NDUFA10,
ATP5G3, PPA2, NDUFB2, ATP6V0C, ATP6V1A, UQCR11, NDUFV1, SDHC, COX6B2

NDUF family: NADH dehydrogenase (ubiquinone) Fe-S family

SDHC: succinate dehydrogenase complex, subunit C

LHPP: phospholysine phosphohistidine inorganic pyrophosphate phosphatase

Nucleotide metabolism Pyrimidine
metabolism

14 2.9E-03 POLR2G, NUDT2, DTYMK, POLE, AK3, POLA1, POLR2C, NME4, TYMP, POLE3, NME1,
POLD1, ENTPD1, DUT

NUDT2: nucleoside diphosphate, AK3: adenylate kinase

TYMP: thymidine phosphorylase, NME: nucleoside diphosphate kinase

POLE, POLR2C, POLE3, PLD1: polymerases, DUT: deoxyuridine triphosphate

Immune systemToll-like receptor
signaling

14 3.8E-03 MAP2K3, MAP2K4, TLR4, FADD, CXCL11, TLR7, CCL4, TLR8, CD80, IFNA7, MAPK13,
IFNA5, TICAM2, PIK3R2

MAP2K3, MAP2K4: MEK proteins, TICAM2: TIR domain-containing adapter molecule 2

PIK3R2: Phosphatidylinositol 3-kinase regulatory subunit beta

Cellular processesCell cycle 16 5.8E-03 CDC6, E2F3, CCNH, SKP2, YWHAB, ESPL1, CDC20, CHEK1, CHEK2, CDC25C, MCM4,
2CDK2, CCNE2, CDC45, MAD2L1, CDKN2C

CCNH: cyclin H; SKP2: S-phase kinase-associated protein 2; YWHAB: 14-3-3 protein beta/alpha

ESPL1:separin, CCNE2: cyclin E2, MAD2L1: MAD2 mitotic arrest deficient-like 1

CDKN2: cyclin-dependent kinase inhibitor 2A (p16)

Signaling molecules Cytokine-
cytokine receptor

25 5.9E-03 IL1R1, ACVRL1, PDGFB, IL13, CXCL11, CCL4, TNFRSF4, IL10, IL12RB2, CCL22, IFNA7,
IFNA5, TNFRSF18, IFNGR1, EPO, IL4, IL23R, IL21, CCL17, TNFRSF9, INHBA, CCR8,
TNFSF11, CXCL13, CCR2

IL1R1, IL12RB, I L23R,IL21: interleukines/interleukine receptor

CCL4, CCL22, CCL17, CXCL11, CXCL13 CCR2, CCR8: chemokine

TNFRSF4, TNFRSF18, TNFRSF9, TNFSF11. Tumor necrosis receptor

IFNA7, IFNA5, INFGR1, INHBA: interferon signaling

EPO: erythropoietin

Signal transductionJAK-STAT
signaling pathway

15 5.0E-02 IL4, IL23R, SOCS2, IL13, IL21, IL10, IL12RB2, SPRY1, IFNA7, IFNA5, SPRED2, IFNGR1,
IL13RA2, EPO, PIK3R2

IL4, IL23R, IL13, IL21, IL10, IL12RB2, IL13RA2: interleukines/interleukine receptor

IFNA7, IFNA5, IFNGR1: interferon signaling

EPO: erythropoietin

PIK3R2: phosphoinositide-3-kinase, regulatory subunit 2

Genetic information processing.
Replication and repair

5 6.4E-02 BLM, RAD51L1, POLD1, RAD54B, RAD51

BLM: bloom syndrome protein, POLD1: polymerase delta

RAD51L1, RAD54B, RAD51: recombinases family

Genetic information processing 11 6.8E-02 HIST1H2AC, C4A, H2AFV, CD80, HIST2H2BE, HIST2H2AC, HIST1H2BH, HIST1H2AI,
SNRPB, H2AFY, FCGR1, IL10

HIST1H2AC,H2AFV,HIST2H2BE,HIST2H2AC,HIST1H2BH, HIST1H2AI, H2AFY: histone proteins

C4A: complement factor 4; CD80, costimulatory factor, SNRPB: small nuclear
ribonucleoprotein-associated proteins B, FCGR1: IgG Fc receptor

aGene card nomenclature
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apoptosis, cell cycle, and DNA repair were also differen-
tially expressed. Genes of cell metabolism were also identi-
fied such as genes coding for succinate-CoaA ligase,
cytochrome c oxidase (Coxa5, Cox6), Coq4, or dihydrofo-
late reductase (dhfr). Two genes (cysc and hnrnpf) were
dysregulated between the AML post MDS mice and both
founder. The Hnrnpf gene (heterogeneous nuclear ribonu-
cleoprotein F) is involved in the regulation of alternative
splicing [63] and has been found altered in myeloid malig-
nancies [63] while the cysc gene codes for cytochrome C
in the electron respiratory chain and is also a major
mitochondrial initiator of the apoptosis intrinsic pathway
(Fig. 3b). Finally, other dysregulated genes involved mem-
brane transporter genes (such as iron (Slc40a1/ferroportin),
calcium (Orai2), H+/Cl- (clnc5), small RNAs (Sidt1),
ankyrine (ankrd55) or membrane receptor genes (vaso-
pressine (Vipr1), scavenger (CD163), mannose phos-
phate (M6pr-ps), chemokine (ccr3), and IL12 (IL12tb2).
Of note, the role of the iron transporter was reported
in MDS [64].

Validation of GEP
The GEP microarray data was validated on a different
set of HR-MDS mice produced a year after the mRNA
extraction for the GEP analysis on both BM and spleen
Sca1+ purified cells. A similar dysregulation of gene ex-
pression was noted on three selected pathways, angpt1
(signal transduction), cox4i1 and ndufv2 (oxidative

metabolism), and sdc1 (DNA processing). For all these
genes, there was a concordance between (a) the array ana-
lysis and the RT-PCR study and (b) a concordance be-
tween the spleen and bone marrow gene expression
validating the study performed on spleen cells (Fig. 4). We
also confirmed the decreased expression of one of these
MAPK, MAP2K, at the protein level in another set of
AML post MDS mice cells by nanofluidic proteomic im-
munoassay (Fig. 5e).
The relevance of the GEP results was also validated in

CD34+ BM cells of MDS patients (n = 3) on the same
gene panel. For these pathways (signal transduction, oxida-
tive metabolism, and DNA processing), the dysregulation
was the same in the BM of HR-MDS mice and MDS pa-
tient CD34+ BM cells when compared to normal FVB/N
control cells and normal CD34 BM cells (Fig. 4). This is
the only discrepancy we noted when comparing the HR-
MDS mice GEP data with gene expression data in MDS
patient samples (whether from data of the literature or
validation analysis performed in this study). However,
the complete disruption noted in the MDS patient sam-
ples is in line with that reported in patients with solid
tumors [65, 66] and strengthens their potential relevance
to human MDS though how these pathways impact on
the disease still needs to be elucidated as in solid tumors.
Thus, the GEP analysis of these mice, at the gene ex-

pression level, validates them as unique models of human
MDS, at two different stages of the human MDS disease,

Table 5 Top regulated pathways in the list of downregulated genes in AML post MDS mice

Functional pathway KEGG database n Down P value Downregulated genesa

Cellular processes Inhibition of Apoptosis 5 1.2E-2 NAIP6, NAIP5, NLRC4, MAPK9, TNFAIP3

NAIP6; NAIP5: NLR family, apoptosis inhibitory protein 6; NLRC4: NLR family CARD
domain-containing protein 4; MAPK9: mitogen activated kinase 9; TNFAIP3: tumor
necrosis factor, alpha-induced protein 3

Environmental adaptation Circadian rhythm 3 1.4E-2 NR1D1, PER1, CLOCK

NR1D1: nuclear receptor subfamily 1, group D, member 1

PER1: period circadian clock 1

CLOCK: circadian locomotor output cycles kaput

Signal transduction Phosphatidylinositol
signaling system

5 2.2E-2 PIK3C2A, PIK3C2B, PIP4K2A, PTEN, ITPR1

PIK3C2A: phosphatidylinositol-4-phosphate 3-kinase

PIP4K2A: phosphatidylinositol-5-phosphate 4-kinase, type II,

PTEN: phosphatase and tensin homolog

ITPR1: Inositol 1,4,5-trisphosphate receptor type 1

Human diseasesType II diabetes mellitus 4 3.2E-2 IRS2, MAPK9, CACNA1E, SOCS4

IRS2: insulin receptor substrate 2; MAPK9: mitogen activated kinase 9

CACNA1E: calcium channel, voltage-dependent, R type, alpha 1E subunit

SOCS4: suppressor of cytokine signaling 4

Human diseasesPrimary immunodeficiency 3 9.3E-2 CD19, RFX5, CD40

CD19: antigen receptor of B lymphocytes; RFX5: regulatory factor X ;
CD40: TNF receptor superfamily member 5
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high risk (HR-MDS), and at transformation (AML post
MDS). Though published MDS mice models have pro-
vided insights to initiating mechanisms such as splicing
abnormalities, chromosomal deletions, or abnormalities of
the microenvironment [25, 67], most are characterized by
myeloid proliferation, whether chronic or acute, with little
reported analysis of apoptosis, and very few have achieved
a translational benefit.
The majority of the identified pathways in the HR-MDS

and AML post MDS mice identified by this GEP analysis
are similar to those reported in similar annotation studies
performed in MDS patients, when all analyses are com-
bined [11–14, 16, 18–22, 24, 43, 45, 56–58, 64, 68–77].
Most of the dysregulated pathways were expected in a
malignant context, such as pathways of gene processing,
intracellular trafficking, cell cycle, DNA damage-repair,
signal transduction, the immune system, and oxidative
metabolism (Fig. 7a), and confirmed by GSEA analysis per-
formed on all genes dysregulated in HR-MDS (Additional
file 1: Table S29, Additional file 2: Figure S1A) or AML
post MDS (Additional file 1: Table S30, Additional file 2:
Figure S1B) vs FVB/N mice. The latter three annotation
pathways are more frequently dysregulated in the AML

post MDS mice. A more focused analysis on pathways now
known to be implicated in MDS and AML [3, 18] also
identified dysregulation of genes coding for epigenetic pro-
teins (Additional file 1: Table S13 and S27), enzymes in-
volved in methylation and acetylation processes
(Additional file 1: Tables S4, S18 and Additional file 3:
Figure S2D) as well as genes implicated in splicing and
translation in both diseases (Additional file 1: Tables S4,
S16, S18), confirming the importance of altered epigenetic,
splicing, or ribosomal pathways in MDS diseases whether
they are induced by mutations or altered gene expression.
Thus, both mice models may be useful to further analyze
and target these known pathways.
The GEP and annotation analysis equally identified

novel dysregulated pathways, most of which have been
identified in the solid tumor field but not as yet in AML
or MDS. These pathways, detailed above, concern lipid
and ether metabolism, the proteasome, MAPKinases, and
more specifically, the noncanonical Wnt (Fig. 7b). The
dysregulation of these pathways was confirmed by the
differential gene expression (or nanofluidic proteomic
immunoassay) seen in the BM and spleen cells of a dif-
ferent set of MDS mice and in the BM CD34+ cells of

Table 6 Genes implicated in WNT signaling differentially dysregulated in the AML post MDS transgenic mice compared to control
FVB/N mice

Gene symbol Gene name Regulation Fold change P value

Mesdc2 Mesoderm development candidate 2 Up 1.98 1.92E-02

Csnk2b Casein kinase 2, beta polypeptide Up 1.88 1.76E-02

Fzd7 Frizzled homolog 7 Up 1.75 2.74E-03

Ctnnb1 Catenin (cadherin associated protein), beta 1 Up 1.74 4.24E-04

Bambi BMP and activin membrane-bound inhibitor, homolog (Xenopus laevis) Up 1.73 1.56E-02

Dab2 Disabled homolog 2 Up 6.67 2.12E-02

Cd44 CD44 antigen Up 1.68 5.96E-03

Wdr61 WD repeat domain 61 Up 1.64 7.57E-04

Sdc1 Syndecan 1 Up 3.11 5.94E-03

Hhex Hematopoietically expressed homeobox Down 1.98 2.46E-02

Macf1 Microtubule-actin crosslinking factor 1 Down 1.94 8.80E-03

Mark2 MAP/microtubule affinity-regulating kinase 2 Down 1.94 2.41E-02

Tnik TRAF2 and NCK interacting kinase Down 1.91 3.10E-03

Tle1 Transducin-like enhancer of split 1, homolog of Drosophila E(spl) Down 1.88 1.51E-02

Dvl2 Dishevelled 2, dsh homolog (Drosophila) Down 1.67 7.34E-03

Csnk1a1 Casein kinase 1, alpha 1 Down 1.65 1.27E-02

Rock1 Rho-associated coiled-coil containing protein kinase 1 Down 1.61 7.04E-03

Map3k7 Mitogen-activated protein kinase kinase kinase 7 Down 1.58 9.96E-04

Smad4 MAD homolog 4 Down 1.54 6.36E-03

Dapk3 Death-associated protein kinase 3 Down 1.52 1.06E-02

Tbl1xr1 Transducin (beta)-like 1X-linked receptor 1 Down 1.52 8.39E-04

Ppp3ca Protein phosphatase 3, catalytic subunit, alpha isoform Down 1.50 9.70E-03

Ppap2b Phosphatidic acid phosphatase type 2B Down 2.10 2.74E-02
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MDS patients when compared to their normal counter-
parts (Figs. 2e, 4). How these dysregulations occur and
impact on the initiation or maintenance of MDS and in
the networks of the other dysregulated pathways will
require further studies.

Conclusions
In conclusion, this study confirms that the HR-MDS and
AML post MDS mice mimic two stages of the human

MDS disease not only in their clinical and biological
level but also in their gene expression level. This study
further highlights novel less well studied pathways such
as energy and lipid metabolism and noncanonical Wnt
signaling which may concur with epigenetics and DNA
damage to the genomic instability of these diseases. These
MDS models should help unravel the underlying networks
at the origin of these dysregulation and provide further
biomarkers and targets for MDS disease.

Fig. 7 a Frequency in percent of the most significant pathways dysregulated (up- or downregulated) in the two MDS mice models; b Schematic
summary of the dysregulated pathways noted in the two MDS mice models. Upregulated pathways (gray boxes), downregulated pathways (white boxes)
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Methods
Transgenic mice
The MRP8[NRASD12/hBCL-2] (AML post MDS) and
MRP8NRASD12/tethBCL-2 (HR-MDS) transgenic mice were
generated from crosses of MRP8hBCL-2 or MMTVLTRtTA/

TetohBCL-2 (tethBCL-2) with MRP8NRASD12 hemizygote
mice in FVB/N, as previously described [33, 34]. For geno-
typing, DNA was extracted from the tails of 3-week-old
mice using the KAPA Express Extraction Kit using
manufacturer instructions. The PCR reaction was then
performed with REDTaq® ReadyMixTM PCR Reaction
Mix with MgCl2. Mice were classified according to the
Bethesda classification [78] as HR-MDS or AML post
MDS-like by cytological and pathology criteria. Mice
were maintained in the barrier facilities of the Institut
Universitaire d’Hématologie. Procedures involving ani-
mals and their care conformed with institutional guide-
lines that comply with national and international laws
and policies and were authorized by the local ethical
committee. Mice were sacrificed when they were mori-
bund or upon veterinary advise. Committee on the Ethics
of Animal Experiments Paris-Nord: C2EA-121 approved
this project no. 2014IUH006

Cell and tissue preparation, flow cytometry
The bone marrow (BM) was obtained by flushing long
bones with Hank’s balanced salts solution followed by
filtering through a nylon mesh. BM smears were pre-
pared according to standard hematological techniques.
BM smears were stained and examined by a cytologist
(MEN) of Hôpital Saint-Louis. Percentage blasts were
determined from the BM smears by counting 100–200
cells. Spleen cells from AML post MDS mice (day 36
post birth) and HR-MDS mice (day 80 post birth) were
obtained by soft dilaceration of the spleen with the pis-
ton of a 5-ml syringe in a petri dish. Cells were washed
in PBS, filtered through a 40-μm nylon mesh and then
density centrifugation was conducted using Lymphoprep
(Eurobio, France) to isolate mononuclear cells. Spleen or
BM cells were labeled with anti-Sca1+ antibodies coupled
with microbeads from Miltenyi and then sorted using an
AutoMacs separator (Miltenyi Biotec Bergisch Gladbach,
Germany). 5.106 to 107 Sca1+ sorted cells were used to
extract total RNA using TRIzol (Invitrogen, CA, USA).
Quantification and quality of the RNAs were assessed
using a Nanodrop (Thermoscientific, USA).

Secondary transplantation of bone marrow and spleen cells
Bone marrow cells, isolated from long bones, and spleen
cells were harvested from 6- to 10-week-old AML post
MDS mice as described above, pooled and divided (107

nucleated cell aliquots per recipient) for i.v. injections
into 12 irradiated FVB/N mice. Six- to 8-week-old FVB/
N mice were prepared for transplantation by cesium

irradiation totaling 10 Gy, divided into two doses 3 to
4 h apart. Successful transfer of the transgene-positive
cells was confirmed by PCR. Spleen cells (105, 106, or
107) from HR-MDS mice were injected i.v. in tail veins
of immunocompromised RAG1-deficient mice, which
are B cell and T cell deficient. [79]

Nanofluidic proteomic immunoassay (NanoPro assay)
Splenocyte cells (106) isolated from transgenic mice were
lysed in radio immunoprecipitation assay buffer and sub-
jected to a nanofluidic proteomic immunoassay (NIA) run
on the NanoPro1000, as we have previously described [80]
(ProteinSimple, Santa Clara, CA) mixing 0.1 mg/mL of
lysate in a final volume of 15 μL loaded in a 384-well plate
with five to eight gradient ampholyte mix. Antibodies
were diluted in ProteinSimple antibody diluent: mitogen-
activated protein kinase (MEK)1 (Upstate 07-641;
Millipore, Billerica, MA) 1:100. Samples were run in
triplicate.

99Tc-Annexin scintigraphy
Single-Photon Emission Computed Tomography (SPECT)
was performed under pentobarbital anesthesia (4 mg/
100 g body weight; Ceva Santé Animale, Libourne, France)
in mice, after intravenous injection of 99Tc-Annexin. Images
were acquired 10 min after injected dose of 99Tc-Annexin.
Planar images were obtained 0 to 45 min (dynamic acquisi-
tion: 15 images, image duration: 60 s, static acquisitions
of 10 min duration) after 99Tc-Annexin injection. In
addition, mice which had previously undergone planar
imaging underwent abdominal X/tomoscintigraphy ac-
quisition: mod-list tomographic acquisition was performed
during continuous rotation of the animal placed between
two parallel collimators (360° rotation per minute, acquisi-
tion duration: 60 min from 1 h to 2 h after 99Tc-Annexin
injection). All acquisitions were performed using a ded-
icated small animal IMAGER-S/CT system (Biospace
Mesures, Paris, France) equipped with parallel low-energy
high-resolution collimators (matrix 128 × 128, 15 % energy
window centered on 140 KeV). 99Tc-Annexin uptake in
hepato-splenic area was visually assessed.

Affymetrix exon array hybridization
One microgram of total RNA extracted from Sca1+ spleen
cells from the AML post MDS mice, HR-MDS mice, single-
transgenic mice necessary to produce these AML post MDS
and HR-MDS mice, (MRP8NRASD12, MRP8hBCL-2, tethBCL-2)
(called founder mice), and FBV/N control mice (n=3 each)
was labeled with Affymetrix reagents and hybridized to
Affymetrix-GeneChip Mouse Exon 1.0 ST arrays. Affy-
metrix Expression Console Software was used to perform
quality assessment.
For each of the 18 arrays (MRP8NRASD12/tethBCL-2,

MRP8[NRASD12/hBCL-2], MRP8NRASD12, MRP8hBCL-2,

Guerenne et al. Journal of Hematology & Oncology  (2016) 9:5 Page 16 of 20



tethBCL-2, and the control FVB/N mice), 100 ng of total
RNA was first mixed with bacterial transcripts and the
mixture was reverse transcribed into complementary DNA
(cDNA). After synthesis of double-stranded cDNA, an in
vitro transcription reaction was conducted overnight.
Resulting amplified cRNA was reverse transcribed into
sense DNA incorporating dUTP. This single-stranded
DNA was treated with a combination of uracil DNA glyco-
sylase and apurinic/apyrimidinic endonuclease 1. DNA
fragments were biotin-labeled by terminal deoxynucleotidyl
transferase. Targets were finally prepared according to Affy-
metrix recommendations for hybridization of exon arrays.
Microarrays were hybridized, washed, and scanned using
Affymetrix instruments. Total RNAs RIN values were
between 8.3 and 9. Raw data are controlled with Ex-
pression console (Affymetrix).

Microarray data and statistical analysis
Affymetrix exon array data analyses were performed
using EASANA based on FAST DB annotations [81]
(GenoSplice technology; http://www.genosplice.com/).
Unpaired statistical analyses were performed using Stu-
dent’s paired t test as previously described [82]. Affymetrix
Expression Console Software was used to perform quality
assessment. All array present a “pos_vs_neg_auc” value
greater or equal than 0.82; All arrays present a “all_probe-
set_rle_mean” value lesser or equal than 0.35; All arrays
present a “%” value greater or equal than 65 % and less
than 6 % of difference between arrays from the same ex-
perimental condition.
Regarding the expression status/background noise

analysis, only probes with a DABG P value ≤0.05 in at
least half of the arrays from a given experimental condi-
tion were considered for further statistical analysis.
We kept a cutoff of P value ≤ 0.05 of increase or de-

crease of expression compared to normal samples for
the analysis [83], Gene Set Enrichment Analysis (GSEA),
and gene ontology using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (http://
https://david.abcc.ncifcrf.gov) were performed [84–87].
Though our analysis is focused on the unique genes dys-
regulated in the HR-MDS and the AML post MDS trans-
genic mice and sets of genes differentially expressed in
HR-MDS or AML post MDS and founders, the data from
all mice was analyzed as of potential relevance to the initi-
ation of the disease (Additional file 1: Tables S1-28). This
resulted in a selection of 2674 genes unique for AML post
MDS and 715 for HR-MDS that were used for functional
analysis. Microarray data from this study were included in
the NCBI Gene Expression Omnibus no. GSE72934.

HR-patient samples
BM aspirates from MDS patients were obtained in ac-
cordance with the Declaration of Helsinki. Participants

provide their written informed consent to participate in
Cancer research. The study presented here is part of a
study approved by “Comité d’Evaluation de l’Ethique
des Projets de Recherche Biomédicale” (CEERB) Paris
Nord—IRB00006477—on 17 June 2013 (opinion number
13-027).
Patients had been diagnosed according to the World

Health Organization (WHO) 2008 classification [88, 89].
CD34+ enriched cells were obtained by using anti-CD34+
antibodies coupled with microbeads from Miltenyi and
then sorted using an AutoMacs separator (Miltenyi Biotec
Bergisch Gladbach, Germany). CD34+ sorted cells were
used to extract total RNA using TRIzol (Invitrogen, CA,
USA).

Real-time RT-PCR
Total RNA (1 μg) was reverse transcribed with SuperScript
III reverse transcriptase (Invitrogen) using 100 ng of
Random Hexamers. Quantitative real-time RT-PCR was
performed in a test set of HR-MDS mice (n = 3) Sca1+
enriched BM and spleen cells and MDS patients (n = 3)
CD34+ enriched BM using Power SYBR® Green (Applied
Biosystems) and 7500 Fast Real-Time PCR System, Applied
Biosystems. Primer sequences are detailed in Additional
file 1: Table S31.

Additional files

Additional file 1: Lists of regulated genes in HR-MDS and AML post
MDS relative to FVB/N (Tables S1 to S31). (XLSX 1839 kb)

Additional file 2: Figure S1. GSEA analysis, (A) Endplot of significantly
dysregulated pathways in HR-MDS vs FVB/N, (B) Endplot of significantly
dysregulated pathways in AML post MDS vs FVB/N (ZIP 5853 kb)

Additional file 3: Figure S2. In a preliminary work, mRAS-BCL2 (referred
in this study as MRP8[NRASD12/ hBCL-2], AML post MDS mice) transgenic
mice Sca1+ spleen cells genes were analyzed on Affimetrix 430A mouse
arrays. Compared to normal FVB/N Sca1+ spleen cells, (A) DAVID analysis,
(B) Principal component analysis (PCA), and hierarchical clustering, were
performed with R software (http://www.R-project.org) and Partek Genomics
Suite (http://www.partek.com). Each sphere represents a single GEP from a
given transgenic mouse: mRas (referred in this study as MRP8NRASD12
transgenic mice), mBCL2 transgenic mice (referred in this study as
MRP8hBCL-2 transgenic mice), mRAS-BCL2 transgenic mice (referred in
this study as MRP8[NRASD12/ hBCL-2] or AML post MDS transgenic mice),
(C) Gene spring single gene analysis identified significant up-regulation of
ADA, KRTCAP2, SSR4, CKAP4 and ATPG3 genes in mRAS-BCL2 transgenic
mice (referred in this study as MRP8[NRASD12/ hBCL-2] or AML post MDS
transgenic mice). (D). In this study; ADA and KRTCAP2 were up dysregulated
in MRP8hBCL2 (mBCL2), AML post MDS (mRAS-BCL2) and HR-MDS
transgenic mice Sca1+ spleen cells; SSR4 in AML post MDS (mRAS-BCL2) and
HR-MDS transgenic mice Sca1+ spleen cells and; CKAP4 and ATPG3 in AML
post MDS (mRAS-BCL2) transgenic mice Sca1+ spleen cells. (TIF 30355 kb)
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