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Abstract

Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric
antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells,
tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs
directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells,
simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are
also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell
development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in
China and provided a quick glimpse of the landscape of CAR-T studies in China.

Background
Novel immunotherapeutic agents targeting CTLA-4,
programmed cell death-1 protein receptor (PD-1), and the
ligand PD-L1 are revolutionizing cancer therapy [1–7].
Cancer immunotherapy by re-igniting T cells through
blocking PD-1 and PD-L1 is highly potent in a variety of
malignancies [8–12]. Allogeneic hematopoietic stem cell
transplantation has been proven to be a curative immuno-
therapy for leukemia though with significant toxicities
[13–18]. Autologous T cells with re-engineered chimeric
antigen receptors (CAR-T) have been successfully used for
leukemia and lymphoma without graft-vs-host diseases
[19–25]. The first such product, tisagenlecleucel, has
recently been approved for clinical therapy of refractory B
cell acute lymphoblastic lymphoma (ALL). More and
more clinical trials of CAR-T cells are being done
throughout the world [26–38].
In recent years, more and more clinical trials from

China are being done and registered in ClinicalTrials.gov.
CAR-T cells have become a major source of cellular im-
munotherapy in China. This study summarized the CAR-
T clinical trials being conducted in China and provided a
quick glimpse of the landscape of CAR-T studies in China.

Methods
We searched ClinicalTrials.gov using keywords “CAR T,”
“CAR-T,” “chimeric antigen receptor,” “adoptive therapy,”

“third generation chimeric,” and “fourth generation chimeric”;
country: China. All relevant trials registered at the Clinical-
Trials.gov prior to July 18, 2017, were included in the analysis.
One trial was excluded (NCT03121625) because the target
antigen was not disclosed. A search of the PubMed
database was also done to include those trials and
cases that have been published.

Results
Distribution of CAR-T trials in China
Currently, there are 121 trials reported and/or registered
at ClinicalTrials.gov from China (Table 1). The trials are
mainly carried out in leading hospitals from Beijing,
Shanghai, Guangzhou, and Chongqing. CAR-T trials are
started in hospitals throughout China. In this study, to
avoid duplication of trials that can lead to miscalcula-
tion, those trials in Chinese registries were not included.
It is possible that the number of institutions carrying out
CAR-T trials will increase at a slower pace once regula-
tory policies are in place. We believe these CAR-T cells
should be regulated as drugs [39].

Chimeric antigen receptors, vectors, and co-stimulatory
molecules used in the CAR constructs
T cell receptors (TCRs) are engineered by incorporating a
specific antigen-targeting element and CD3 element to form
a completely novel TCR structure, the chimeric antigen
receptor (CAR) [35, 40]. In addition, several co-stimulating
sequences have been used to facilitate the expansion of the
CAR-T cells [41]. CAR-engineered T lymphocytes have been
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in active clinical development to treat patients with advanced
leukemia, lymphoma, and solid tumors [42–45].
One of the major hurdles in CAR-targeted cellular

therapy has been the limited cell dose due to the lack of
adequate in vivo cell expansion. Co-stimulatory signals can
enhance immune responses of effector T cells [46].
Inducible co-stimulatory signal (ICOS), 4-1BB (CD137),
CD28, OX40 (CD134), CD27, and DAP10, along with CD3ζ,
have been investigated [31, 47–50]. Among these, 4-1BB
(CD137), CD28, and CD3ζ are the most commonly used
COS elements in the CARs (Tables 2, 3, and 4) [51, 52].
Most CARs in the CAR-T trials in China are second-

generation CAR constructs, which have one co-stimulatory
signal [41]. A trial of CAR-T cells containing a third-
generation CAR construct with both CD28 and CD137
co-stimulatory signals is still recruiting patients with re-
lapsed/refractory ALL (NCT02186860). Fourth-generation
CARs have incorporated additional elements in the CAR
constructs, such as an inducible caspase-9 gene element that
can lead to self-destruction by apoptosis of the CAR-T cells
[53]. A total of 10 trials of CAR-T cells contain a fourth-
generation CAR (Table 5). Among these, five trials are evalu-
ating CARs with an inducible caspase-9 suicide switch.
The recombinant CAR cassette is typically packaged

into a pseudo-lentivirus vector which can efficiently
incorporate into the genome of T cells. To date, the
lentiviral vector is the most commonly used vector in
CAR-T cells. The other vector commonly used is the
retroviral vector (Tables 2, 3, and 4).

Antigen targets
By altering a specific antigen-targeting element, the specifi-
city of the CAR-Tcells can be easily re-directed to a specific
type of malignancy. This makes the CAR-T cell therapy
highly versatile. A number of antigens have been targeted
in this way. More and more antigens are being engineered
into CAR-T cells, leading to a large repertoire of CAR-T
cells that are being explored for the therapy of both solid
and hematological malignancies (Tables 3 and 4).
CD19 is the most commonly targeted antigen to date

(Table 2). Out of the 121 trials, 57 trials have CD19 as a
target. Currently, there are 19 clinical trials in China
targeting non-CD19 antigens, including CD20, CD22,
CD30, CD33, CD38, CD123, CD138, BCMA, and Lewis Y
antigen for hematological malignancies (Table 3). Dual-

and multi-specificity CAR-T cells have also been in clinical
trials in China.

Current trials on hematological malignancies
The most common type of diseases in CAR-T trials are
B cell malignancies, including leukemia, lymphoma, and
myeloma.
The CD19-targeted autologous CAR-T product, tisa-

genlecleucel, was recently approved by FDA for therapy
of refractory/relapsed (r/r) B cell ALL. In 30 patients
including children and adults who received this product,
90% of them achieved complete remission (CR) [54].
Severe cytokine-release syndrome (CRS) was reported in
27% of the patients. This product has been in clinical
trials for CD19+ B cell malignancies, including CLL,
ALL, and lymphoma [21–24, 54, 55]. In a Chinese study
(NCT 02813837), 30 patients (5 children and 25 adults)
with r/r ALL were treated with autologous CD-19 CAR-
T cells [56]. In this 2017 report of preliminary results of
a seven-center clinical trial, CR was 86% and severe CRS
was seen in 26% of the patients [56]. Successful outcome
has been reported with other CAR-T cells against CD19
antigen in r/r ALL [29, 32, 57–59].
The CD19-specific CAR-T cells, axicabtagene ciloleu-

cel (axi-cel, KTE-C19), have been reported to be safe for
treatment of aggressive lymphomas including r/r diffuse
large cell lymphoma (DLBCL) [25]. In the phase II part
of the ZUMA-1 trial, overall response rate (ORR) was
76% (47% CR and 29% PR) at the time of report in the
cohort 1 of 51 patients [60]. This product is currently
under evaluation by FDA.
CD33 and CD123 are targets on myeloid leukemias. Cur-

rently, there are three trials on CAR-T cells targeting CD33
and two trials targeting CD123 antigen in China (Table 3). In
the USA, three CAR-T trials targeting CD123 were either
terminated (NCT02623582) or suspended (UCART123,
NCT02159495, and NCT03190278) at this time.
B cell maturation antigen (BCMA) is an antigen target

on myeloma cells. Currently, three trials on BCMA-
targeted CAR-T cells are being done in r/r myeloma in
China (Table 3). In one of the trials of CAR-T cells
targeting BCMA in China, 19 patients with r/r multiple
myeloma were evaluable and 7 of the patients were
followed for more than 6 months at the time of the
report [61]. CRS was observed in 14 (74%) patients. The
ORRs were close to 100% in the evaluable r/r myeloma
patients. The outcome from the preliminary report was
highly encouraging. Complete response was also
reported in a case of r/r myeloma patient who received
autologous CTL019 cells, even though 99.95% of the
myeloma cells were negative for CD19 [38, 62]. It
appears therefore that multiple myeloma is highly sensi-
tive to immunotherapy.

Table 1 Distribution of clinical trials with CAR-T cells in China

Beijing 30

Shanghai 22

Guangdong 20

Chongqing 15

Jiangsu 13

Others 21
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Table 2 Clinical trials of CD19-directed CAR-T cells in China

Target antigen Diseases CAR Vector NCT no.

CD19 Leukemia, lymphoma 4-1BB- CD3ζ RV NCT01864889

CD19 B cell malignancies CD28, CD137, CD27 LV NCT03050190

CD19 MCL 4-1BB-CD3ζ RV NCT02081937

CD19 Leukemia NA NA NCT03142646

CD19 B cell lymphomas CD27-CD3ζ LV NCT02247609

CD19 Leukemia, lymphoma NA NA NCT02349698

CD19 Elderly relapsed/refractory B cell ALL NA NA NCT02799550

CD19 Leukemia, lymphoma NA NA NCT02537977

CD19 B cell leukemia NA NA NCT02644655

CD19 B cell leukemia and lymphoma NA NA NCT02813837

CD19 B cell lymphoma NA NA NCT02547948

CD19 B cell lymphoma CD28-CD3ζ RV NCT02652910

CD19 Leukemia, lymphoma CD28, CD3ζ LV or RV NCT02456350

CD19 Recurrent or refractory acute
non-T-lymphocyte leukemia

NA NA NCT02735291

CD19 Lymphoma NA NA NCT02728882

CD19 Leukemia, lymphoma NA NA NCT02546739

CD19 B cell lymphomas NA NA NCT02842138

CD19 ALL NA NA NCT02810223

CD19 ALL CD28-CD137-CD3ζ LV NCT02186860

CD19 B cell leukemia, B cell lymphoma CD3ζ, CD28, and 4-1BB LV NCT02963038

CD19 NHL TCRζ, 4-1BB LV NCT03029338

CD19 B cell ALL TCRζ, 4-1BB LV NCT02975687

CD19 B cell leukemia and lymphoma NA LV NCT02933775

CD19 B cell leukemia 4-1BB LV NCT02672501

CD19 Central nervous system B cell acute
lymphocytic leukemia

NA NA NCT03064269

CD19 ALL 4-1BB LV NCT02965092

CD19 Acute leukemia NA NA NCT02822326

CD19 Leukemia, lymphoma CD28 or 4-1BB and a CD3ζ LV or RV NCT03076437

CD19 Leukemia and lymphoma NA NA NCT02851589

CD19 Leukemia and lymphoma NA NA NCT02819583

CD19 DLBCL NA LV NCT02976857

CD19 Recurrent or refractory B cell
malignancy

NA NA NCT02782351

CD19 Leukemia and lymphoma TCRz-CD28, TCRz-CD137 NA NCT02685670

CD19 B cell lymphoma 4-1BB, CD3ζ NA NCT03101709

CD19 ALL NA NA NCT02924753

CD19 ALL NA NA NCT03027739

CD19 B cell leukemia NA LV NCT02968472

CD19 B cell lymphoma CD28ζ NA NCT02992834

CD19 AML NA NA NCT03018093

CD19 Systemic lupus erythematosus 4-1BB LV NCT03030976

CD19 NHL NA LV NCT03154775

CD19 Lymphoma NA NA NCT03086954
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Table 2 Clinical trials of CD19-directed CAR-T cells in China (Continued)

Target antigen Diseases CAR Vector NCT no.

CD19 ALL, CLL, lymphoma CD28 or 4-1BB and CD3ζ NA NCT03191773

CD19 B cell lymphoma 4-1BB-CD28-CD3 NA NCT03146533

CD19 Leukemia NA NA NCT03173417

CD19 Relapsed or refractory B cell lymphoma 4-1BB LV NCT03208556

CD19 B cell leukemia and lymphoma NCT03166878

CD19 B cell lymphoma NA NA NCT03118180

CD19 or CD20 Relapse/refractory B cell malignancies NA LV NCT02846584

CD19 and CD20 DLBCL NA NA NCT02737085

CD19 and CD22 Hematopoietic/lymphoid cancer TCRζ, 4-1BB NA NCT02903810

CD19/CD20 B cell leukemia and lymphoma CD3ζ, 4-1BB-CD3ζ RV NCT03097770

CD19/CD22 B cell malignancy NA RV NCT03185494

CD19/CD22 B cell leukemia, B cell lymphoma NA LV NCT03098355

CD19/CD20/CD22/CD30 B-NHL NA NA NCT03196830

CD19/CD20 B cell malignancy NA NA NCT03207178

CD19 and CD20/CD22/CD38/CD123 B cell malignancy NA LV NCT03125577

AMMS Academy Military Medical Sciences, ALL acute lymphoblastic leukemia, AML acute myeloid leukemia, BCMA B cell maturation antigen, CTX
cyclophosphamide, DLBCL diffuse large B cell lymphoma, FLU fludarabine, HL Hodgkin’s lymphoma, LV lentiviral, MCL mantle cell lymphoma, NA not available, NHL
non-Hodgkin lymphoma, RV retroviral, TCM traditional Chinese medicine

Table 3 Clinical trials of CAR-T cells targeting non-CD19 antigens in China

Target Antigen Disease CAR Vector NCT no.

CD20 Lymphoma 4-1BB-CD3ζ LV NCT01735604

CD20 B cell lymphoma CD3ζ and CD28 RV NCT02965157

CD20 B cell malignancies NA NA NCT02710149

CD22 CD19-refractory or resistant lymphoma TCRζ, 4-1BB RV NCT02721407

CD22 Recurrent or refractory B cell malignancy NA NA NCT02794961

CD22 B cell malignancies NA NA NCT02935153

CD30 Lymphoma NA LV NCT02274584

CD30 HL, NHL NA NA NCT02259556

CD30 Lymphocyte malignancies NA NA NCT02958410

CD33 AML 4-1BB-CD3ζ RV NCT01864902

CD33 AML NA NA NCT02799680

CD33 Myeloid malignancies NA NA NCT02958397

BCMA B cell malignancies NA NA NCT02954445

BCMA Multiple myeloma TCRζ, 4-1-BB RV NCT03093168

CD123 Leukemia NA NA NCT02937103

CD123 AML recurred after allo-HSCT 41BB-CD3ζ NA NCT03114670

CD138 Multiple myeloma 4-1BB-CD3ζ RV NCT01886976

CD138/BCMA Multiple myeloma NA NA NCT03196414

Lewis-Y Myeloid malignancies NA NA NCT02958384

AMMS Academy of Military Medical Sciences, ALL acute lymphoblastic leukemia, AML acute myeloid leukemia, BCMA B cell maturation antigen, CTX
cyclophosphamide, FLU fludarabine, HL Hodgkin’s lymphoma, LV lentiviral, MCL mantle cell lymphoma, NA not available, NHL non-Hodgkin lymphoma, RV retroviral, TCM
traditional Chinese medicine
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Table 4 Clinical trials of CAR-T cells for solid tumors in China

Target antigens Diseases CAR Vector NCT no.

GPC3 Hepatocellular carcinoma NA NA NCT02723942

GPC3 Hepatocellular carcinoma CD3ζ, CD28, and 4-1BB NA NCT02395250

GPC3 Lung squamous cell carcinoma NA LV NCT02876978

GPC3 Hepatocellular carcinoma and liver metastases 4-1BB NA NCT02715362

GPC3 Hepatocellular carcinoma 4-1BB NA NCT03130712

GPC3 Advanced hepatocellular carcinoma 4-1BB-CD3ζ RV NCT03084380

GPC3 Hepatocellular carcinoma, squamous cell lung cancer NA NA NCT03198546

GPC3 Hepatocellular carcinoma NA LV NCT03146234

GPC3, mesothelin, CEA Hepatocellular, pancreatic cancer, colorectal cancer NA LV NCT02959151

Mesothelin Malignant mesothelioma, pancreatic Cancer, ovarian
tumor, triple-negative breast cancer, endometrial
cancer, other mesothelin-positive tumors

4-1BB-CD3ζ RV NCT02580747

Mesothelin Recurrent or metastatic malignant tumors NA NA NCT02930993

Mesothelin Pancreatic cancer and pancreatic ductal a denocarcinoma 4-1BB NA NCT02706782

Mesothelin Solid tumor, adult advanced cancer NA NA NCT03030001

Mesothelin Advanced solid tumor NA NA NCT03182803

EpCAM Liver neoplasms NA NA NCT02729493

EpCAM Stomach neoplasms NA NA NCT02725125

EpCAM Nasopharyngeal carcinoma and breast cancer NA LV NCT02915445

EpCAM Colon cancer, esophageal carcinoma, pancreatic cancer,
prostate cancer, gastric cancer, hepatic carcinoma

CD3ζ, CD28 LV NCT03013712

GD2 Neuroblastoma NA LV NCT02765243

GD2 Relapsed or refractory neuroblastoma NA NA NCT02919046

GD2 Solid tumor NA LV NCT02992210

HER-2 Advanced HER-2-positive solid tumors CD3ζ, 4-1BB-CD3ζ NA NCT01935843

HER-2 Breast cancer CD28-CD3ζ RV NCT02547961

HER-2 Breast cancer, ovarian cancer, lung cancer, gastric cancer,
glioma, pancreatic cancer

NA NA NCT02713984

EGFR Advanced EGFR-positive solid tumors 4-1BB-CD3ζ LV NCT01869166

EGFR Advanced solid tumor NA NA NCT03182816

EGFR Colorectal cancer 4-1BB-CD28-CD3 NA NCT03152435

EGFRvIII Recurrent glioblastoma multiform NA LV NCT02844062

EGFRvIII Glioblastoma multiform NA NA NCT03170141

MUC1 Malignant glioma of brain, colorectal carcinoma, gastric
carcinoma

NA NA NCT02617134

MUC1 Advanced refractory solid tumor (hepatocellular carcinoma,
NSCLC, pancreatic carcinoma, triple-negative invasive
breast carcinoma)

CD28-4-1BB- CD3ζ LV NCT02587689

MUC1 Advanced solid tumor NA NA NCT03179007

CEA Lung cancer, colorectal cancer, gastric cancer, breast
cancer, pancreatic cancer

NA NA NCT02349724

EphA2 EphA2-positive malignant glioma NA NA NCT02575261

LMP1 Nasopharyngeal neoplasms NA NA NCT02980315

MG7 Liver metastases 4-1BB NA NCT02862704

CD133 Liver cancer, pancreatic cancer, brain tumor, breast
cancer, ovarian tumor, colorectal cancer, ALL, AML

CD3ζ, 4-1BB-CD3ζ RV NCT02541370

HerinCAR-PD1 Advanced malignancies NA NA NCT02873390
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There are also a few registered clinical trials that are
testing two or more CARs either simultaneously or
sequentially. In the trial NCT02846584, patients receive
intravenously infused autologous anti-CD19 or anti-
CD20 CAR-T cells to treat B cell malignancies. Another
trial, NCT02737085, is to explore the sequential thera-
peutic effect of anti-CD19 and anti-CD20 CAR-T cells in
the treatment of DLBCL.
The trial NCT02903810 was planned with a treatment

scheme of infusion of equal numbers of anti-CD19 and
anti-CD22 CAR-T cells in the treatment of refractory
hematologic malignancies. Two trials (NCT03097770
and NCT03098355) target two antigens simultaneously
with one CAR construct (Table 2). These trials are
ongoing at this time.

Current trials on solid tumors
Multiple solid tumors are being studied in CAR-T
clinical trials. At the time of this report, 20 different
antigens are being targeted in solid tumor trials (Table 4).
GPC3, mesothelin, epidermal growth factor receptor
(EGFR), and EpCAM were the most targeted antigens
(Table 4). This is consistent with reports from international

trials [63–68]. Liver cancer remains the most commonly
studied solid tumor in China [69]. In a preliminary report
of a trial of CAR-T cells against CD133+ epithelial tumors
(NCT02541370), 24 patients were enrolled, including 14
patients with sorafenib-refractory hepatocellular carcinoma
(HCC), 7 with pancreatic carcinomas, 2 with colorectal
carcinomas, and 1 with cholangiocarcinoma [69]. The
number of CAR-T cells was found to be inversely re-
lated to the CD133+ epithelial cells in peripheral blood.
There was a separate report treating refractory cholan-
giocarcinoma with sequential infusion of two different
types of CAR-T cells targeting EGFR and CD133 [70].
Two trials in China are evaluating GD2 antigen-

targeted CAR-T cells in neuroblastoma (Table 4).
Another two trials are evaluating CAR-T cells against
EGFRvIII+ glioblastoma. There was one case report in
the literature on rapidly progressing refractory glioblast-
oma that showed dramatic CR to IL13Rα2-targeted
CAR-T cells after repeated infusion [71]. In a separate
report, nine patients with refractory EGFRvIII+ glioblast-
oma received autologous CART-EGFRvIII cells in a pilot
study [66]. Interestingly, there was no CRS observed.
CAR-T cell infiltration was shown in the resected tumor

Table 4 Clinical trials of CAR-T cells for solid tumors in China (Continued)

Target antigens Diseases CAR Vector NCT no.

HerinCAR-PD1 Advanced solid tumor (lung, liver, and stomach) NA NA NCT02862028

PD-L1 CSR Glioblastoma multiform NA NA NCT02937844

NY-ESO-1 Advanced NSCLC NA LV NCT03029273

Zeushield NSCLC NA NA NCT03060343

PSCA/MUC1/PD-L1/CD80/86 Advanced lung or other cancers NA NA NCT03198052

PSMA, FRa Bladder cancer, urothelial carcinoma bladder NA NA NCT03185468

Claudin18.2 Advanced gastric adenocarcinoma, pancreatic
adenocarcinoma

NA LV NCT03159819

CTX cyclophosphamide, FLU fludarabine, LV lentiviral, NA not available, NSCLC non-small cell lung cancer, RV retroviral

Table 5 Clinical trials of CAR-T cells with fourth-generation CARs in China

Target antigen Disease Vector NCT no.

CD19 B cell malignancies LV NCT03050190

CD19 B cell lymphomas LV NCT02247609

CD19 B cell leukemia LV NCT02968472

CD19/CD22 B cell leukemia, B cell
lymphoma

LV NCT03098355

CD19 and CD20/CD22/
CD38/CD123

B cell malignancy LV NCT03125577

CD30 Lymphoma LV NCT02274584

PSMA, FRa Bladder cancer, urothelial
carcinoma bladder

NA NCT03185468

EGFRvIII Glioblastoma multiform NA NCT03170141

GD2 Neuroblastoma LV NCT02765243

GD2 Solid tumor LV NCT02992210

LV lentiviral vector, NA not available

Liu et al. Journal of Hematology & Oncology  (2017) 10:166 Page 6 of 10



specimen. This study suggested that the CAR-T cells are
safe and immunologically active with tracking capability
to the cancer cells in the brain.
Multiple antigens are being explored as targets in solid

tumors for CAR-T cells (Table 4). Preliminary reports
have been presented and published throughout the world
[64, 65, 67, 72]. Outcomes from larger sample size and
longer follow-up are clearly needed from these trials.

CAR-T trials for non-malignant diseases
There is currently one clinical trial of autologous CAR-
T19 cells for patients with systemic lupus erythematosus
(NCT03030976, Table 2). This trial is designed to infuse
1 × 106 cells/kg. More trials are expected to come for
non-malignant diseases.

Discussion
This study analyzed CAR-T trials in China. Most CAR-T
trials are employing autologous T cells. CD19 is the most
commonly targeted antigen. Therefore, B cell leukemia and
lymphoma are the most common malignancies in CAR-T
trials. Solid tumors remain a significant challenge for CAR-
T therapy [45, 70, 73, 74]. Challenges include selection of
target antigens, management of toxicities, and modulation
of tumor microenvironment [75, 76]. Loss of CD19 expres-
sion is a known mechanism for relapse from CD19-
directed CAR-T therapy [77]. The first CAR-T product,
tisagenlecleucel, was recently approved. KTE-C19 for large
cell lymphoma is under evaluation by FDA [25, 60]. It is
unclear which product among many ongoing clinical CAR-
T trials in China has independent patent that may lead to
final approval for clinical application in China.
It has been well documented that CAR-T cells can

cross the blood-brain barrier [23, 78, 79]. CAR-T cells
may become an effective therapy for refractory CNS
diseases [66, 71, 78–81]. In addition to trials of single-
target CAR-T cells, simultaneous and sequential CAR-T
cells are being studied for clinical applications [70].
Multi-target CAR-engineered T cells are also entering
clinical trials (Tables 2, 3, and 4).
The currently approved tisagenlecleucel CAR-T ther-

apy relies on transduction of autologous T cells from
patients. It is important therefore to be able to reliably
obtain and propagate adequate amount of T cells. This
may become a major limitation for wide application of
this new therapy. Therefore, newer CARs are being
actively investigated [41, 82–84]. Universal CAR-Ts have
been generated by inactivating HLA class I molecules
and used successfully in patients [82, 85, 86]. Allogeneic
CAR-T cells are entering clinical trials [42, 87]. T cell
receptor-engineered CAR-T cells represent another fron-
tier in CAR-T cell development [88–90]. It is foreseeable
that CAR-T immunotherapy will become a major mo-
dality of cancer therapy (Table 5) [91].
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