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Abstract

It is well known that chemotherapy can cure only some cancers in advanced stage, mostly those with an intact p53
pathway. Hematological cancers such as lymphoma and certain forms of leukemia are paradigmatic examples of such
scenario. Recent evidence indicates that the efficacy of many of the alkylating and intercalating agents, antimetabolites,
topoisomerase, and kinase inhibitors used in cancer therapy is largely due to p53 stabilization and activation consequent
to the inhibition of ribosome biogenesis. In this context, innovative drugs specifically hindering ribosome biogenesis
showed preclinical activity and are currently in early clinical development in hematological malignancies. The mechanism
of p53 stabilization after ribosome biogenesis inhibition is a multistep process, depending on specific factors that can be
altered in tumor cells, which can affect the antitumor efficacy of ribosome biogenesis inhibitors (RiBi). In the present
review, the basic mechanisms underlying the anticancer activity of RiBi are discussed based on the evidence deriving
from available preclinical and clinical studies, with the purpose of defining when and why the treatment with drugs
inhibiting ribosomal biogenesis could be highly effective in hematological malignancies.
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Background
The ribosome biogenesis is defined as the process of
building new ribosomes, the intracellular organelles
where protein synthesis takes place.
In recent years, several studies on the relationship be-

tween cell growth and proliferation produced important
data regarding the mechanisms linking ribosome biogen-
esis, which is at the basis of cell growth, to the progression
through the cell cycle phases of the proliferating cell. There
is now evidence that a perturbed ribosome biogenesis acti-
vates a pathway leading to the stabilization and activation
of the tumor suppressor protein p53, which in turn induces
cell cycle arrest and/or apoptotic cell death [1–4].
Current evidence indicates that inhibition of ribosome

biogenesis represents a major mechanism by which
many of the currently used chemotherapeutic drugs
(alkylating and intercalating agents, antimetabolites,
topoisomerase inhibitors) exert their cytotoxic activity
on cancer cells [5, 6]. Importantly, a series of new drugs

selectively hindering the transcription of ribosomal (r)
RNA, thus inhibiting ribosome biogenesis without hav-
ing genotoxic effects, have been proposed as a new
therapeutic approach, based on p53 activation [7–12].
However, it is known since long time that chemotherapy

can cure only some cancers once they reach advanced
stages. In fact, despite initial responses, the majority of
metastatic solid tumors ultimately progress under chemo-
therapy treatment. Hematological malignancies (such as
lymphomas and acute leukemias) represent paradigmatic
examples of the few cancers that can be cured by chemo-
therapeutic agents and will be the main topic of the
present review [13]. The basic biological characteristic
underlying the intrinsic curability of such cancers is that,
in a significant fraction of cases, they retain a functional
p53-mediated response to nucleolar stress arising from
ribosomal biogenesis inhibition; on the other hand, as a
matter of fact, the presence of genomic alterations of the
TP53 gene is an established negative prognostic predictor
in lymphoma, acute and chronic leukemias treated with
chemotherapy regimens [14–17].* Correspondence: enrico.derenzini@ieo.it; davide.trere@unibo.it
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Since p53 stabilization and activation is a multistep
and tightly regulated process, in principle, the prerequis-
ite for the antitumor efficacy of drugs inhibiting ribo-
some biogenesis should be the presence in the tumor
cells, other than a normally functioning p53, also of
those factors necessary for the activation of p53 and the
induction of a p53-mediated cell cycle arrest and/or the
apoptosis. These factors, which control cell cycle pro-
gression in normally proliferating cells [18], are qualita-
tively and quantitatively altered in the large number of
cancers [19, 20], thus influencing the sensitivity to ribo-
some biogenesis (RiBi) inhibitors.
Therefore, it seems timely to critically review the char-

acteristics of cancer cells which affect their sensitivity to
RiBi inhibitors, with the purpose of highlighting those
parameters which render the treatment with these drugs
appropriate or not in hematological malignancies. For
the convenience of the reader, the normal process of
ribosome biogenesis will be first briefly described.

Ribosome biogenesis
Ribosomes are ribonucleoprotein particles which are lo-
cated in the cytoplasm where, either free or membrane-
bound, are engaged in protein synthesis. Four types of
ribosomal RNA (rRNA) molecules and about 80 differ-
ent ribosomal proteins constitute the ribosome. Ribo-
some formation occurs mainly in the nucleolus, being
later completed in the nucleoplasm and in the cytoplasm
(see for reviews: [21–24]). In the nucleolus, ribosomal
genes are transcribed by RNA polymerase I (Pol I) to
generate the 47S rRNA precursor, which undergoes to
site-specific methylation and pseudo uridylation, and
processing to give rise to the mature 18S, 5.8S, and 28S
rRNA. The fourth types of rRNA, the 5S rRNA, is syn-
thesized in the nucleoplasm by RNA polymerase III (Pol
III) and then imported in the nucleolus together with
the ribosomal proteins (RPs), whose mRNA is tran-
scribed by RNA polymerase II (Pol II). The assembling of
rRNA molecules with the RPs constitutes the two sub-
units of the mature ribosome, the large 60S and the small
40S subunit. The large 60S subunit is constituted by one
each of the 28S, 5.8S, and 5S RNA molecules, together
with 47 ribosomal proteins (RPLs); the small 40S subunit
contains only one 18S RNA molecule and 33 ribosomal
proteins (RPSs) [25, 26]. Both subunits migrate from the
nucleolus to the cytoplasm where they form the 80S ribo-
some particle. In the process of ribosome biogenesis, more
than 150 non-ribosomal proteins and around 70 small nu-
cleolar RNAs are involved [27–32].
For the transcription of the of 47S pre-rRNA, the as-

sembly of a specific multiprotein complex at the rDNA
promoter containing Pol I is required. In this complex,
three basal factors, termed transcription initiation factor
I (TIF-I) A, selectivity factor 1 (SL1), and upstream

binding factor (UBF), are present [33]. For the transcrip-
tion of the 5S rRNA by Pol III, the transcription factors
TFIIIC and TFIIIB are necessary [34–36]. In proliferat-
ing cells, the rate of ribosome biogenesis is enhanced in
order to assure an adequate ribosome complement for
the daughter cells and inhibition of ribosome biogenesis
arrests cell cycle progression [37]. Furthermore, the rate
of ribosome biogenesis influences the length of the cell
cycle: higher the level of ribosome biogenesis, more
rapid the cell cycle progression [38]. Ribosome biogen-
esis rate in cancer shows high variability, depending on a
multiplicity of factors including the activation of specific
intracellular signaling pathways and deregulated activity
of oncogenes and tumor suppressors. On the other
hand, quantitative and qualitative changes in ribosome
biogenesis have been shown to facilitate neoplastic
transformation. For a detailed description of the
relationship between ribosome biogenesis and cancer,
the reader should refer to [39–44]. In hematological
malignancies, such as aggressive lymphoproliferative
neoplasms, it is worth mentioning the oncogenic
cooperation between the MYC oncogene and the
phosphatidyl-inositol-3-kinase (PI3K) signaling pathway
[45], which converge in stimulating rRNA synthesis and
ribosome biogenesis [46].

Inhibition of ribosome biogenesis activates the
RPs/MDM2/p53 pathway
Available data indicate that the levels of p53 expression
and activity are mainly regulated by interactions with
the tumor suppressor MDM2 (murine double minute 2,
and HDM2 in humans). MDM2 is an E3 ubiquitin ligase
which negatively controls p53 activity in two ways: by
binding to the protein and inhibiting its transactivation
activity, and by facilitating its proteasome degradation
[47–49]. In normal proliferating cells, the level of p53 is
maintained low because of the binding with MDM2 with
consequent p53 ubiquitination and proteasome digestion
[50]. When a perturbation in the ribosome biogenesis
occurs (ribosome stress), it results in the binding of sev-
eral ribosomal proteins, no longer used for ribosome
building, to MDM2. This binding relieves the inhibitory
activity of MDM2 toward p53 (see reviews [2–4, 51, 52])
(Fig. 1). Although there is evidence that RPL5, RPL11,
and RPL23 play a major role in neutralization of MDM2
activity and in the induction of p53 stabilization [50, 53–
58], the list of ribosomal proteins (of both large and
small ribosomal subunit) able to inhibit MDM2 activity
and to stabilize p53 upon “ribosomal stress” is rapidly
expanding [52]. For a valid binding to MDM2 and its in-
activation, the RPL11 and RPL5 must form a complex
with the 5S rRNA and all the components of this com-
plex are necessary for its inhibitory function [59, 60].
p53 stabilization always causes cell cycle arrest in
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proliferating cells and, depending on the quantitative
level of stabilized p53, also apoptotic cell death [61–63].
p53 arrests cell cycle progression by inhibiting the phos-
phorylation of the tumor suppressor retinoblastoma
protein, pRb. In its hypo-phosphorylated form, pRb
binds to and inhibits the activity of E2F1, a transcription
factor whose target genes are necessary for cell cycle
progression. The inhibition of E2F1 activity by hypo-
phosphorylated pRb reduces the expression of both
cyclin E and A, necessary factors for cell cycle progres-
sion from G1 to S phase and from G2 to M phase
respectively, with consequent cell accumulation in G1
and G2 phase [64]. The induction of apoptotic cell death
by p53 is a consequence of induced expression of the
pro-apoptotic members of the B cell lymphoma 2 (Bcl-2)
gene family, PUMA, and BAX [63, 65–67] (Fig. 1). Finally,
it should be noted that additional factors may interact
with the RPs/MDM2/p53 axis, such as the ARF tumor
suppressor and the activation of the PI3K pathway. In fact,
ARF loss is a common genetic event in cancer and espe-
cially in aggressive lymphoid neoplasms, resulting in in-
creased MDM2 activity and increased p53 degradation
(reviewed in [68]). On the other hand, MDM2 is a down-
stream target of the PI3K-AKT axis, and AKT-induced

MDM2 phosphorylation results in increased stability of
MDM2 with consequent p53 degradation [69, 70]. As
mentioned before, constitutive PI3K signaling is common
in lymphoproliferative neoplasms, and PI3K inhibitors are
in clinical development in lymphoid cancers. These no-
tions could be relevant for designing therapeutic combin-
ation strategies aimed at increasing the p53-mediated
response to the inhibition of ribosome biogenesis.

Development of selective inhibitors of ribosome
biogenesis
As briefly mentioned before, a strong contribution to
p53 activation induced by chemotherapeutic agents is
due to the inhibition of ribosomal biogenesis. As re-
ported by Burger et al. [5], a series of drugs currently
used for treating solid cancers and hematological malig-
nancies inhibit ribosome biogenesis at the level of rRNA
transcription and/or at the level of rRNA processing
(Table 1). To this list, cyclophosphamide and mycophe-
nolic acid should be added. Cyclophosphamide, a widely
used anticancer drug, also inhibits rRNA transcription
[71], after being converted to acrolein [72, 73], and the
immunosuppressant mycophenolic acid has been dem-
onstrated to inhibit the synthesis of rRNA [74].
In recent years, several efforts have been made to de-

velop specific inhibitors of ribosomal biogenesis, in order
to achieve a selective inhibition of rRNA synthesis without
the genotoxic effects proper of chemotherapeutic drugs.
In this light, it appears to be of particular relevance the
CX-5461 molecule which selectively inhibits ribosome
biogenesis, most likely by disrupting the SL-1/rDNA com-
plex, promoting a cancer-specific activation of p53. Recent
preclinical data indicate high activity of CX-5461 in MYC-
driven lymphoma, providing the rationale for further
clinical development of this compound [7, 75, 76].
CX-5361 is currently under phase I clinical trial for the
treatment of patients with advanced hematologic malig-
nancies, including acute myeloid leukemia.
Finally, there is experimental evidence that a small mo-

lecular compound, BMH-21, and a small-molecule pep-
tide (22mer) also selectively inhibit rDNA transcription.
BMH21 binds to GC-rich sequences and inhibits RNA
Pol I activity [9]. It also induces the proteasome-
dependent destruction of the large catalytic subunit in the
Pol I complex, as do three other small molecular com-
pounds, BMH-9, BMH-22, and BMH-23 [10]. The 22mer
targets the interface between RNA polymerase I and Rrn3,
thus selectively inhibiting the synthesis of rRNA [11].

Factors determining cancer cell sensitivity to drugs
inhibiting ribosome biogenesis
The p53 status
Since a major effect of ribosome biogenesis inhibition is
the activation of p53, the cytostatic and cytotoxic effects

Fig. 1 Schematic representation of the pathway activated by drug-
induced perturbation of rRNA synthesis. Ribosomal proteins (RPs), no
longer used for ribosome building, bind to MDM2, thus inhibiting its
ubiquitin ligase activity toward p53 and the proteasome digestion of
the tumor suppressor. As a consequence, p53 accumulates and induces
transcription of p21, PUMA, and BAX. P21 is responsible for the cell cycle
arrest by hindering pRb phosphorylation: in fact, hypo-phosphorylated
pRb binds to and inhibits the activity of the transcription factor E2F1,
whose target gene products are necessary for cell cycle progression.
The induction of the pro-apoptotic factors PUMA and BAX activates the
process of apoptotic cell death
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of chemotherapeutic agents inhibiting ribosome biogen-
esis should be obviously affected by the status of p53
[64, 77, 78]. Several lines of preclinical and clinical evi-
dence support this notion. Indeed, actinomycin D, at a
dose that exclusively hinders rDNA transcription, in-
duced a cell cycle arrest with cell accumulation in G1
and, to a lesser extent, in G2 phase in p53 proficient cell
lines [38, 64] whereas these changes in cell cycle distri-
bution appeared to be reduced if cells were previously si-
lenced for p53 expression [64]. The same occurs in cells

with inactivated p53 in which the synthesis of rRNA was
hindered by polymerase I silencing [79]. Also, p53 silen-
cing significantly reduced the antiproliferative effects of
5-fluorouracil and methotrexate or doxorubicin, in human
cancer cell lines harboring wild type (wt) p53 [78] and
treatment of human leukemia and lymphoma cell lines
with CX-5461, a selective inhibitor of Pol I transcription
[7], was much more effective in cells with wt p53 in com-
parison with those with mutated p53 [75, 79].
On the other hand, it is worth noting that although

p53 stabilization appears to be the main mechanism by
which inhibitors of ribosomal biogenesis exert their cy-
tostatic and cytotoxic action, there is evidence that these
effects can be also caused in a p53-independent way.
Depletion of the catalytic subunit of RNA polymerase I
inhibited the synthesis of rRNA and hindered cell cycle
progression in cells with inactivated p53, as a conse-
quence of downregulation of the transcription factor
E2F-1. Downregulation of E2F-1 was due to release of
the ribosomal protein L11, which inactivated the E2F-1-
stabilizing function of the E3 ubiquitin protein ligase
MDM2 [79]. Furthermore, CX-5461 can induce p53-in-
dependent G2 checkpoint and apoptosis through activa-
tion of the ataxia telangiectasia mutated (ATM) and
ataxia telangiectasia and Rad3-related (ATR) kinase
pathway, in the absence of DNA damage [80, 81].
Regarding hematological malignancies, there is

evidence that p53 status is an important factor deter-
mining the response to currently used chemotherapy
regimens for lymphoma and leukemia treatment, which
are based on drugs hindering ribosome biogenesis [5].
Anthracycline-based polychemotherapy represents the
standard therapeutic approach for pediatric acute
lymphoblastic leukemia (ALL) and multiple lymphoma
subtypes of the adult [including Hodgkin lymphoma
(HL), diffuse large B cell lymphoma (DLBCL), and ana-
plastic large T cell lymphoma (ALCL)]. More in detail,
the ABVD (doxorubicin, bleomycin, vinblastine, and
dacarbazine) and the CHOP (cyclophosphamide, doxo-
rubicin, vincristine, and prednisone) regimens represent
the treatments of choice in HL, DLBCL, and ALCL re-
spectively. In general, the cure rates of antracycline-
based regimens have been proved to be variable, being
high for pediatric ALL and Hodgkin lymphoma [82, 83],
intermediate for DLBCL [84–86] and ALCL [87, 88],
and low for in indolent B cell lymphoma [89]. Similar
considerations apply for myeloid disorders where
anthracycline-based polychemotherapy has been shown
to be effective certain forms of acute myeloid leukemia
(reviewed in [90–92]), whereas chronic myeloid neo-
plasms are considered virtually incurable with standard
polychemotherapy (reviewed in [93]). The intrinsic cur-
ability of the aforementioned hematologic cancers relies
on precise biological characteristics of cancer cells, and

Table 1 Drugs used to treat hematological and solid
malignancies which are effective or highly effective in the
inhibition of rRNA transcription or processing (modified from
Burger et al., 2010) [5]

inibition of rRNA synthesis

transcription processing

Alkylating agents:

Melphalan* + -

Cisplatin* + -

Oxaliplatin* + -

Cyclophosphamide 1 * + -

Intercalating agents:

Doxorubicin * + -

Mitoxantrone * + -

Actinomycin D * + -

Mitomycin C + -

Antimetabolites:

Methotrexate * + -

5-Fluorouracil - +

Topoisomerase inhibitors:

Camptothecin - +

Etoposide* - +

Kinase inhibitors:

Flavopiridol* - +

Roscovitine - +

Rapamycin + -

Proteasome inhibitors:

Bortezomib* - +

Translation inhibitors:

Homoharringtonine* - +

Mitosis inhibitors:

Vinblastine* - +

rRNA polymerase I inhibitors:

CX-5461 2 * + -

* drugs currently used or in clinical development for the treatment of
lymphomas and leukemia
1 Cyclophosphamide is metabolized to acrolein, which is responsible for the
inhibition of rRNA transcription [60, 61]
2 CX-5461 is in phase I clinical trial in patients with haematological
malignancies and in phase I/II trial in patients with breast cancer
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the p53 status has been demonstrated to represent an
important prognostic factor.
In line with this concept, the presence of TP53 genomic

alterations in DLBCL and chronic lymphoid leukemia is a
well-established negative prognostic predictor [14, 16, 94,
95]. DLBCL harboring alterations of the p53 pathway are
often nonresponsive to CHOP plus rituximab (R) che-
moimmunotherapy and are characterized by shorter over-
all survival. In CLL, patients harboring 17p deletions or
TP53 mutations are refractory to standard chemotherapy
and are currently treated with chemo-free treatments in-
cluding inhibitors of B cell receptor signaling or bcl-2 in-
hibitors [96]. In acute myeloid leukemia, the presence of
TP53 mutations is a powerful negative prognostic pre-
dictor, being associated with refractoriness to current
anthracycline-based induction therapies [92, 97]. Finally,
the presence of TP53 gene mutations predicts the out-
come after induction and reinduction chemotherapy in
acute lymphoid leukemia [98].
The prognostic value of genomic alterations of TP53

has been recently evaluated across a wide variety of
hematological malignancies confirming the role of the
p53 axis in determining the efficacy of chemotherapy in
this setting [15].

The pRb status
These experimental and clinical data indicate that wild-
type TP53 is a necessary requisite for the activation of
the mechanisms leading to cell cycle arrest and/or apop-
totic cell death in cancer cells treated with drugs inhibit-
ing ribosome biogenesis.
There is evidence that this could be mostly true in the

case of a normally functioning pRb pathway. Indeed, the
absence of pRb could be a major factor conditioning the
sensitivity of cancer cells to the exposure of RiBi inhibi-
tors, also when the p53 pathway is dysfunctional [77]. Pre-
liminary studies on this topic were conducted on solid
tumor models, such as breast cancer. In fact, the contem-
porary absence of pRb and functional p53 has been shown
to be responsible for a marked reduction of the cell popu-
lation growth after the inhibition of ribosome biogenesis
by actinomycin D, 5-fluorouracyl, methotrexate, and
doxorubicin, which was even greater than that observed
in p53 proficient cells [64, 78]. The cause of this increased
sensitivity lies in the complete abrogation of the two cell
cycle checkpoints in the absence of RB [19, 99, 100]: in
cells lacking RB, the inhibition of ribosome biogenesis
does not hinder the cell cycle progression, thus leading
the cells to divide without having reached an appropriate
ribosome complement. Very rapidly, the reduction of
ribosome complement becomes incompatible with cell
survival and a progressive increase of apoptotic cell death
occurs [64]. These experimental data are consistent with
studies investigating the relationship between the p53 and

RB status and its implications on the clinical outcome
after treatment with drugs inhibiting ribosome biogenesis.
In a series of breast cancers treated with an adjuvant che-
motherapeutic protocol including cyclophosphamide,
methotrexate, and 5-fluorouracil, the presence of a wild-
type or mutated p53, considered independently of the RB
status, proved to have a null prognostic value. However,
by excluding the cases with no pRb expression or
inactivated-hyper-phosphorylated pRb, the p53 status re-
sulted the only factor predicting the patient clinical out-
come with patients with wt TP53 having a much better
prognosis compared to those with mutated TP53. Worth
of noting, the lack of pRb expression was the only inde-
pendent factor predicting a good clinical outcome in pa-
tients treated with adjuvant chemotherapy [101, 102].
Moreover, an RB loss gene expression signature was dem-
onstrated to be associated with increased pathological
complete response to neoadjuvant chemotherapy in both
estrogen-receptor positive and negative breast cancers
[102]. Although the role of pRb pathway has not been
evaluated as extensively as p53, similar observations were
reported in hematological malignancies. In anaplastic
large cell lymphoma, absence of pRb expression was
observed in 40% of cases and hyperphosphorylation of
pRb was detected in a significant fraction of RB positive
patients, consistent with RB inactivation. Notably, these
alterations correlated with a favorable clinical outcome
[103]. In chronic lymphoid leukemia, 13q14 deletion is
a frequent genomic alteration, and although the specific
pathogenetic role of RB1 loss in the context of 13q14
deletion is yet to be determined, this cytogenetic abnor-
mality predicts good clinical outcome following therapy
with the FCR (fludarabine, cyclophosphamide, rituxi-
mab) regimen [104].
Similarly, trisomy 12 (resulting in copy number gain of

CDK4 with consequent hyperphosphorylation and in-
activation of pRb) is associated with excellent outcomes
following chemoimmunotherapy [104]. Of note, the con-
temporary presence of 13q14 deletion seems to attenu-
ate the adverse outcome related to the presence of TP53
deletions in CLL [105]. Since the RB1 locus is affected in
less than 50% of CLL cases harboring 13q14 deletions
[106], it would be interesting to investigate whether spe-
cific loss of RB1 attenuates the poor prognosis related to
TP53 alterations. In conclusion, these data taken to-
gether indicate that (1) the presence of wt p53 associated
with a normal downstream pRB pathway is an important
characteristic which render cancer cells very sensitive to
drugs inhibiting ribosome biogenesis and (2) cancer cells
with RB1 loss could be sensitive to ribosome biogenesis
inhibitors irrespective of the p53 status.
However, the integrity of the p53/pRb pathway might

not be the only factor affecting response to ribosomal
biogenesis inhibition, as described below.
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The rate of ribosome biogenesis of the cell
Other than arresting cell cycle progression, stabilized
p53 may cause programmed cell death by inducing tran-
scription of pro-apoptotic factors [63, 65, 66]. Induction
of apoptosis by inhibitors of ribosome biogenesis de-
pends on the level of p53 stabilization, apoptosis being
activated only by high amount of stabilized p53. In turn,
the amount of stabilized p53 was shown to be directly
related to the ribosome biogenesis rate of the cell. This
was demonstrated by using four drugs, which inhibit
rRNA synthesis at different steps: actinomycin D, doxo-
rubicin, 5-fluorouracyl, and CX-5461 [63]. In cells char-
acterized by a high rate of rRNA transcription, the
inhibition of ribosome biogenesis caused a significantly
greater degree of p53 stabilization and consequent
greater expression of the pro-apoptotic members of the
Bcl-2 gene family, PUMA, and BAX, compared to those
characterized by a lower baseline rRNA synthesis. Ac-
cordingly, apoptotic cell death occurred in cells with a
high rRNA synthesis and not in cells with a low ribo-
some biogenesis rate, the latter showing only cell cycle
arrest. The tight relationship between the level of p53
stabilization and the rRNA synthesis rate was due to the
fact that, upon ribosome biogenesis inhibition, different
amounts of RPs, no longer used for ribosome building,
bind to MDM2, thus hindering with higher efficiency
the proteasomal degradation of p53 [63]. Interestingly, in
cells with low rRNA synthesis (in which the inhibition of
ribosome biogenesis stabilized p53 in a level that was not
sufficient for apoptosis induction), the combined treat-
ment with hydroxyurea which activates p53 with a differ-
ent mechanism allowed to increase the total amount of
stabilized p53 inducing apoptotic cell death [55].
Since the induction of cell death, and not cell cycle

arrest, is the main goal of cancer chemotherapy, these ob-
servations might be relevant for establishing more effect-
ive and appropriate therapeutic protocols. In fact, this
model implies that ribosome biogenesis inhibitors as sin-
gle agents could be highly effective in p53 wild-type can-
cers with a high ribosome biogenesis rate, by inducing
apoptotic cell death, whereas for treating cancers with a
low ribosome biogenesis rate, they should be combined
with drugs capable of stabilizing p53 or inducing apoptosis
through different mechanisms. This model applies well in
the setting of TP53 wild-type lymphoproliferative neo-
plasms, where aggressive lymphomas such as DLBCLs,
characterized by high ribosomal biogenesis rates [107],
can be cured with standard R-CHOP polychemotherapy
[84–86], whereas indolent B cell non-Hodgkin lymph-
omas (such as small lymphocytic lymphoma/chronic
lymphoid leukemia, marginal zone lymphoma, and follicu-
lar lymphomas), characterized by low ribosomal biogen-
esis rates [107], are virtually incurable with the same type
of polychemotherapy [89].

Ribosomal protein deletions and mutations
Since the main mechanism involved in p53 stabilization
upon ribosome biogenesis inhibition is represented by
the binding of RPs to MDM2, mutations of ribosomal
proteins may constitute another factor influencing the
response of cancer cells to ribosome biogenesis inhibi-
tors. As reported above, RPL5 and RPL11 play a major
role in MDM2 inactivation. However, many other RPs,
including RPL3, RPL6, RPL23, RPL26, RPL37, RPS7,
RPS14, RPS15, RPS19, RPS20, RPS25, RPS26, and
RPS27, have been shown to bind to MDM2, thus stabil-
izing p53 after induction of ribosomal stress (see for a
recent and comprehensive review: [52]). There is in-
creasing evidence for the presence of ribosomal protein
copy number changes and mutations in many types of
cancer. Regarding the RPs of the large ribosome subunit,
exome sequencing demonstrated the presence of muta-
tions of RPL5 in T cell acute lymphoblastic leukemia
(T-ALL) [108] and in glioblastoma [109], and loss of the
1p22.1 region encompassing the RPL5 gene was found
in 20% of multiple myeloma cases (MM) [110]. Further-
more, RPL5 and RPL10 mutations were recently ob-
served, even though at low frequency, in MM [111]. The
frequency of inactivating RPL5 mutations and deletions
was found to be 11% in glioblastoma, 28% in melanoma,
and 34% in breast cancer patients [112]. In T-ALL,
RPL10 and RPL11 mutations have been also described
[108, 113] and RPL22 was found to be deleted in about
10% patients [114]. RPL22 mutations were observed to
occur with high frequency in endometrial [115, 116] and
colorectal cancer [117] with microsatellite instability.
Regarding the proteins constituting the small ribosome
subunit, whole exome sequencing of chronic lympho-
cytic leukemia showed recurrent mutations of RPS15
[117, 118] while mutations of RPS20 are associated with
colorectal carcinoma [119]. There are still few data on
the effect of ribosomal protein deletion or mutations on
the response to chemotherapeutic treatments. Experi-
ments conducted using cancer cell lines demonstrated
that silencing the expression of RPL5 and RPL11
strongly reduced the stabilization and activation of p53
caused by selective rRNA transcription inhibitors [120,
121], suggesting that cancers carrying these genetic
changes should be resistant to chemotherapy based on
inhibitors of ribosome biogenesis.
Up to now, the only clinical evidence of the impact of

RP genetic changes on chemotherapy resistance based
on a reduced activation of the RP-MDM2-p53 pathway
comes from the study by Ljungström et al. [118] on the
relationship between RPS15 mutations and clinical out-
come of patients with chronic lymphocytic leukemia.
The authors found that patients with RPS15 mutations,
but carrying wild-type TP53, treated with standard
chemoimmunotherapy (combination of fludarabine,
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cyclophosphamide, and rituximab), had a shorter 10-
year survival compared with patients without mutated
RPS15, and an overall survival similar to patients charac-
terized by other adverse-prognostic markers. In the same
study, the authors, using a human tumor cell line, dem-
onstrated that transiently expressed mutant RPS15 re-
duced the expression of p53 due to an increased
ubiquitin-mediated p53 degradation in comparison with
cells carrying wild-type RPS15. It could be possible that
mutated RPS15 is not capable of neutralizing the
MDM2-mediated p53 digestion [122], thus reducing the
induction of stabilized p53 upon chemotherapy treat-
ment. In line with these data, our group recently found
non-recurrent mutations of multiple RP genes in a
significant fraction of DLBCL cases (> 10%) and
RPS12 and RPL22 deletions in up to 20% of cases.
Furthermore, our preliminary data indicate that these
alterations are mutually exclusive with TP53 muta-
tions and that RP mutations could be associated with

adverse outcome in TP53 wild-type patients (manu-
script submitted).
In conclusion, although preliminary evidence suggests

that RP mutations could provide cancer cells with alter-
native mechanisms to inactivate p53-mediated responses
to nucleolar stress, more studies are needed on the oc-
currence of RP gene deletions and mutations in cancer
cells and their influence on p53 stabilization and thera-
peutic response after treatment with ribosome biogen-
esis inhibitors.

Mutated nucleophosmin
Nucleophosmin (NPM1), also called protein B23, numa-
trin, and NO38, is a non-ribosomal phosphoprotein, pri-
mary located in the nucleolus [123, 124]. NPM1 shuttles
between the nucleolus and the cytoplasm [125] and ex-
erts a series of different biochemical functions, some of
them being independent of ribosome biogenesis (see for
review [126–129]). Regarding the relationship between

Table 2 Overview of genomic alterations involved in the regulation of the RP/MDM2/p53 axis in hematologic malignancies

Genomic alteration Disease type Incidence of the alteration Prognostic impact Proposed Mechanism Reference

TP53 mutation DLBCL 22%-24% Poor Impaired p53 mediated response
to nucleolar stress

[14, 146]

CLL 7-9% Poor [94, 147–149]

ALCL 8% Poor [145]

ALL 14-15% Poor [15, 150]

AML 5%-9% Poor [92, 151]

MM <5% Poor [152]

TP53 deletion DLBCL 12% Poor [16]

CLL 5-12% Poor [147, 148]

ALL 11% Poor [15]

MM 9.5% Poor [152]

ARF deletion DLBCL 35% Poor Increased MDM2-dependent p53
degradation

[153]

FL 8% Poor [154]

ALL 14-15% Poor [15, 150, 155]

RB1 loss DLBCL 11% Neutral Loss of G1/S checkpoint [156]

CLL 20% Neutral [157]

ALCL 40% Good [103]

ALL 9% Neutral [158, 159]

RPS15 mutation CLL 19% (RELAPSE) Poor Impaired p53 mediated response
to nucleolar stress

[118]

RPL5 mutation MM Sporadic NE [111]

T-ALL <5% NE [108]

RPL5 deletion MM 20% Poor [110]

RPL10 mutation T-ALL 5% NE [108]

RPL22 deletion T-ALL 10% NE [160]

NPM1 mutation AML 53% Good* Increased sensitivity to nucleolar stress [91]

NPM1-ALK ALCL 55% Good [161]

Abbreviations: NE (not evaluated), DLBCL (diffuse large B-cell lymphoma), FL (Follicular lymphoma), CLL (chronic lymphoid leukemia), ALCL (anaplastic large T-cell
lymphoma), ALL (acute lymphoid leukemia), T-ALL (T-cell acute lymphoid leukemia), MM (Multiple Myeloma), AML (acute myeloid leukemia)
*Associated with good prognosis in the absence of FLT3 genomic alterations
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NPM1 and ribosome biogenesis, there is evidence that
NPM1 plays a role in rRNA maturation [130] and its
chaperone activity may facilitate the process of ribosome
assembly [131]. Furthermore, NPM1 has been shown to
be an important mediator, connecting the BCR-ABL net-
work to ribosome biogenesis and, hence, protein synthe-
sis and cell growth in chronic myelogenous leukemia
[132]. Lastly, in proliferating cells, the amount of NPM1
is directly related to the rRNA transcription rate [133]
and in human cancer cell lines to the nucleolar size and
to the rate of cell proliferation [134].
Quantitative and qualitative changes of NPM1 have

been reported to occur in many human malignancies
(see for review [126]). Heterozygous NPM1 mutations
were observed to occur in about 30% of patients with
acute myeloid leukemia (AML) and, with very few ex-
ceptions, were restricted to exon 12 [135, 136]. Mutant
NPM1 is delocalized to the cytoplasm (NPM1c+) while
the amount of wild-type NPM1 located in the nucleolus
is reduced as a consequence of haploinsufficiency and
formation of heterodimers with mutated NPM1 in the
cytoplasm [136]. Importantly, NPM1 mutations are
mutually exclusive with TP53 mutations [137] and con-
sistent with this observation the presence of NPM1c+
inhibits p53-mediated responses: in fact cytoplasmic
NPM1 localization determines sequestration of ARF
tumor suppressor in the cytoplasm, therefore limiting
the interaction of ARF with MDM2 with consequent in-
creased p53 degradation [138–140]. It is noteworthy that
from the clinical point of view acute myeloid leukemia
with mutated NPM1 is characterized by a better progno-
sis due to a higher remission rate after chemotherapy

containing anthracyclines and cytarabine [91, 141]. This
is probably due to the fact that leukemic cells with mu-
tated NPM1 maintain a functional wild-type p53 [137].
In line with this data, a recent study reported that pa-
tients with AML with mutated NPM1, not eligible for
intensive chemotherapy or with refractory or relapsed
disease, may be successfully treated with actinomycin D,
at the same dose as that used for low-risk gestational
trophoblastic tumors [142]. The rationale at the basis of
this therapeutic strategy is that leukemic cells with mu-
tated NPM1 may have a more vulnerable nucleolus to
the stress induced by the inhibition of ribosome biogen-
esis, resulting in a very strong p53-mediated response.
NPM1 is also a frequent target of chromosomal translo-
cations. The NPM1-ALK (anaplastic lymphoma kinase)
fusion protein is the hallmark of ALK-positive anaplastic
large cell lymphoma (reviewed in [143]). The NPM1-
ALK fusion protein activates a series of cellular signaling
pathways boosting lymphomagenesis while inhibiting
p53 activity with MDM2 and JNK (c-Jun N-terminal
kinase) dependent mechanisms [144]. Therefore, ALK-
positive ALCL often retain a functional p53-mediated re-
sponse to nucleolar stress, and accordingly TP53 muta-
tions are rare in NPM1-ALK-positive ALCL. In line with
these findings, NPM1-ALK-positive ALCL are character-
ized by a better prognosis following conventional CHOP
compared to their ALK negative counterparts. Further
investigations on the relationship between the functional
state of the nucleolus and the response to ribosome bio-
genesis inhibitors should be conducted with the aim of
establishing therapeutic protocols based on selective in-
hibition of ribosome biogenesis.

Fig. 2 Schematic model representing the relationship between certain intrinsic cancer cell characteristics and curability of hematologic malignancies
following chemotherapy based on drugs inhibiting ribosome biogenesis. Cancers with wild-type TP53, high ribosome biogenesis rate, loss
of retinoblastoma protein, mutated NPM1 are characterized by good prognosis following chemotherapy (this is the case of TP53 wild-type HL, ALCL,
DLBCL, NPM1c+ AML). At the opposite side of the spectrum, cancers characterized by mutant TP53 or mutant ribosomal proteins genes are associated
with a low cure rate (certain forms of DLBCL, MM, T-ALL, CLL, AML). In the middle, cancers with low ribosomal biogenesis rate and wild-type TP53
harbor an intermediate cure rate (FL, other indolent B cell lymphoma subtypes)
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Conclusions
Despite the advent of personalized medicine, current
treatment algorithms do not take into account important
biological parameters which have been demonstrated to
affect the cancer response to chemotherapeutic agents
(these factors are summarized in Table 2) [14–16, 91, 92,
94, 103, 108, 110, 111, 118, 146–161]. There is now evi-
dence that the efficacy of many of the chemotherapeutic
drugs used for cancer treatment is related to p53
stabilization consequent to ribosome biogenesis inhib-
ition (Fig. 1), and efforts are ongoing to develop new
drugs that can selectively target ribosome biogenesis,
without having the genotoxic effects proper of standard
chemotherapeutic agents. In this context, it is worth
mentioning the selective inhibitor of rRNA transcription,
the CX-5461 molecule [7, 75], which may represent a
new, very interesting strategy for cancer therapy [12,
162–164]. In this research field, other molecular com-
pounds specifically hindering rDNA transcription have
been proposed, demonstrating the increasing interest in
this new therapeutic approach [9–11, 165]. On the other
hand, as reported in the present review, a series of ex-
perimental and clinical data indicate that human tumors
are characterized by several genomic alterations deter-
mining a highly variable response to the treatment with
ribosome biogenesis inhibitors. In fact, several mecha-
nisms converge in attenuating the anticancer activity of
ribosome biogenesis inhibitors, mostly by reducing the
amount of stabilized p53 and/or the extent of apoptotic
responses to RIBi inhibitor-dependent nucleolar stress
(Table 2). Accurate knowledge of these mechanisms
could provide the rationale for treatment strategies able
to by-pass resistance to RIBi inhibitors, such as combi-
nations with MDM2 inhibitors or small molecule inhibi-
tors of phosphatidyl-inositol-3-kinase (PI3K) pathway or
antiapoptotic proteins such as bcl-2. The main charac-
teristics influencing the response of hematologic malig-
nancies to drugs inhibiting ribosome biogenesis are
summarized in Fig. 2. These characteristics should be
considered and evaluated in advance, in order to predict
the degree of therapeutic response, especially when
using selective inhibitors of ribosome biogenesis.
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