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Abstract

Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing,
myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem
cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot
compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to
illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear,
blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an
overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of
the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC
aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions.
Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging
review delineates the association between functional changes and molecular mechanisms and may have significant
clinical relevance.
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Background
A key step in hematopoietic stem cell (HSC) aging re-
search was achieved in 1996, revealing that HSCs from
old mice were only one-quarter as efficient as those from
young mice at homing to and engrafting the bone mar-
row (BM) of irradiated recipients [1]. This landmark dis-
covery established that the HSC aging process is
accompanied by functional decline. Since then, differ-
ences between young and aged HSCs have been eluci-
dated from multiple aspects, and the mechanisms of
HSC aging have been gradually illustrated. Furthermore,

in the clinic, donor age is carefully considered in HSC
transplantation, and young donors result in better sur-
vival after HSC transplantation [2–4].
Aged HSCs are inferior to young HSCs and show in-

complete reconstitution potential. For example, in pri-
mary transplantation experiments, compared with young
HSCs, aged HSCs showed an overall reduction in long-
term repopulating potential [1] and differentiation bias
[5]. In the second transplantation experiments, BM cells
from old animals were less able to engraft later passage
recipients than those from young animals [6]. These
findings demonstrated that HSC functions are partially
dysregulated during aging and that approaches to reju-
venate aged HSCs should be further elucidated.
Different studies have explored the mechanisms by

which aged HSC dysfunction occurs. Altered expression
levels of multiple genes and mutation of some specific
genes were shown to lead to HSC aging [7]. In addition,
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inhibition of some signaling pathways, such as the mam-
malian target of rapamycin (mTOR) and p38 mitogen-
activated protein kinase (MAPK) pathways, was closely
related to HSC aging [8, 9]. Furthermore, epigenetic per-
turbations also drove both cellular functional attenuation
and other aging manifestations [10]. Finally, some fac-
tors in the HSC niche, such as cytokines and enzymes,
are also crucial during the aging process [11].
In the present review, we compare the differences in

the hallmarks, signaling pathways, and epigenetics of
young and aged HSCs, and provide an overview of the
BM niche wherein HSCs reside. Notably, we summarize
the very recent studies which dissect HSC aging at the
single-cell level. In addition, we review the promising
strategies for rejuvenating aged HSC functions. Consid-
ering that the incidence of many hematological malig-
nancies is strongly associated with age, our HSC aging
review delineates the association between functional
changes and molecular mechanisms and may have sig-
nificant clinical relevance.

Changes in the HSC hallmarks during aging
The functions of HSCs, one of the most important blood
cell types, decline in both mice [12] and humans [13]
during the aging process. Here, we summarize the
changes in the hallmarks of HSC aging with regard to
self-renewal, differentiation bias, homing, and
engraftment.

Self-renewal
HSCs are characterized by their capacity for long-term
self-renewal and the ability to generate all functional
blood cells. Although different studies demonstrated a
dramatic increase in the number of mouse HSCs with
age [14, 15], the ability of HSCs to self-renew did not in-
crease accordingly. To further compare young and old
HSC self-renewal activity in vivo, Dykstra et al. per-
formed secondary transplantations and found that old
HSCs showed less self-renewal activity and generated
smaller daughter clones in extended serial transplants
than their young counterparts [6]. These phenomena are
consistent with the results that most HSCs are actively
cycling during fetal life and old age, while HSCs in
adulthood are often associated with quiescence [1, 16,
17]. Studies on HSCs in aged mice show an overall de-
crease in cell cycle activity, with old HSCs undergoing
fewer cell divisions than young HSCs [18, 19]. For ex-
ample, the transition from active cell cycling in fetal
HSCs to quiescence in adult HSCs was associated with
changes in gene expression programs, including a
marked reduction in the expression of Sox17, a tran-
scription factor required for the maintenance of fetal but
not adult hematopoiesis [20, 21]. The expression levels
of other genes associated with the cell cycle, such as

Xrcc5, Cdadc1, Cct5, and Polr2h, are also changed dur-
ing HSC aging [22].

Differentiation bias
Compared with young HSCs, aged HSCs have more
myeloid differentiation potential and less B cell and T
cell output after transplantation into young irradiated re-
cipients. For example, Rossi et al. [23] found a significant
reduction in the ability of old long-term HSCs (LT-
HSCs) to give rise to peripheral B lymphocytes and a
corresponding trend of old LT-HSCs toward increased
myelopoiesis. In 2016, Nilsson et al. [24] further found
that the levels of common lymphoid progenitors de-
creased and the frequencies of megakaryocytes and
erythrocyte progenitors increased with age. Another im-
portant feature in the differentiation of aged HSCs is
platelet bias. Grover et al. observed that a very high pro-
portion of aged HSCs almost exclusively produced plate-
lets and that HSC aging was accompanied by a
coordinated upregulation of platelet lineage gene expres-
sion [25]. The lineage bias during aging was accompan-
ied by the systemic downregulation of genes mediating
lymphoid specification and function (e.g., Bcl11b, Blnk,
Cd160, Cd86, Csk) and upregulation of genes involved in
specifying myeloid fate and function (e.g., Amp3, Anxa7,
Ap3b1, Arhgef12, Cbfa2t1h) [7, 23, 26]. In humans, the
expression levels of some specific genes have been found
to exhibit the same change tendencies as those in mice
[13, 27]. For example, upregulated genes in aged HSCs,
such as Selp, specify myeloerythroid fate, while downreg-
ulated genes, such as Flt3 and Sox4, are usually associ-
ated with lymphopoiesis [13].

Homing and engraftment
HSC transplantation is a normal and effective way to as-
sess the functions and potential of HSCs. To test stem
cell implantation ability, Liang et al. [28] injected young
or old BM cells into congenic mice, and they found that
the homing efficiency of old mouse was approximately
three-fold lower than that of young mouse. Some spe-
cific genes have been demonstrated to be crucial in
regulating HSC repopulation, such as Cdc42, Ccr9,
Gnrh2, and Lep [29, 30]. CD44 is critical in the mainten-
ance and migration of HSCs [31], and the absence of
CD44 in neonatal BM was shown to enhance the long-
term engraftment potential of HSCs. Additionally,
p16Ink4a, a cyclin-dependent kinase inhibitor, has been
shown to play an important role in stem cell regulation
and HSC aging [18]. p16Ink4a-positive cells accumulate
during adulthood, and this accumulation negatively in-
fluences lifespan and promotes age-dependent changes
in the kidney and heart [32, 33]. Janzen et al. found that
p16Ink4a expression in HSCs increased with age and that
the absence of p16Ink4a could mitigate the repopulating
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defects and apoptosis in HSCs [18]. Moreover, Klf5 is as-
sociated with BM homing, and its enrichment is also
found in LT-HSCs during aging [34–36].

Changes in the intrinsic signaling pathways during HSC
aging
The functional decline in aged HSCs is also associated
with some important signaling pathways. Here, we re-
view the current understanding of the signaling path-
ways that are differentially activated or repressed during
HSC aging, including the DNA damaging, Janus kinase
and signal transducer and activator of transcription
(JAK/STAT), nuclear factor (NF)-κB, mTOR, transform-
ing growth factor (TGF)-β, Wnt, reactive oxygen species
(ROS), and mitochondrial unfolded protein response
(UPRmt) pathways.

DNA damaging pathways
DNA damage is caused by physical, chemical, and bio-
logical factors [37] and can block genome replication
and transcription. The accumulation of DNA damage
during aging has been observed in many studies. Rübe
et al. [38] observed an increase in endogenous γH2AX-
foci (a sensitive parameter for detecting DNA double-
strand breaks) levels in HSCs from elderly donors.
Beerman et al. [39] found that age-associated DNA dam-
age accrual was greatest within the HSC compartment
among diverse hematopoietic progenitor cells. Genome-
wide analysis of young and old HSCs also identified
some genes involved in DNA repair that are downregu-
lated with age, such as Xab2, Rad52, and Xrcc1 [7]. A
specific type of DNA damage is caused by the erosion of
telomeres [40], and telomere shortening also occurs dur-
ing aging [41, 42].
DNA damage leads to a cascade of cellular events

known as the DNA damage response (DDR). The DDR
is associated with age and is regulated by some import-
ant pathways, such as the nucleotide excision repair
(NER) and nonhomologous end-joining (NHEJ) path-
ways. NER plays an important role in maintaining the
functional capacity of LT-HSCs during aging by preserv-
ing the reconstitution ability, self-renewal potential, and
proliferative capacity and by preventing programmed cell
death under conditions of stress [43]. The NER
pathway-associated gene Xab2 was shown to be down-
regulated in aged HSCs [7], suggesting that the NER
pathway acts to restore HSC function but is weakened
during aging. Another DNA repair pathway is the NHEJ
pathway. Nijnik et al. [44] reported that hypomorphic
mutations of murine ligase IV (Lig4y288c), a protein im-
plicated in the NHEJ pathway, led to an age-dependent
defect in hematopoiesis during aging. In addition, mice
deficient in KU70 (a key component of the NHEJ path-
way) exhibited severe defects in self-renewal, competitive

repopulation, and BM hematopoietic niche occupancy
[45]. Consistently, KU70 expression in HSCs was nega-
tively correlated with donor age [46]. Taken together,
these observations suggest that the NHEJ pathway may
act to preserve HSC functions, and its downregulation
during aging may contribute to HSC functional loss.

The JAK/STAT, NF-κB, and mTOR pathways
The JAK/STAT signaling pathway is a conserved meta-
zoan signaling system that plays an important role in the
immune response, homeostasis, and regenerative pro-
cesses [47]. Recently, a study using single-cell tran-
scriptomics revealed JAK/STAT signaling functions in
stem cell exhaustion during aging [48]. Kirschner et al.
showed that approximately 25% of p53-activated old
HSCs coexpressed cell cycle inhibitory and proliferative
transcripts from JAK/STAT signaling, partially explain-
ing the prolonged cell proliferation, myeloid skewing,
and stem cell exhaustion [48].
NF-κB is also known to be an important regulator of

HSC aging, and its activity varies at different develop-
mental stages [49]. Stein et al. showed that loss of the
NF-κB subunit RelA/p65 severely impaired HSC func-
tions, which occurred in conjunction with increased
HSPC cycling, extramedullary hematopoiesis, and differ-
entiation defects [50]. Chambers et al. demonstrated that
71% of 22-month-old HSCs showed enhanced nuclear
localization of the p65 protein (an NF-κB subunit), in
contrast to only 3% in 2-month-old HSCs, suggesting
improved NF-κB activity in aged HSCs [7]. In addition,
aged HSCs failed to downregulate Rad21/cohesion, a
critical mediator of NF-κB signaling [51]. These results
suggested that aged HSCs exhibit increased NF-κB
activity.
The mTOR pathway regulates cell growth, memory,

and aging by receiving signals from mitogenic growth
factors, nutrients, and cellular energy levels [52–54].
Chen et al. observed that the levels of phosphorylated
(p-)mTOR and mTOR activity were significantly
higher in HSCs from aged mice than in those from
young mice [8].

The TGF-β signaling pathway
The TGF-β pathway plays important roles in regulating
HSC behaviors, such as quiescence, self-renewal, and dif-
ferentiation [55]. Challen et al. showed that exposure to
TGF-β1 exerted a stimulatory effect on myeloid-biased
HSC proliferation and inhibited the turnover of
lymphoid-biased HSCs in young mice [56]. In contrast, a
striking reduction in myeloid cell production was found
in old mice treated with TGF-β1, and aged HSCs were
shown to be more sensitive to TGF-β1 than young HSCs
[57]. A genome-wide transcriptome analysis also directly
showed that the expression levels of regulatory genes in
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the TGF-β pathway (such as Smad4, Endoglin, Spectrin
b2, Nr4a1, Cepba, Jun, and Junb) were reduced during
HSC aging, demonstrating that TGF-β signaling in HSCs
declines with age [7, 58].

The Wnt pathway
Polarity is associated with specialized functions in HSC,
such as migration or division, while the loss of polarity
has been correlated with reduced self-renewal and al-
tered differentiation of HSC [59, 60]. The small RhoGT-
Pase Cdc42 showed elevated activity in aged HSCs [61]
and a correlation with polarity loss in aged HSCs [59].
Further study of the Cdc42 polarity pathway revealed
that a shift from canonical to noncanonical Wnt signal-
ing caused HSC aging [62]. Wnt5a treatment of young
HSCs activated Cdc42 and induced aging-associated
stem cell polarity, a reduction in regenerative capacity,
and aging-like myeloid-lymphoid differentiation skewing.

The ROS and UPRmt pathway
HSCs reside in a low-oxygen BM niche and maintain
low ROS levels [63]. The hypoxic niches are essential for
quiescence and protect HSC from apoptosis and loss of
self-renewal potential. However, with the accumulation
of ROS levels, the self-renewal capacity and repopulation
ability of HSC decline during aging process [64]. The
thioredoxin-interacting protein (TXNIP) is a regulator of
p53 and plays a pivotal role in the maintenance of the

hematopoietic cells by regulating intracellular ROS dur-
ing oxidative stress [65]. TXNIP-p38 axis also acts as a
regulatory mechanism in HSC aging by causing lineage
skewing, a decrease in engraftment, and an increase in
ROS [66]. In addition, Forkhead O (FoxO) proteins play
essential roles in the response to physiologic oxidative
stress and thereby mediate quiescence and enhance sur-
vival in the HSC compartment [67].
Mitochondrial stress generates a reactive oxygen species

(ROS)-dependent retrograde signal that modulates neutral
stem cell proliferation and differentiation [68]. The UPRmt

is an emerging adaptive stress response pathway that en-
sures optimal quality and function of the mitochondrial
proteome [69]. The expression of a UPRmt regulator, Sirt7,
was found to be reduced in aged HSCs, and its inactiva-
tion compromised the regenerative capacity of HSCs; fur-
thermore, Sirt7 upregulation improved the regenerative
capacity of aged HSCs [70]. Moreover, treatment with the
UPRmt stimulator nicotinamide riboside induced the syn-
thesis of prohibition proteins and rejuvenated muscle
stem cells in aged mice [71].
In summary, these studies demonstrate that signaling

pathways can form a network of metabolic processes
and provide a systematic way to explain alterations in
HSCs during aging (Fig. 1). Future studies should focus
on the crosstalk among different signaling pathways and
how pathways act synergistically and antagonistically
with each other during HSC aging.

Fig. 1 Functional alterations and HSC aging mechanisms. Aging negatively affects HSC functions, including decreasing self-renewal ability and
myeloid/platelet-biased differentiation and impairing implantation ability. The intrinsic mechanisms are illustrated at the gene level, signaling
pathway level, and epigenetic level. HSC aging is accompanied by some cell surface markers being upregulated with age (such as CD28, CD38,
CD41, CD47, CD62, CD 69, CD74, and CD81) and some being downregulated with age (such as CD27, CD34, CD37, CD44, CD48, CD52, CD63,
CD79b, CD86, CD97, CD97b, and CD160). Furthermore, aged HSCs show different expression levels of specific genes. For example, Amp3, Anxa7,
Ap3b1, SELP, Egr1, Arhgef12, and Cbfa2t1h are upregulated, and Flt3, Xab2, Rad52, Xrcc1, Sox17, Bcl11b, and Blnk are downregulated. In addition,
some signaling pathways are activated/repressed during HSC aging, including the JAK/STAT-NF-κB-mTOR pathway, TGF-β pathway, Wnt pathway,
and ROS and UPRmt pathway. Age-related epigenetic regulation includes DNMT1, DNMT3A, DNMT3B, H3K4me3, and H3K27me3. Extrinsic
mechanisms include HSC-surrounding cells (including MSCs, neutrophils, megakaryocytes, and macrophages), cytokines (including IL-6 and IL-1B),
enzymes (including caspase-1), and β-adrenergic nerve signaling (including increased β2-AR signaling and decreased β3-AR signaling). The red
box indicates that the molecule is upregulated with age, and the green box indicates that the molecule is downregulated with age

Li et al. Journal of Hematology & Oncology           (2020) 13:31 Page 4 of 16



Changes at the intrinsic epigenetic level during HSC
aging
Epigenetics refers to changes in gene expression but
does not involve changes in the DNA sequence of or-
ganisms. Loss of epigenetic regulation at the chromatin
level may drive both cellular functional attenuation and
other manifestations during aging [72]. In this section,
we compare the differences in the DNA methylation,
histone modification, and noncoding RNAs in young
and old HSCs. In addition, we summarize the research
on epigenetic modification by using single-cell epigenetic
technologies.

DNA methylation
DNA methylation has been shown to increase during
the HSC aging process [58]. Beerman et al. [10] showed
that DNA methylation changes during HSC aging occur
in regions associated with HSC proliferation and
lineage-biased differentiation. Furthermore, genome-
wide epigenetic and transcriptome profiling identified
some important age-associated regulators of methyla-
tion, such as DNA methyltransferase 1 (DNMT1),
DNMT3A/B, and TET1/2 [15, 73].
DNMT1 has been shown to be essential for HSC self-

renewal [74], and loss of DNMT1 causes myeloid skew-
ing [75, 76]. Challen et al. demonstrated that conditional
knockout of DNMT3A in HSCs led to increased self-
renewal at the expense of differentiation [77]. Another
DNMT family member, DNMT3B, was also found to be
essential for HSC differentiation [77]. TET2 has also
been reported to regulate HSC differentiation and
increase myeloid output [78, 79]. In addition, 5-
methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-
hmC) are two important epigenetic modifications during
HSC aging [80]. The loss of the mean 5-mC content in
aged leukocytes is 2% of that in young adult leukocytes
[81]. Sun et al. showed a decrease in the 5-hmC level in
aged mouse HSCs [58], and Busque et al. found the
same phenomenon in human peripheral blood cells [82].
These alterations in aged HSC epigenetics are summa-
rized in Table 1.

Histone modifications
Histone modifications include acetylation, methylation,
phosphorylation, sumoylation, and ubiquitination and
can impact gene expression by altering chromatin struc-
ture and affecting the accessibility of the DNA. There is
abundant evidence that histone modifications regulate
HSC functions, such as self-renewal and differentiation
[86–91]. By comparing young and old mouse HSCs, Sun
et al. demonstrated that H3K4me3 expression increased
with age and showed a strong relationship with age-
associated changes in gene expression [58]. Furthermore,
broadening of the coverage and intensity of the

H3K27me3 signal was observed in aged HSCs. H4K16ac
is another age-associated epigenetic marker and can be
pharmacologically regulated by the Cdc42 activity-
specific inhibitor (CASIN) [83]. Aged LT-HSCs showed
an overall lower level of H4K16ac than young LT-HSCs
[59]. A recent study also demonstrated that aging was
associated with significant reductions in H3K4me1,
H3K27ac, and H3K4me3 [15]. Remarkably, some novel
age-associated chromatin markers in hematopoietic pro-
genitors, including H3K23ac, H2BS14ph, and H3K9me2,
were observed at the single-cell level by highly multi-
plexed mass cytometry [85, 92]. These alterations in his-
tone modification during HSC aging are summarized in
Table 1. The regions in which histone modifications
occur are not random but are associated with specific
functions. For example, sites with decreased H3K4me1
were linked to genes involved in myeloid and erythroid
differentiation and functions, while loss of H3K27ac was
linked to genes associated with leukocyte activation,
apoptotic signaling, and histone modifications [15].

Noncoding RNAs
Noncoding RNAs are RNAs that are not translated into
proteins, including transfer RNA, ribosomal RNA, piwi-
interacting RNA, microRNA, and long noncoding RNA
(lncRNA). Many noncoding RNAs act as regulatory mol-
ecules that control gene expression and impact the epi-
genetic state [93, 94]. Recently, some noncoding RNAs
have been demonstrated to play important roles in HSC
functions, and their expression levels change with age.
Djeghloul et al. observed that the expression of micro-
RNA miR-125b increased with age in human HSCs [95].
These authors also found that inhibition of miR-125 im-
proved the capacity of HSCs from elderly individuals to
generate B cells. Another microRNA cluster, the
microRNA-132/212 cluster, was upregulated and
enriched during HSC aging [96]. Both overexpression
and deletion of the above microRNAs led to inappropri-
ate hematopoiesis with age [28]. In addition to miRNAs,
some lncRNAs also show differential expression during
aging [97].
In general, DNA methylation, histone modifications,

and noncoding RNAs play important roles in regulating
HSC functions during aging; however, different layers of
epigenetic modifications are not independent. Age-
associated histone modification changes are accompan-
ied by alterations in DNA methylation. In HSCs, the
inability to remove H3K4me1/2 methylation may pre-
vent DNA methylation from repressing the self-renewal
program [87]. Furthermore, regions in which H3K36me3
expression decreased in aged HSCs also displayed DNA
hypomethylation [58, 98]. However, few studies have ex-
amined the relationship between noncoding RNAs and
other epigenetic modifications. Therefore, the synergistic
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and antagonistic effects among different epigenetic mod-
ifications should be further elucidated.

Changes in the extrinsic HSC niche during aging
In addition to intrinsic factors, some studies also
demonstrated that extrinsic factors affected HSC
aging [99, 100]. The BM microenvironment niche is
a crucial factor for HSC functions [101]. In the HSC
niche, megakaryocytes promote the quiescence of
neighboring HSCs [102]. VCAM-1+ macrophages
guide the homing of HSPCs to a vascular niche
[103]. On the other hand, BM CD169+ macrophages
[104] and F4/80+Ly-6G+CD11b+ phagocytic macro-
phages [105] maintain HSC niches, but their deple-
tion mobilizes HSCs. Furthermore, a recent study
found that CD150 high BM Tregs controlled HSC

quiescence and engraftment [106]. In addition to the
abovementioned hematopoietic cells, nonhematopoie-
tic cells (including mesenchymal stromal cells
(MSCs), arteriolar and sinusoidal endothelial cells,
and perivascular cells) also play crucial roles in the
HSC niche [100, 107, 108]. Moreover, the sympa-
thetic nervous system (SNS) regulates HSC
mobilization and orchestrates the release of adrener-
gic neurotransmitters into the microenvironment in
a circadian manner [109–112]. In this section, the
effects of HSCs surrounding cells, the SNS, and
other factors on HSC aging are summarized (Fig. 2).
In 2018, Maryanovich found that HSC aging critically

depended on BM innervation by the SNS around arteri-
olar niches, as loss of SNS nerves or adrenoreceptor β3
(ADRβ3) signaling in the young mouse BM

Table 1 Differences in DNA methylation and histone modification levels between young and aged HSCs

Alterations with age Functions Author and year

DNA methylation

DNMT1 Downregulated Myeloid skewing and self-renewal defects Beerman et al. 2013 [10]
Sun et al. 2014 [58]
Trowbridge et al. 2009 [76]
Broske et al. 2009 [75]

DNMT3A Downregulated Lead to an increase in self-renewal with age at the expense of differentiation Beerman et al. 2013 [10]
Sun et al. 2014 [58]
Challen et al. 2014 [77]

DNMT3B Downregulated Lead to an even more severe arrest of HSC differentiation Sun et al. 2014 [58]
Challen et al. 2014 [77]

TET1 Downregulated Enhance HSC self-renewal; increase B cell production; develop B cell
malignancies

Sun et al. 2014 [58]
Cimmino et al. 2015 [73]

TET2 Downregulated Attenuate differentiation and lead to myeloid transformation and myeloid
malignancies

Busque et al. 2012 [82]
Ko et al. 2011 [78]

5-mC Not studied Hypermethylation at promoters associated with lineage potential Beerman et al. 2013 [10]
Oshima et al. 2014 [80]

Not studied Hypermethylation selectively targeting PRC2 and PU.1-binding sites Beerman et al. 2013 [10]
Sun et al. 2014 [58]
Oshima et al. 2014 [80]

Not studied Hypomethylation at the HSC fingerprint genes and rRNA genes Busque et al. 2012 [82]
Oshima et al. 2014 [80]

5-hmC Downregulated Not studied Sun et al. 2014 [58]

Histone modification

H3K4me3 Upregulated Alter promoter usage and upregulate some genes (Selp, Nupr1, and Sdpr) Sun et al. 2014 [58]

H3K27me3 Upregulated Alter promoter usage and downregulate Flt3 expression with age Sun et al. 2014 [58]

H4K16ac Downregulated Downregulate nuclear polarity with age Florian et al. 2012 [59]
Grigoryan et al. 2018 [83]

H3K27ac Downregulated Link to leukocyte activation and apoptotic signaling Grigoryan et al. 2018 [83]
Adelman et al. 2019 [15]

H3K9me2 Downregulated Anchor lamina-associated domains to nuclear lamin A/C Grigoryan et al. 2018 [83]
Towbin et al. 2012 [84]

H3K4me1 Downregulated Link to myeloid and erythroid differentiation and functions Adelman et al. 2019 [15]

H3K23ac Upregulated Not studied Cheung et al. 2018 [85]

H2BS14ph Upregulated Not studied Cheung et al. 2018 [85]

H3K9me2 Upregulated Not studied Cheung et al. 2018 [85]
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microenvironment led to premature HSC aging [109].
Furthermore, the distance between HSCs and megakar-
yocytes regulates HSC proliferation and increases in β3-
adrenergic receptor (AR) mice and in natural aging. In
2019, Ho et al. also identified disrupted β-adrenergic
nerve signaling (increased β2-AR-interleukin (IL)-6
levels and decreased β3-AR-Nos1 activity) as an import-
ant determinant of niche alterations during aging, result-
ing in impaired lymphoid differentiation and myeloid
expansion [113]. In addition, Frisch et al. showed that
dysfunction of aged marrow macrophages directed HSC
platelet bias and that aged mice exhibited markedly
more senescent neutrophils than young mice [11]. Fi-
nally, the aged mouse BM niche also expressed elevated
levels of cytokines IL-1B and caspase-1. These works
highlighted the instructive role of megakaryocytes and
macrophages in the age-associated lineage skewing of
HSCs.
For nonhematopoietic cells, the number of MSC sub-

sets (such as PDGFRa+SCA1+ and PDGFRa+CD51+
cells) in aged mouse BM was found to be significantly
higher than that in young mouse BM [11]. Furthermore,
in 2018, Hennrich et al. presented proteome-wide atlases
of age-associated alterations in HSPCs, lymphocytes and

precursors, monocytes/macrophages and precursors,
granulocytes, erythroid precursors, and MSCs [114]. In
aged MSCs, prominent alterations included differential
regulation of proteins that were associated with cellular
responses to stress, replicative senescence, and HSC
homing.

Single cell technologies for HSC aging
Single-cell RNA sequencing
Single-cell RNA sequencing has become a powerful tool
to characterize distinct functional states at single-cell
resolution [115–117]. Several studies using single-cell
RNA sequencing have been performed to reveal cell-
intrinsic differences during HSC aging [22, 25].
Upon comparing young and old mouse HSCs, Kowalc-

zyk et al. found that cell cycle-related genes dominated
the transcriptomic variability and observed fewer cells in
the G1 phase among old HSCs [22]. Moreover, old
short-term HSCs (ST-HSCs) transcriptionally resembled
young LT-HSCs, suggesting that ST-HSCs remained in a
less differentiated state. Grover et al. showed that deple-
tion of HSC platelet programming through loss of the
Fog-1 transcription factor was accompanied by increased
lymphoid output [25]. Mann et al. found that LT-HSCs

Fig. 2 Cell-extrinsic mechanisms of HSC aging involved in HSC-surrounding cells (including megakaryocytes, MSCs, macrophages, and
neutrophils), cytokines and enzymes (including IL-6, IL-1B, and caspase-1). Disrupted β-adrenergic nerve signaling (increased β2-AR-IL6-mediated
megakaryocyte differentiation and reduced β3-AR-Nos1 activity) is an important determinant of niche alterations during aging, resulting in
impaired lymphoid differentiation and myeloid expansion. Dysfunction of aged marrow macrophages directs HSC platelet bias; aged mice have
markedly more senescent neutrophils and higher levels of cytokines IL-1B and caspase-1 in their BM niche than young mice. The number of
MSCs increases significantly during aging and is associated with replicative senescence and HSC homing
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from young and aged mice had differential responses to
inflammatory challenge and that age-dependent inflam-
matory myeloid bias was intrinsic to LT-HSCs [34].
In addition to obtaining single-cell transcriptional re-

sults from mice, Oetjen et al. also performed a compre-
hensive assessment of human BM cells using single-cell
RNA sequencing [118]. They found consistent increases
in chromatin markers in a broad array of cell subtypes
from hematopoietic progenitors to terminally differenti-
ated immune cells. Hennrich et al. revealed that the
mRNA levels of age-increased glycolytic enzymes were
higher in myeloid-primed hematopoietic stem/progeni-
tor cells (HSPCs) than in lymphoid-primed HSPCs,
whereas the transcript levels of age-unaffected enzymes
were similar in both subsets [114]. These results sug-
gested that the lineage skewing of HSPCs toward mye-
loid differentiation upon aging was associated with the
glycolytic pathway. Adelman et al. observed a decrease
in cycling-HSCs and lymphoid-primed multipotent pro-
genitors during aging and identified 364 genes that are
differentially expressed with age, such as Egr1, Klf6, and
Jun [15]. Overall, these single-cell analyses, summarized
in Table 2, helped to demonstrate the intrinsic molecu-
lar changes during HSC aging.
Single-cell transcriptomics data provide abundant in-

formation about the differential gene expression of
young and aged HSCs. The expression of surface mole-
cules is a research hotspot, as these molecules can be
used to track the aging process of HSCs and assess HSC
functions. Using normalized transcription expression
matrices, different studies [7, 11, 13, 22, 24, 25, 120, 121]
found that CD28, CD38, CD41, CD61, CD47, CD62,
CD69, CD74, and CD81 were upregulated with age and
that CD27, CD34, CD37, CD44, CD48, CD52, CD63,
CD79b, CD86, CD97, CD97b, and CD160 were down-
regulated with age. Furthermore, some molecules (such
as CD9 and CD151) showed contrasting expression ten-
dencies with age in different studies [7, 10, 24]. In
addition, a histone 2B-green fluorescent protein label in
HSCs (an HSPC-specific GFP label-retaining system)
was used to label a reserve stem cell population [122,
123]. These molecules show an exact tendency during
aging and could be used to identify aged HSCs and as-
sess HSC functions (Table 3).

Epigenetics at the single-cell level
The development of single-cell epigenomic technologies
has allowed the identification of DNA methylation, his-
tone modifications, chromatin accessibility, and chromo-
some conformation at the single-cell level [117, 124].
For example, single-cell chromatin immunoprecipitation
sequencing and single-cell assays for transposase-
accessible chromatin using sequencing (scATAC-seq)

have been applied to investigate histone modifications
and to map accessible chromatin regions.
Florian et al. observed that young HSCs divided

mainly asymmetrically, while aged HSCs divided pri-
marily symmetrically [119]. Moreover, the potential of
daughter cells was linked to the amount of the epi-
genetic marker H4K16ac and to the amount of open
chromatin. Cheung et al. developed epigenetic land-
scape profiling using cytometry by time-of-flight (Epi-
TOF) to measure epigenetic modifications and profile
the global levels of a broad array of chromatin modi-
fications in primary human immune cells at the
single-cell level [85]. Consistent increases in chroma-
tin markers were found in a broad array of cell sub-
types from hematopoietic progenitors to terminally
differentiated immune cells, suggesting that systemic
changes may result from the reprogrammed chroma-
tin state in hematopoietic progenitors or further up-
stream in HSCs. These single-cell epigenetic analyses
contributed to our understanding of the distinct types
of epigenetic alterations occurring during aging at
single-cell resolution (Table 2).

Aged HSC rejuvenation strategies
Currently, there is no doubt that HSCs show declining
function during aging, but whether this dysfunction is
reversible remains unclear. In 2014, Villeda et al. re-
ported that exposure of an aged animal to young blood
can counteract and reverse pre-existing effects of brain
aging at the molecular, structural, functional, and cogni-
tive levels, suggesting that some aging-related pheno-
types can be improved [125]. In this section, we review
the approaches to achieve at least partial rejuvenation of
aged HSC functions, including prolonged fasting, genetic
modulators, pharmacological intervention, and changing
the BM niche (Table 4).

Prolonged fasting
Prolonged fasting reduces progrowth signaling and ac-
tivates pathways that enhance cellular resistance to
toxins in mice and humans [131–133]. Prolonged
fasting can protect mice from chemotoxicity by redu-
cing circulating insulin-like growth factor-1 (IGF-1)
expression [134, 135]. Notably, Cheng et al. showed
that prolonged fasting can rejuvenate HSCs. Pro-
longed fasting reduces circulating IGF-1 levels and
protein kinase A (PKA) activity in various cell popu-
lations and promotes stress resistance, self-renewal,
and lineage-balanced regeneration [126].

Genetic modulators (Satb1, Sirt3, and Sirt7)
HSC aging is accompanied by alterations in gene expres-
sion. Therefore, overexpressing some downregulated
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genes or knocking down the expression of some upregu-
lated genes might be strategies to prevent HSC dysfunc-
tion. Reduced Satb1 expression was found in aged HSCs
and associated with compromised lymphopoietic poten-
tial, and forced Satb1 overexpression partially restored
that potential [127]. In addition, the expression of Sirt3,
which regulates the global acetylation landscape of mito-
chondrial proteins, was suppressed by aging, and Sirt3 up-
regulation in aged HSCs improved the HSC regenerative
capacity [128]. A similar phenomenon was also found for
Sirt7 [70]. Although overexpression of some regulators
has been found to rejuvenate HSCs, few studies have re-
vealed a relationship between gene knockdown and HSC
rejuvenation. In the future, gene knockdown might be an-
other credible way to restore HSC functions and identify
the functions of some genes in rejuvenation.

Pharmacological intervention

Rapamycin (mTOR inhibitor) Aged mice exhibit in-
creased mTOR signaling in HSCs, and rapamycin can
enhance the regenerative capacity of HSCs from aged
mice, improve their immune response, and extend their
life span [8].

CASIN (Cdc42 inhibitor) Cdc42 regulates diverse cel-
lular functions, including cellular transformation, cell
division, migration, enzyme activity, and cell polarity
[136]. Aged HSCs show elevated Cdc42 activity, and
Cdc42 inhibition has been demonstrated to rejuvenate
HSC functions. Treated with CASIN in vitro, aged HSCs
showed an increase in the percentage of polarized cells,
and their H4K16ac level and spatial distribution were re-
juvenated to a status similar to that in young HSCs [59].
In addition, CASIN treatment increased the contribution
to the B cell compartment in peripheral blood and re-
duced the contribution to the myeloid lineage. Recently,
another study also found that aged HSCs treated with
CASIN reestablished an immune system similar to that
of young animals [137].

TN13 and SB203580 (p38 MAPK inhibitor) Inhibition
of p38 MAPK reduces ROS levels and contributes to
HSC rejuvenation. TN13, a cell-penetrating peptide-
conjugated peptide, inhibited p38 activity and rejuve-
nated aged HSCs by reducing ROS [66]. Another in-
hibitor of p38 MAPK, SB203580, was also found to
rescue ROS-induced defects in the repopulating cap-
acity of HSCs and the maintenance of HSC

Table 3 Significant alterations of cell surface markers during HSC aging

Symbol Alterations with age Functions

CD9 Upregulated Adhesion, migration, and platelet activation

CD28 Upregulated Costimulation

CD38 Upregulated Cell activation, proliferation, and adhesion

CD41 Upregulated Platelet activation and aggregation

CD47 Upregulated Adhesion, activation, apoptosis

CD62 Upregulated Leukocyte rolling and homing

CD69 Upregulated Costimulation

CD74 Upregulated B cell activation

CD81 Upregulated Activation, costimulation, and differentiation

CD151 Upregulated Adhesion, signaling

CD27 Downregulated Costimulation

CD34 Downregulated Adhesion

CD37 Downregulated Adhesion, signaling

CD44 Downregulated Leukocyte rolling, homing, and aggregation

CD48 Downregulated Adhesion, costimulation

CD52 Downregulated Costimulation

CD63 Downregulated Cell motility regulation

CD79b Downregulated Subunit of BCR, signaling

CD86 Downregulated Costimulation of T cells activation and proliferation

CD97 Downregulated Neutrophil migration, adhesion

CD97b Downregulated Neutrophil migration, adhesion

CD151 Downregulated Adhesion, signaling

CD160 Downregulated Costimulation
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quiescence [9]. These results are consistent with the
phenomenon that HSCs reside in a low-oxygen BM
niche and that the ROS level of HSCs increases dur-
ing aging [138, 139].

ABT263 (clearance of senescent cells) One strategy to
delay aging is to restore cell functions, while another is
to clear senescent cells. Senescent cells accumulate with
age and contribute to the development of aging-related
diseases [140–142]. Depletion of senescent cells miti-
gated irradiation-induced premature aging of the
hematopoietic system and rejuvenated aged HSCs in
normally aged mice. Chang et al. found that ABT263, a
specific inhibitor of the antiapoptotic proteins BCL-2
and BCL-xL, selectively killed senescent cells [129]. Oral
administration of ABT263 to sublethally irradiated mice
and normally aged mice effectively depleted senescent
cells, including senescent BM HSCs.

Changing the BM niche
Kuribayashi et al. showed that engrafting aged HSCs into
young niches restored the age-related transcriptional

profiles of HSCs. They transplanted 20-month-old aged
HSCs into 10-week-old young mice and later collected
aged HSCs engrafted in young mice (aged/Y). The gene
expression profiles of aged/Y HSCs were reprogrammed
to a large extent similar to those of young HSCs [130].
Another study showed that BM innervation by the SNS
influenced the function of HSCs and that supplementa-
tion with a sympathomimetic (β3-AR agonist,
BRL37344) significantly rejuvenated the in vivo functions
of aged HSCs in old mice [109]. Furthermore, chronic
treatment of progeroid mice with BRL37344 decreased
premature myeloid and HSC expansion and restored the
proximal association of HSCs to megakaryocytes [113].

Conclusions
In the present review, we summarize the hallmarks of
HSC aging in self-renewal, differentiation bias, and im-
plantation ability. On the one hand, HSC aging is driven
by multiple cell-intrinsic factors, including gene expres-
sion alterations, signaling pathway activation/repression,
and epigenetic regulation. We review recent HSC aging
studies with high-throughput single-cell sequencing at
both the transcriptomic and epigenomic levels and

Table 4 Aged HSC rejuvenation strategies

Rejuvenation
approach

Mechanism Functions Author and
year

Prolonged fasting

Prolonged fasting Reduces
circulating IGF-1
levels

Promote stress resistance, self-renewal, and lineage-balanced regeneration Cheng et al.
2014 [126]

Gene expression regulation

Satb1
overexpression

Epigenetic
modification

Restore the lymphopoietic potential of aged HSCs Satoh et al.
2013 [127]

Sirt3 overexpression ROS levels Restore the long-term competitive repopulation ability Brown et al.
2013 [128]

Sirt7 overexpression Mitochondrial
functions

Rescue myeloid-biased differentiation Mohrin et al.
2015 [70]

Pharmacological intervention

Rapamycin Inhibition of
mTOR

Enhance the regenerative capacity of HSCs from aged mice Chen et al.
2009 [8]

CASIN Inhibition of
Cdc42

Increase the percentage of polarized cells, restore the spatial distribution of H4K16ac,
increase lymphoid output, and reduce myeloid lineage output

Florian et al.
2012 [59]

TN13 Inhibition of p38
MAPK

Decrease ROS level and increase homing ability Jung et al. 2016
[66]

SB203580 Inhibition of p38
MAPK

Restore the repopulating capacity and maintain quiescence of HSCs Ito et al. 2006
[9]

ABT263 Inhibition of BCL-
2 and BCL-xL

Selectively kill senescent cells Chang et al.
2016 [129]

Changing BM niche

Engraft into a
young niche

Changing the BM
niche

Restore the age-related transcriptional profiles of HSCs Kuribayashi
et al. 2019 [130]

Sympathomimetic
supplementation

Influencing BM
innervation

Improve multilineage cell production and HSC engraftment Maryanovich
et al. 2018 [109]
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summarize the single-cell sequencing data on age-
associated surface molecules. On the other hand, some
cell-extrinsic factors, including HSC-surrounding cells
(such as megakaryocytes, MSCs, macrophages, and neu-
trophils), β-adrenergic nerve signals, cytokines, and en-
zymes (including IL-6, IL-1B, and caspase-1), also affect
HSC aging. Finally, we review some strategies that have
been employed to rejuvenate aged HSCs based on the
above intrinsic and extrinsic mechanisms, including pro-
longed fasting, gene expression regulation, pharmaco-
logical intervention, and changing the BM niche.
Classical knowledge about hematopoiesis, which is

built on a system defined with cell surface markers, is
rather restricted and has been challenged. Compared
with bulk sequencing, single-cell RNA sequencing
technologies allow the dissection of gene expression
at single-cell resolution, which provide unprecedented
insight into cellular heterogeneity and HSC aging
mechanisms. With evolvement of single cell technolo-
gies, researchers can profile multiple epigenetic marks
within the same single cell and do so in combination
with transcriptional information. However, considering
the limitations of transcript coverage, low capture ef-
ficiency, high costs, and restricted cell throughput fa-
cing current single-cell sequencing methods, future
single-cell strategies should be designed to conduct
full-length sequencing and achieve a balance between
high-throughput analysis and sufficient sequencing
depth. In the future, single cell technologies and other
emerging new technologies will pave the way for ma-
nipulation of the transcriptome and epigenome to re-
juvenate aged HSC.
Although the latest single-cell studies delineated the

association between functional decline and molecular
mechanism, these studies did not conclusively identify
driving factors of HSC aging. Whether these alter-
ations drive HSC aging or whether these alterations
are only accompanied by HSC aging remains un-
known. Therefore, gene editing experiments should be
performed to determine the specific functions of each
gene. In addition, while many studies have directly
studied aged HSCs, few studies have examined the
HSC niche or revealed the specific functions of each
cell subset in the HSC niche during aging. Further-
more, most strategies to rejuvenate aged HSCs dir-
ectly act on HSCs, and few studies have tried to
affect the HSC niche. Therefore, future work should
emphasize the mechanisms of the HSC niche during
aging. Moreover, expanding long-term HSCs in vitro
is still a challenge, and the findings of HSC aging
could be applied to this challenge [143–146]. For ex-
ample, some rejuvenation molecules might be added
to expand HSCs. Finally, the declining immune ability
of the elderly population might be associated with

aged hematopoietic cell dysfunction [147, 148]. These
problems may be effectively overcome once HSC
aging mechanisms are fully revealed and rejuvenation
strategies are optimized.
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