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Abstract

T cell lymphomas (TCL) comprise a heterogeneous group of non-Hodgkin lymphomas (NHL) that often present at an

advanced stage at the time of diagnosis and that most commonly have an aggressive clinical course. Treatment in the
front-line setting is most often cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regi-
mens, which are effective in B cell lymphomas, but in TCL are associated with a high failure rate and frequent relapses.
Furthermore, in contrast to B cell NHL, in which substantial clinical progress has been made with the introduction of

outcomes when properly targeted.

monoclonal antibodies, no comparable advances have been seen in TCL. To change this situation and improve the
prognosis in TCL, new gene-targeted therapies must be developed. This is now possible due to enormous progress
that has been made in the last years in the understanding of the biology and molecular pathogenesis of TCL, which
enables the implementation of the research findings in clinical practice. In this review, we present new therapies

and current clinical and preclinical trials on targeted treatments for TCL using histone deacetylase inhibitors (HDACI),
antibodies, chimeric antigen receptor T cells (CARTs), phosphatidylinositol 3-kinase inhibitors (PI3Ki), anaplastic lym-
phoma kinase inhibitors (ALKi), and antibiotics, used alone or in combinations. The recent clinical success of ALKi and
conjugated anti-CD30 antibody (brentuximab-vedotin) suggests that novel therapies for TCL can significantly improve
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Background

T cell lymphomas (TCL) are a very heterogene-
ous group of lymphoid malignancies derived from
mature T cells differing by localization, pathologi-
cal features, and clinical presentation. TCL represent
approximately 12% of all non-Hodgkin lymphomas
(NHLs) and are divided into cutaneous TCL (CTCL)
and peripheral TCL (PTCL), which themselves are
subdivided into nodal or extranodal (systemic) types.
CTCL derive from skin-homing T cells and consist of
mycosis fungoides (MF), Sézary syndrome (SS), pri-
mary cutaneous CD30-positive T cell lymphoprolif-
erative disorders: lymphomatoid papulosis (LP) and
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anaplastic large cell lymphoma (ALCL), cutaneous y§
TCL (CGD-TCL), cutaneous CD8-positive aggressive
epidermotropic cytotoxic TCL (CD8 + AECTCL), and
cutaneous CD4-positive small/medium TCL (CSM-
TCL). Nodal PTCL consist of peripheral TCL not
otherwise specified (PTCL-NOS), angioimmunoblas-
tic TCL (AITK), and anaplastic large cell lymphoma
(ALCL): ALK positive and ALK negative. Extranodal
PTCL consist of extranodal NK/T cell lymphoma nasal
type (ENKTL), enteropathy-associated TCL (EATCL),
hepatosplenic TCL (HSTCL), and subcutaneous pan-
niculitis-like TCL (SPTCL) [1]. The common features
of TCL are aggressive course and poor response to
therapy with the exception of ALK+ ALCL. Despite
the enormous progress that has been made in the
twenty-first century in the treatment of hematologi-
cal malignancies in the majority of TCL cases, the
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outcome is still unsatisfactory, and the disease remains
incurable. Therefore, new targeted treatment modali-
ties for TCL patients are currently being extensively
explored. Those emerging treatments are based on his-
tone deacetylase inhibitors (HDACI), antibodies (Ab),
chimeric antigen receptor T cells (CARTs), phosphati-
dylinositol 3-kinase inhibitors (PI3Ki), anaplastic lym-
phoma kinase inhibitors (ALKi) and antibiotics, used
alone, in combinations with each other, or in combina-
tion with classical chemotherapy (Figs. 1 and 2).

Histone deacetylase inhibitors (HDACi)

Histone deacetylases (HDACs) are a group of enzymes
involved in the epigenetic regulation of gene expression.
They remove the acetyl group from histones and, as a
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result, modulate the chromatin structure and change
the accessibility of transcription factors to their target
DNA sequence [2]. There are four classes of HDAC: class
I HDACs (HDACI, 2, 3, 8) are ubiquitously expressed
in all cell types and are localized in the nucleus, class II
HDACs (HDAC 4, 5, 6, 7, 9, 10) are more tissue specific
and can be localized in the nucleus and cytoplasm, class
III (called sirtuins; SIRT1-7) and class IV (HDACI11).
The balance between the histone acetylation by his-
tone acetylases (HAT enzymes) and deacetylation by
HDAC:s is often disturbed in cancer leading to altered
gene expression and malignant transformation. Com-
pounds that block HDAC, HDAC inhibitors (HDACi),
were introduced to the treatment of several types of
cancer, mainly in T cell lymphomas. HDACi have the
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Fig. 1 Targeted T cell ymphoma therapies mode of action. ADCC: Antibody-dependent cellular cytotoxicity, CD: cluster of differentiation antigens
CDX: CD16, CD25, CD30, CD38, CD47, CD52, KIR3DL2 (CD158k), CCR4 (CD194), ICOS (CD278), CAMD1; CDY: CD4, CD5, CD7, CD30, HDAC: histone
deacetylase, ALK: anaplastic lymphoma kinase, PI3K: phosphoinositide 3-kinases, BCL11B: B cell lymphoma/leukemia 118
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Fig. 2 Targeted therapies in T cell lymphoma subtypes. AlTL—angioimmunoblastic T cell lymphoma, CTCL—cutaneous T cell lymphoma,
PTCL—peripheral T cell ymphoma, T-LBL/ ALL—T cell lymphoblastic lymphoma/T cell acute lymphoblastic leukemia, ALCL—anaplastic large-cell
lymphoma, ATLL—adult T cell leukemia/lymphoma, ENKTL—extranodal NK/T cell lymphoma

capacity to increase acetylation of histones and other
proteins, inducing changes in chromatin structures and
the promotion of expression of tumor-suppressor genes,
apoptosis, and, as a result antitumor activity [3]. HDAC
inhibitors may act against all types of HDACs (pan-inhib-
itors) or, specifically, against some of the HDAC isoforms
(HDAC isoform-selective inhibitors).

The mechanism of action of HDACi can be different;
it depends on the type of cancer, the type of HDACIi
used, and its dose. Multiple cellular processes are acti-
vated upon HDAC: treatment [2, 4]. Cell cycle arrest is
induced by increased expression of genes like p21, p53,
and RUNX3. Both intrinsic and extrinsic apoptotic
pathways are activated, through either death recep-
tors (TRAIL, DR5, Fas, TNF) or the activation of pro-
apoptotic genes like Bid, Bad, and Bim. Autophagy is the
mechanism of the anti-cancer effect of HDACi through
acetylation of autophagy-related proteins, overexpression
of autophagy-related genes, and also as a result of ROS
production. HDAC:i also alters the expression of noncod-
ing RNAs, genes involved in cell growth and differentia-
tion (including protein kinases), major histocompatibility
complex (MHC) and costimulatory molecules, and genes
involved in angiogenesis and the metastatic process
[2, 5]. In 2017, ATACseq analysis showed that clinical
response to HDAC: is strongly associated with a gain in

chromatin accessibility [6]. HDAC] caused distinct chro-
matin responses in malignant and normal CD4+T cells,
reprogramming the first ones toward normalcy. The pat-
tern of accessible chromatin could be used to predict
clinical response to HDACi [6].

FDA-approved HDACi

Suberoylanilide hydroxamic acid (SAHA, Vorinostat)
Vorinostat was the first drug to be approved by the FDA,
since 2006, for CTCL patients with progressive, persis-
tent, and recurrent disease on or following two systemic
therapies (FDA). Vorinostat is an oral competitive inhibi-
tor of class I/Il HDAC enzymes [3]. In two phase-II tri-
als, vorinostat 400 mg/day was safe and effective, with
an overall response rate (ORR) of 24-30% in refractory
advanced patients with CTCL including SS [7-9]. How-
ever, in the phase-III MAVORIC trial, vorinostat was
compared with mogamulizumab in MF/SS patients and
an ORR was only 5%, which was significantly lower than
that of mogamulizumab (28%) [10]. The most common
and serious toxicity side effects were thrombocytope-
nia, anemia, dehydration, nausea/vomiting, hypotension,
infection, sepsis, pulmonary embolism, and deep venous
thrombosis, but they were reversible upon discontinua-
tion of the drug [11].
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Belinostat (PXD-101)

The FDA approved Belinostat in 2014 for the treatment
of patients with relapsed or refractory PTCL. In a phase-
IT clinical trial, 24 PTCL patients and 29 CTCL patients
(17MF/7SS) were administrated 1,000 mg/m? intrave-
nously on days 1-5 every 3 weeks. The ORRs were 25%
for PTCL and 14% for CTCL. In total, 77% of patients
experienced the following side effects: nausea, vomit-
ing, infusion site pain, and dizziness [12]. In the pivotal
phase-1II BELIEF (CLN-19) study with patients with
relapsed or refractory PTCL, ORR was similar: 25.8% (31
of 120), including 13 complete responses (CR) (10.8%)
and 18 partial responses (PR) (15%) [13]. The most com-
mon grade 3/4 adverse events were anemia, thrombocy-
topenia, dyspnea, and neutropenia. In 2018, Allen and
Lechowicz conducted a systemic review to assess the
safety and efficacy of belinostat [14]. A safety analysis
was performed on 512 patients with different relapsed
malignancies from 16 different studies, and an efficacy
analysis was focused on patients with relapsed PTCL
(144 patients). The safety analysis showed that among all
adverse events, the most common were fatigue, nausea,
and vomiting, while overall grade 3/4 hematologic tox-
icity was low (6.4%). The efficacy analysis confirmed the
ORR to be 25.7%, with 10.4% complete remissions and
15.3% partial responses.

Romidepsin

Romidepsin was FDA-approved in 2009 for CTCL
patients who have received at least one prior systemic
therapy. It is administered intravenously and inhibits
class I HDAC selectively. Seventy-one CTCL patients
were included in a phase-II study conducted by Piekarz
et al. in 2009 [15]. The overall response rate was 34%;
four patients experienced complete responses, while
partial responses were observed in 20 patients. Over-
all, romidepsin was well tolerated, with the main tox-
icities observed being fatigue, nausea, and vomiting.
Another multicenter, international, pivotal study of
romidepsin in refractory CTCL was conducted in 2010
[16]. Ninety-six patients were enrolled, most of whom
had advanced-stage disease. The ORR was 34%, and six
patients reached a complete response (CR). A clinically
meaningful improvement in pruritus was observed in
43% of patients, lasting for a 6-month period. The third
study, in 2011 [17], enrolled patients with CTCL and
PTCL. CR was observed in 8 and PE in 9 of 45 patients,
while the ORR was 38%. In both studies, drug-related
adverse events were as previously described, mainly
involving gastrointestinal disturbances. Romidepsin was
also proven to have a good response in patients with
relapsed or refractory CTCL with cutaneous tumors and/
or folliculotropic disease involvement with less favorable
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outcomes. The ORR was 45% and 60%, respectively, and
there was a significant reduction in pruritis [18]. Pruri-
tis reduction upon romidepsin treatment was confirmed
even in patients without any objective clinical response
[19]. The most recent multicenter retrospective study of
53 patients with relapsed or refractory PTCL and CTCL
treated with romidepsin [20] showed that the ORR and
the CR rates for PTCL were 33% and 12.5%, respectively,
and for CTCL, 25% and 0%, respectively. The most com-
mon grade 3/4 adverse events included hematological
toxicity and infections.

Panobinostat

The FDA approved panobinostat for the treatment of
multiple myeloma (MM) in 2015. It is a pan HDAC] that
is orally bioavailable. To check the efficacy of this HDACi
in CTCL, a phase-II study was conducted in 2012 [21].
Oral panobinostat demonstrated clinical activity in MF
or SS patients regardless of prior bexarotene treatment.
An ORR of 17.3% for all patients was detected, while
74% showed an improvement in the severity of their skin
disease. Panobinostat was generally well tolerated, with
thrombocytopenia, diarrhea, fatigue, and nausea being
the most common adverse events. In 2013, another study
was conducted to verify the safety, pharmacokinetics
(PK), and preliminary activity of panobinostat in different
hematologic malignancies, and promising single-agent
activity was noted in patients with MF [22].

HDACi in clinical trials

Chidamide

Chidamide was approved in December 2014 by the China
Food and Drug Administration (CFDA) for the treatment
of relapsed or refractory PTCL. It is a selective inhibitor
of HDACI, 2, 3, and 10 and is administrated orally [23].
Seventy-nine patients with PTCL were enrolled in a first
phase-II study conducted in 2015. The ORR was 28% (22
of 79) including 14% (11 of 79) with complete response/
unconfirmed complete response. Most adverse events
were grade 1 or 2; grade 3 and 4, which occurred in>10%
of patients, were thrombocytopenia, leucopenia, and
neutropenia [24, 25].

Resminostat

Resminostat is an orally bioavailable pan-HDAC inhibi-
tor specifically targeting class I HDACs. It was tested in
clinical trials for hepatocellular carcinoma patients [26].
Now there are plans to test it in patients with advanced-
stage (Stage IIB-IVB) MF or SS who have achieved dis-
ease control with systemic therapy—the RESMAIN
Study (NCT02953301).
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Quisinostat

Quisinostat is a potent “second-generation” class I HDAC
inhibitor with prolonged pharmacodynamic response
in vivo [27]. It was shown to have the potential to inhibit
cancer cell self-renewal [28]. A clinical study on Quisi-
nostat in patients with previously treated stage Ib-IVa
CTCL (NCT01486277) was conducted, though with no
results available so far.

AR-42

AR-42 (Arno Therapeutics) is an orally bioavailable,
hydroxamate-tethered phenylbutyrate-derived small
molecule that targets and inhibits class I and IIB HDACs.
An antitumor activity of this compound in solid tumors
and hematological malignancies was detected in vitro,
and in 2017 the results of the phase I clinical trials were
published [29]. The safety of this dug was confirmed, and
the maximum tolerated dose (MTD) was established:
40 mg administered orally three times weekly, for three
weeks of a 28-day cycle.

HDACi combined with other therapies

The response to treatment with HDACi is 30%, which is
still not satisfactory. Many studies have been conducted
to verify the combination of HDACi with other drugs and
protocols in order to achieve higher response, especially
in advanced-stage patients.

Romidepsin has been tested together with both radio-
therapy and chemotherapy in patients with TCL. It was
shown that in advanced MF patients, localized electron
beam radiation with romidepsin therapy produced a fast
and durable response and that significantly lower doses of
electron beam radiation effectively treated symptomatic
lesions in studied patients [30]. Also, a total skin electron
beam therapy (TSEBT) with romidepsin in advanced
SS/MF patients was shown to be a safe option with no
additional adverse events [31]. The safety and efficacy of
romidepsin and other anti-cancer drugs have been inves-
tigated. Seven PTCL patients were enrolled to study the
romidepsin—bendamustine combination, and among
them, two achieved complete remission [32]. Eighteen
patients were enrolled in a phase-I study of romidepsin
and ifosfamide, carboplatin, and etoposide for the treat-
ment of patients with relapsed or refractory PTCL [33].
The outcomes were promising. The ORR was 93%: 12
(80%) patients achieved CR and 2 patients achieved (13%)
partial remission (PR); one (7%) patient achieved stable
disease (SD). For the combination of romidepsin and
pralatrexate, the ORR was 57% (13/23) across patients
with different types of relapsed/refractory lymphomas,
and 71% (10/14) in PTCL, while each drug separately
usually gives an ORR of 25% and 29%, respectively [34].
The study suggested that such an approach could be an
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effective and safe platform for patients with PTCL; there-
fore, the phase-II clinical trial is now being conducted
(NCT01947140).

Moreover, romidepsin could be used together with
other epigenetic drugs like 5-azacytidine (AZA). Thirty-
one patients with lymphoid malignancies were enrolled
in a phase-I study to assess the synergistic effect between
oral AZA, a hypomethylating agent, and romidepsin [35].
The overall response rates in all, non-T cell and T cell
lymphoma patients were 32%, 10%, and 73%, respectively,
and the complete response rates were 23%, 5%, and 55%,
respectively. The combination of two drugs was more
active in patients with PTCL. Among adverse effects,
thrombocytopenia, neutropenia, and pleural effusion
were the most severe. The clinical trial is ongoing (Phase
I/Ila Study of the Oral 5-Azacitidine in Combination
With the Histone Deacetylase Inhibitor Romidepsin for
the Treatment of Patients With Relapsed and Refractory
Lymphoid Malignancies NCT01998035). AZA was also
tested with vorinostat and the combination of gemcit-
abine/busulfan/melphalan in patients with different types
of lymphoma, including T cell types [36]. The previous
observation showed that treatment with vorinostat/Gem/
Bu/Mel increased the activity of methyltransferases and
that further inhibition of DNA methyltransferases could
enhance the cytotoxicity of this combination of drugs.
The study showed higher CR rates upon azacitidine treat-
ment combined with vorinostat/Gem/Bu/Mel especially
in patients with refractory or poor prognosis relapsed HL
and NH.

A phase-I clinical trial combining romidepsin and ali-
sertib has been conducted in patients with relapsed/
refractory aggressive B cell and T cell lymphoma [37].
Alisertib is a drug that inhibits aurora A kinase (AAK),
a serine/threonine kinase required for cell division. The
ORR for this drug alone is 27% in patients with relapsed
refractory aggressive B cell and T cell NHL and even
higher in patients with PTCL, between 33 and 50% [37].
However, the majority of responses are partial and short-
lasting. It was shown that AAK inhibitors and HDACi
have synergistic activity; HDACi create a pro-apoptotic
environment and sensitize cells to AAK inhibitors. How-
ever, in a study in which romidepsin and alisertib were
used together in patients with relapsed/refractory aggres-
sive B cell and T cell lymphoma, the ORR was only 28%.

In a phase-I study, duvelisib in combination with
romidepsin or bortezomib was used to determine the
maximum tolerated dose in relapsed/refractory TCL
patients (NCT02783625) [38]. Duvelisib (IPI-145) is an
oral inhibitor of PI3K-8 and PI3K-y. Phosphoinositide-
3-kinases (PI3K) are involved in cell signaling and regu-
late multiple cellular functions, while PI3K-6 and PI3K-y
isoforms are crucial for T cell functioning. Inhibition
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of PI3K is a therapeutic strategy for PTCL and CTCL.
The ORR response of duvelisib is 47% in PTCL patients,
while in combination with romidepsin it was only slightly
higher (50%), but well tolerated. Patients with CTCL and
PTCL were also enrolled in a clinical trial to assess the
combination of romidepsin with lenalidomide. Lenalido-
mide is an immunomodulatory agent that has antiprolif-
erative and antineoplastic activity in malignant cells [38].
The ORR in PCTL patients treated with lenalidomide was
22-26%, while when romidepsin was used, the ORR was
50% [39]. A phase-II study in untreated PTCL with lena-
lidomide and romidepsin is ongoing (NCT02232516).
Carfilzomib, a proteasome inhibitor used in combination
with the previous two, did not increase the ORR in PCTL
patients.

Multiple HDACi are also being incorporated into
hematopoietic cell transplantation (HCT) approaches, in
both the frontline and maintenance settings in patients
with PTCLs [40]. In a recent phase-II multicenter trial,
the efficacy of romidepsin was evaluated as a mainte-
nance therapy after auto-HCT for patients with PTCL.
Two patient cohorts were included: patients transplanted
in CR1/PR1 (n=25) and patients transplanted in CR2/
PR2 or later (n=7) [41]. In the first group, the estimated
2-year progression-free survival (PFS) was 49%; among
this group angioimmunoblastic T cell lymphoma (AITL)
patients were highly represented, with a 2-year PES of
44%. In the second group, estimated 2-year PES was 47%.
However, PFS improvement with romidepsin mainte-
nance was considered to be not significant, as PFS after
AHCT itself is 36—45%.

The synergistic interaction between romidepsin and
liposomal doxorubicin (LD) in both CTCL cell lines and
primary CTCL cells was detected, and it was confirmed
in the phase-I study in relapsed/refractory CTCL and
PTCL [42]. This combination provided an ORR of 70% in
MEF and SS patients, which is a significant improvement,
and only 27% in PTCL patients.

Chidamide is now being extensively tested in a pre-
clinical and in clinical trials in combination with other
drugs. Studies showed that chidamide treatment with
low-dose doxorubicin exhibited a synergism effect on cell
growth and apoptosis in two PTCL cell lines [43]. In a
clinical trial in which chidamide and chemotherapy were
used in patients with refractory or relapsed T cell acute
lymphoblastic lymphoma/leukemia (T-LBL/ALL), the
sensitivity of T-LBL/ALL cell to chemotherapy drugs was
improved and the complete response and ORR increased
[44]. A large, multicenter study was performed in China
on chidamide in relapsed or refractory peripheral T cell
lymphoma. In total, 383 patients were enrolled; ORR for
chidamide used as a monotherapy was 39%, while when
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chidamide was used with chemotherapy, the ORR was
51% [24].

HDACi—future perspective

Treatment with HDACI is promising, yet there are still
several challenges. One of them is the improvement of
drug delivery. The efficient oral delivery of hydrophobic
molecules to target tissues is limited [45]. HDACi like
vorinostat have poor solubility and permeability and, as
a result, have low bioavailability. A recent study by Meka
et al. (2018) [45] investigated the effect of the encapsu-
lation of vorinostat within functionalized mesoporous
silica nanoparticles (MSNs) on its solubility, permeability,
and anti-cancer activity. All parameters were enhanced
2.6-fold and fourfold, respectively, and increased HDAC
inhibition, apoptosis induction and altered gene expres-
sion in cancer cell lines were observed. To improve the
selectivity of Vorinostat to cancer cells, Bhadat et al
(2018) generated a novel SAHA prodrug (SAHA-OBP)
that is activated in the presence of hydrogen perox-
ide, a reactive oxygen species (ROS) known to be over-
expressed in cancer cells [46]. The analysis showed that
the SAHA-OBP prodrug is activated inside cancer cells
due to the high intracellular ROS levels. The reaction
between SAHA-OBP and H,0O, produces active SAHA,
which leads to the inactivation of cytosolic HDACS6, the
hyperacetylation of tubulin, and, in the end, apoptosis. In
another study, a synthesized SAHA-based prodrug poly-
mer was designed, denoted as POEG-b-PSAHA. These
amphiphilic polymers were shown to self-assemble into
prodrug micelles and serve as nanocarriers for doxoru-
bicin delivery [47] and increased cytotoxicity of those
drugs toward tumor cells.

Another huge challenge is the resistance of cancer cells
to HDACI. The mechanisms behind that resistance are
still poorly known. Recently, Andrews et al. [48] showed
differences in the acetylation levels of gene regulatory
elements between HDACi-sensitive and HDACi-resist-
ant CTCL patients. These changes were linked to the
different expression of genes involved in the cell cycle,
apoptosis, cytokine/chemokine signaling, and cell adhe-
sion/migration pathways. In HDACi-resistant samples,
increased acetylation was particularly significant near
potential MF/SS oncogenes CCR6, CXCR4, and LAIR2
[48]. The last one was suggested to be used as an HDACi-
resistant marker. What’s interesting, single-cell analysis
showed that it is possible to distinguish subpopulations
of SS cells that are resistant to HDAC] treatment and lead
to a relapse of the disease [49]. This knowledge could be
useful in planning the treatment based on multiple agents
targeting different populations of malignant cells. The
search for more effective treatments is ongoing. Recently,
bromodomain and extra-terminal motif inhibitors (BETi)
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are being tested in the therapy of CTCL [50, 51]. BET
proteins are other epigenetic modulators, so-called read-
ers, and BET inhibitors prevent interaction between BET
proteins and acetylated histones and transcription fac-
tors. The preclinical findings on CTCL cell lines showed
that epigenetic modulation with a combination of BETi
and HDACIi could be a beneficial therapy for CTCL.
Those two drugs were shown to promote cell apoptosis
and inhibit cell proliferation. Another drug that could
be used in combination with HDACI is a BCI2 inhibitor,
Venetoclax [52]. A subset of CTCL patients showed high
sensitivity to Venetoclax; also, a synergistic effect was
observed when venetoclax was combined with romidep-
sin and vorinostat. A synergistic effect in the induction
of SS tumor cells was also detected between Vorinostat
and the anticancer antibiotic Mithramycin (Plicamycin,
MTR, marketed as Mithracin®), a direct inhibitor of the
binding of Sp1 family factors to GC-rich promoters [53].

Antibody-based therapies

Antibody-based therapies became one of the most
important areas of treatment strategies for TCL. An
unquestionable advantage of using monoclonal anti-
bodies (mAb) compared to other strategies is their high
specificity and, therefore, limited adverse effects. To date,
two FDA and EMA mAb-based medicines are approved
for TCL treatment; however, a number of antibody-based
drugs are undergoing clinical trials, with strategies focus-
ing on mAb not only alone but also in combination with
other drugs in order to increase clinical efficacy.

FDA-approved antibody-based drugs

Brentuximab vedotin—anti-CD30 antibody-drug
conjugate

CD30 (tumor necrosis factor receptor superfamily, mem-
ber 8; TNFRSE8) is a transmembrane protein belonging
to the tumor necrosis factor receptor (TNFR) superfam-
ily. CD30 normal expression is restricted to a small sub-
population of activated B, T, and natural killer (NK) cells;
however, it can be induced by a viral infection. Indeed,
CD30 expression was reported on lymphocytes infected
by such viruses as human immunodeficiency virus (HIV),
human T-lymphotropic virus-1 (HTLV-1), or Epstein—
Barr virus (EBV). The exact function of CD30 in human
physiology has not yet been discovered; however, it was
shown that depending on the context and target cells,
CD30 expression may either suppress replication and
lead to apoptosis or promote cell proliferation and sur-
vival [54]. In addition, CD30 can regulate peripheral
T-lymphocyte immune responses by controlling T cell
survival and downregulating cytolytic capacity as well as
controlling T-helper 1 and 2 (Th1l and Th2) responses in
autoimmune and inflammatory conditions by interaction
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with its ligand (CD30L) [55-57]. CD30 was also reported
to stimulate T cells to produce such cytokines as IL-2,
TNE, and IFN-y [58]. CD30 expression is present on the
tumor cells of most classical Hodgkin lymphomas as
well as anaplastic large cell lymphoma (ALCL) and lym-
phomatoid papulomatosis (LyP). Numerous reports also
identified variable CD30 expression in other lymphopro-
liferative disorders, such as PTCL, MF, SS, ATCLL or
ENKTL [59-65]. Due to the limited CD30 expression on
normal cells and the relative overexpression in certain
tumor types, CD30 represents an important target for
the immunotherapy of hematological malignancies.

Brentuximab vedotin is an antibody—drug conjugate
(ADC) combining CD30 mAb with the microtubule
inhibitor monomethylauristatin E. After ligation of ADC
with CD30 on the surface of cancer cells, monomethy-
lauristatin E binds to tubulin and disrupts the microtu-
bule network in the cell, resulting in cell cycle arrest and
apoptosis [66, 67]. Brentuximab vedotin has three main
advantages. It can distinguish between normal and malig-
nant cells and, therefore, has less toxicity in vivo. What’s
more, due to monomethylauristatin E conjugation to the
mADb, it remains relatively stable in the circulation, result-
ing in higher cytotoxicity. Finally, monomethylauristatin
E released to the tumor microenvironment can kill sur-
rounding non-targeted CD30 + malignant cells as well as
non-malignant cells that may have protumor effects [68].
Brentuximab vedotin has so far been approved for the
treatment of CD30 -+ lymphoproliferative disorders such
as classical Hodgkin lymphoma, systemic and primary
cutaneous ALCL, MF, AITL and PTCL =NOS.

Recently, phase-3 trial ECHELON-2 (NCT01777152)
concerning the use of brentuximab vedotin in previously
untreated CD30+ patients with PTCL has been initi-
ated [69]. ECHELON-2 trial was conducted to compare
the efficacy and safety of the chemotherapy regimen of
CHOP (cyclophosphamide, doxorubicin, vincristine and
prednisone) versus a combination of CHOP together
with brentuximab vedotin (A+ CHP). The results
showed that the addition of brentuximab vedotin to CHP
resulted in higher rates of PFS and overall survival (OS)
of patients with median PFS of 48.2 months in compari-
son with 20.8 months in the CHOP group (p=0.011).
What’s more, the addition of brentuximab vedotin
did not change the incidence and severity of adverse
events such as febrile neutropenia (18% of patients in
the A+ CHP group and 15% in the CHOP group) and
peripheral neuropathy (52% in the A+ CHP group and
55% in the CHOP group). Therefore, ECHELON-2 trial
results are considered to be potentially practice-changing
and indicate the potential use of A+ CHP treatment in
CD30+ PTCL patients.
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Mogamulizumab—anti-CCR4 ab

C-C motif chemokine receptor 4 (CCR4) is a seven-
transmembrane G-protein-coupled receptor expressed
on Tregs, type 2 helper T cells (Th2), memory T cells
and cutaneous lymphocyte antigen-positive skin-homing
T cells [70]. CCR4 expression present on Th2 and Tregs
induces homing of these leukocytes to sites of inflam-
mation. Tregs play a crucial role in maintaining immune
balance; however, in malignancies, Tregs attenuate the
host’s anti-tumor immunity and provide a favorable envi-
ronment for tumor growth [71]. Elevated CCR4 expres-
sion was also reported in patients with aggressive PTCL,
especially in ATLL or CTCL; therefore, CCR4 seems to
be a promising therapeutic target for T cell malignancies
[72].

Mogamulizumab-kpkc is a mAb directed against the
CCR4 receptor, which increases antibody-dependent cel-
lular cytotoxicity (ADCC) in CCR4+ malignant T cells.
In addition to directly targeting malignant T cells, moga-
mulizumab depletes CCR4 + Tregs, which is an impor-
tant therapeutic target in many human malignancies due
to their role in suppressing the host anti-tumor immunity
[73]. In 2018, the FDA-approved mogamulizumab-kpkc
was approved in 2018 by FDA for the treatment of refrac-
tory MF and SS after at least one prior systemic therapy.

mADb in clinical trials

Anti-KIR3DL2 (CD158k) ab-IPH4102

KIR3DL2, also known as CD158k, belongs to the fam-
ily of killer cell immunoglobulin-like receptors (KIRs)
normally detected on a minor NK cell subset and on
rare CD3+CD8+T cells. Although it was shown that
KIR3DL2 ligation on NK cells inhibits their produc-
tion of IFN-y and cytotoxic function, KIR3DL2 function
on T cells is less clear [74]. To date, numerous studies
have identified elevated KIR2DL2 expression in trans-
formed MF, pcALCL and SS [75-78]. In Sézary patients,
KIR3DL2 was shown to act as an inhibitory co-receptor
that promotes resistance to activation-induced cell death
by its ability to down-modulate CD3-dependent early
signaling events [79]. In addition, as the percentage of
KIR3DL2 + peripheral mononuclear cells strongly corre-
lates with the percentage of atypical circulating SS cells,
KIR3DL2 is considered to be a diagnostic and prognostic
marker for this disease [80]. Due to the limited expres-
sion of KIR3DL2 on normal immune cells and its high
expression on malignant T cells, novel anti-KIR3DL2
therapeutic strategies have been proposed.

IPH4102 is an anti-KIR3DL2 mAb that was shown to
deplete KIR3DL2+cells through antibody-dependent
phagocytosis and cell cytotoxicity [81]. The anti-tumor
activity of IPH4102 was firstly shown in mouse xeno-
graft models and further confirmed in an ex vivo model
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using the primary cells of SS patients, where it reduced
tumor growth and improved cell survival. Those encour-
aging preliminary data resulted in a phase-I study in
patients with relapsed or refractory CTCL, especially
those with SS (NCT02593045) [82]. IPH4102 was asso-
ciated with a favorable safety profile, high frequency of
sustained global response and improvement of life qual-
ity, with peripheral edema and fatigue as the most com-
mon adverse effects. Overall response was achieved in 16
of 44 patients (36-4%), and of those, 15 were observed in
35 patients with SS (43%). Currently, phase II of IPH4102
is ongoing to confirm IPH4102 activity alone or in com-
bination with chemotherapy in SS patients and other
TCL subtypes that express KIR3DL2 (TELLOMAK,
NCT03902184).

Anti-CD38 ab-daratumumab
CD38 is a type-II multifunctional transmembrane glyco-
protein, with both ectoenzymatic and receptor functions,
that can be found on the surface of terminally differen-
tiated plasma cells, as well as T cells, NK cells and on
myeloid cells at different stages of development [83, 84].
Its expression was reported in NK/T cell lymphomas
and recently in AITL and PTCL-NOS [85, 86]. Because
of its function in the regulation and immunomodulation
of metabolic pathways and also abnormal expression in
hematologic malignancies that correlate with cell pro-
liferation and disease progression, CD38 seems to be an
attractive target for antibody-based therapies [83].
Daratumumab is the first-class mAb to target
CD38 + myeloid-derived  suppressor cells (MDSC)
and regulatory T cells currently approved as a therapy
for MM [87, 88]. Daratumumab targets CD38 causing
tumor cell death through such mechanisms as antibody-
dependent cellular phagocytosis (ADCP) or antibody-
dependent cell-mediated cytotoxicity (ADCC) [89,
90]. After the promising outcome of the phase-II study
(NCT02927925) involving daratumumab treatment in
relapsed or refractory natural killer/T cell lymphomas
with overall response rate (ORR: 25%, 8/32 patients), a
new trial is currently ongoing [91]. A phase-II study is
now underway to evaluate the efficacy of daratumumab
in combination with gemcitabine, cisplatin and dexa-
methasone in patients with PTCL-NOS, AITL and other
nodal lymphomas of T follicular helper cells (TFH cells)
origin. In this study, refractory/relapsed patients were
included, after at least one, but no more than two previ-
ous therapeutic approaches (NCT04251065).

Anti-CD25 (IL-2Ra) ab—Dbasiliximab and camidanlumab

CD25 is an alpha subunit of interleukin-2 receptor (IL-
2R) expressed mainly on the surface of the mature T cell
membrane, triple-negative thymocytes, B cells and bone
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marrow pre-B cells [92]. In normal conditions, CD25 can
induce the affinity of IL-2R and IL-2 as well as induce
CD4+ CD25 + Treg proliferation and differentiation [93].
High level of CD25 was reported in many hematologi-
cal malignancies, including AITL and ALCL [94]. It was
shown that upregulated CD25 expression in T cells pro-
motes lymphomagenesis and drug resistance. Further-
more, an elevated serum level of soluble IL-2 receptor o
(IL-2Ra) in NKTCL patients was significantly correlated
with response to treatment and survival rate [92, 95]. It is
also hypothesized that CD25 can be present on leukemic
stem cells and induce oncogenic signaling pathways [92].

Basiliximab is a chimeric mAb that binds the a chain
of CD25, leading to the competitive inhibition of T cell
proliferation and, as a consequence, the inhibition of T
cell activation [96]. After a successful phase-I clinical trial
using "*'Todine-labeled basiliximab that showed complete
or partial responses in patients with CD25 + lymphomas,
follow-up trials are currently underway [97]. Yttrium Y 90
basiliximab together with standard combination chemo-
therapy (carmustine, cytarabine, etoposide, and melpha-
lan (BEAM)) is currently being evaluated in a phase-I
study in patients with mature TCL (NCT02342782). Due
to the previous results indicating that an elevated level of
CD25 correlates with chemotherapy resistance and that
CD25-mediated resistance can be reversed by targeting
CD25, in the phase-II study, a combination of chemo-
therapeutic pegaspargase and basiliximab is being inves-
tigated in the treatment of relapsed or refractory NK and
T cell lymphomas (NCT04337593).

Another antibody-drug conjugate targeting CD25
currently under evaluation is camidanlumab tesirine
(ADCT-301). This antibody is conjugated to cytotoxic
pyrrolobenzodiazepine (PBD) dimer, which causes cell
death upon cross-linking specific sites of the DNA and
blocking DNA replication [98]. Recently, a phase-I trial
examining the safety, tolerability and pharmacokinet-
ics of ADCT-301 in patients with relapsed or refractory
HL and NHL patients ended (NCT02432235) with the
phase-II study is still ongoing (NCT04052997).

Anti-CD47 ab—TTI-621 (SIRPaFc)

CD47 (also known as the integrin-associated protein
IAP) is a transmembrane protein that belongs to the
immunoglobulin superfamily. CD47 binds to several dif-
ferent proteins, but especially to signal regulatory protein
alpha (SIRPa). CD47-SIRPa interactions are involved in
many cellular processes, including proliferation, apopto-
sis and immune response as well as the inhibition of mac-
rophage phagocytosis, thereby allowing cancer cells to
escape immune surveillance [99, 100]. Overexpression of
CD47 was reported in many hematologic malignancies,
including CTCL, where it seems to be correlated with
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a more aggressive course and a worse clinical outcome
[101, 102]. Therapies inhibiting CD47-SIRP« interaction
are expected to work in two ways: firstly, by activation
of adaptive immunity, resulting in cytotoxic anti-tumor
responses, and secondly, by activation of innate immu-
nity, therefore promoting cancer cells destruction by
macrophages [103].

TTI-621 (SIRPa-IgG1 Fc) is a novel immune check-
point inhibitor that blocks CD47 and prevents it from
delivering an inhibitory signal to macrophages, therefore
allowing them to phagocytose malignant cells [102]. The
phase-I trial of TTI-621 treatment provided a promising
outcome for further studies. Out of nine patients with
MEF or SS, one achieved CR and five additional patients
experienced decreases in tumor size and/or a decreased
number of circulating Sézary cells (NCT02890368) [104].
Currently, another phase-I trial of TTI-621 alone or in
combination with other anti-cancer drugs (rituximab or
nivolumab), in subjects with relapsed or refractory hema-
tologic malignancies and selected solid tumors, is ongo-
ing (NCT02663518).

In addition, another anti-CD47 mAb drug phase-I
study is being conducted to evaluate the safety, toler-
ability, and initial efficacy of IBI188 injection in patients
with advanced malignant tumors and lymphomas
(NCT03763149).

Anti-ICOS (CD278) ab—MEDI-570

Inducible T cell co-stimulator (ICOS, cluster of differen-
tiation (CD278)) is a co-stimulatory molecule minimally
expressed on naive T cells and increasingly expressed
on both activated CD4+ T cells and follicular helper T
cells. It is suspected that ICOS may play an important
role in the production of IL-2, IL-4, IL-5, and IFNy from
recently activated T cells as well as contribute to T cell-
dependent B help in vivo [105]. While in healthy humans,
expression of ICOS can be detected in 5-20% of circulat-
ing peripheral blood CD4+T cells, studies showed that
ICOS expression increases in patients with autoimmune
diseases and is connected to increased pro-inflammatory
cytokines expression [106, 107]. In addition, high ICOS
expression on Tregs-infiltrating tumors is supposed to be
associated with a poor prognosis [108].

MEDI-570 is an IgG1k mAb that attaches to the ligand-
binding domain of ICOS expressed on tumor-infiltrat-
ing CD4+T cells, therefore preventing the interaction
between ICOS+T cells and plasmacytoid dendritic cells
(pDCs). This interaction leads to Treg-mediated immune
suppression inhibition and the enhancement of the cyto-
toxic T-lymphocyte (CTL)-mediated immune anti-tumor
response [109].

MEDI-570 was initially designed as a therapy for
autoimmune diseases. However, a currently ongoing
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phase-I study will evaluate the side effects and best dose
of MEDI-570 in patients with PTCL follicular variant or
AITL that relapsed or did not respond to previous treat-
ment (NCT02520791).

Anti-CD52 ab—alemtuzumab

CD52, also known as CAMPATH-1 antigen, is a small
glycoprotein expressed on the surface of mature lympho-
cytes, monocytes, and dendritic cells. The exact function
of CD52 remains to be elucidated; however, it was shown
that CD52 signal transduction leads to lymphocyte pro-
liferation and production of TNF-a, IFNy, and IL-6 [110].
In addition, studies demonstrated that CD52 can act as
a co-stimulatory molecule inducing regulatory CD4+T
cells [111].

Alemtuzumab is a humanized anti-CD52 mAb that
depletes T and B lymphocytes through mechanisms such
as induction of apoptosis, antibody-dependent cellular
cytotoxicity (ADCC), and complement-dependent cyto-
toxicity (CDC) of cells [112-117]. For now, alemtuzumab
has been approved for the treatment of B cell chronic
lymphocytic leukemia and relapsing forms of multiple
sclerosis (MS). Alemtuzumab was previously proposed as
a treatment for heavily pretreated and refractory PTCL,
where, although achieving a promising overall response
rate (36%), the treatment was associated with significant
hematologic toxicity and infectious complications [118].
Alemtuzumab also showed promising clinical outcome
and an acceptable safety profile in patients with advanced
MF and SS; however, therapy was also associated with
such adverse effects as cytomegalovirus (CMV) reac-
tivation, fatal mycobacterium pneumonia, or cardiac
toxicity [119, 120]. Trials were also conducted to study
the effect of the combination of alemtuzumab and the
chemotherapeutic regimen CHOP (cyclophosphamide,
doxorubicin, vincristine, and prednisone) combination
in order to improve the outcome of the treatment in
PTCL and aggressive T and NK cell lymphomas; how-
ever, the addition of alemtuzumab increased the risk of
infection and the toxicity of the treatment [121-123].
Attempts to improve alemtuzumab treatment outcomes
are currently underway. A phase-II trial is now ongoing
to determine the toxicity of alemtuzumab (Campath-
1H) in combination with etoposide, prednisone, vin-
cristine, cyclophosphamide, and doxorubicin (EPOCH)
chemotherapy in non-Hodgkin’s T and NK cell lympho-
mas (NCT00069238). The follow-up phase-I trial is now
investigating the safety, toxicity profile, and maximum
tolerated dose of recombinant human interleukin 15
(IL-15) in combination with standard IV alemtuzumab
treatment in relapsed chronic and acute ATLL patients
(NCT02689453).
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Bispecific antibody targeting both CD30 and CD16A—
AFM13
CD16A, a low-affinity receptor for the IgG Fc domain,
belongs to the group of transmembrane proteins
expressed on NK cells, macrophages, and mast cells.
Upon ligation, CD16A is responsible for inducing the
lysis of target cells by NK cells and ADCC [124, 125].
AFM13 is a bispecific, tetravalent chimeric antibody
construct that specifically binds to CD30, found on
the cancerous cells and CD16A on NK cells and mac-
rophages. AFM13 induces NK cell-mediated and T cell-
mediated cytotoxicity and, as a consequence, tumor cell
lysis [126]. AFM13 was first examined in a phase-I study
of patients with relapsed or refractory Hodgkin lym-
phoma and demonstrated promising clinical and pharma-
codynamic activity (NCT01221571). The treatment with
AFM13 was well tolerated, with fever and chills being
the most frequent adverse effects. Out of 26 patients
included in the study, 11.5% achieved partial remis-
sion and 50% achieved stable disease [126]. Recently, a
phase-Ib/IIa trial was completed evaluating the biologic
activity of AFM13 in patients with relapsed or refractory
CD30+CTCL patients (NCT03192202). Preliminary
results of the first three dose cohorts demonstrated that
AFM13 showed promising therapeutic activity as a single
agent, with an objective response rate (ORR) of 50% (4/8
patients). Currently, there are two ongoing clinical trials.
The first one, a phase-I study, is now examining the side
effects and the best dose of AFM13 as monotherapy or
modified umbilical cord NK cells combined with AFM13
in patients with CD30+recurrent/ refractory Hodgkin
lymphoma or non-Hodgkin treatment (NCT04074746).
The second one is a phase-II trial to evaluate the anti-
tumor activity and safety of AFM13 in patients with
CD30+PTCL or tMF (NCT04101331).

Anti-CADM1 ab

Cell adhesion molecule 1 (CADM1/TSLC1) is normally
involved in cell adhesion, proliferation, and differentia-
tion [127]. CADM1 is a well-known tumor-suppressor
gene in human malignancies such as liver, prostate, or
pancreatic cancer [128]. However, studies showed that
in the case of ATL patients, CADM1 overexpression
is involved in the attachment of ATL cells to vascular
endothelial cells and therefore plays a role in oncogen-
esis [129]. CADM1 expression was also associated with
tumor growth and organ infiltration of ATL cells [130].
Therefore, is seems that CAMD1 function in malig-
nancies depends on the origin of the cell in which it is
expressed. CADM1 was reported as being a diagnostic
marker for ATL; however, a recent study suggests that
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it can also be useful for differentiating between MF and
inflammatory skin disorders [131, 132].

A recent study investigated the potential of anti-
CADM1 antibodies in ATLL in a mouse xenograft model.
Out of all examined antibodies, one clone, 103—-189,
showed weak but significant antibody-dependent cellular
cytotoxic activity and effectively inhibited the interaction
between endothelial cells and CADM1-positive ATLL
cells. In addition, treatment with the 103-189 clone
remarkably suppressed the organ invasion of mouse T
cell lymphoma CADM1-positive cells in a mouse xeno-
graft model, resulting in an improved survival rate of
mice [133]. Results from this preliminary study suggest
that further studies should be implemented to investigate
the efficacy of a combination of anti-CADM1 antibodies
and chemotherapy drugs in the treatment of ATLL.

Chimeric antigen receptor T cells (carts)
immunotherapy

CAR molecules are created by combining the variable
regions (Fv) of an antibody with the constant regions of
the T cell receptor (TCR) chains. These molecules may
be grafted into immune cells to create a tumor-specific
treatment. The process of creating such a biologic drug
requires choosing the proper target antigen, obtaining
the cells from patients or cell line, transduction, culture
expansion and infusing a sufficient number of effective
and cancer-specific CAR-T cells (CARTs) or CAR-NK
cells (CARNKSs). The therapeutic mechanism is based
on two natural functions of TCRs: antigen-binding and
T cell activating [134, 135]. Cellular engineering and
culturing of autologous patient T lymphocytes for their
infusion have brought about a durable clinical response
in cancers that had been treatment refractory by this
time [136]. The use of modified immune cells encoun-
ters some natural obstacles, resulting from pathways
that cancer cells use to avoid an immune response. They
include inhibition of immune checkpoints (e.g., produc-
tion of programmed cell death ligand 1 (PD-L1), changes
in Gl-regulating protein expression and changes in the
metabolic environment through the secretion of suppres-
sor factors like interleukin-10 (IL-10) and recruiting reg-
ulatory T cells). There are some strategies to revert the
exhaustion of CAR-Ts, like replacement, reprogramming,
and restoration of senescent cells [137].

Another issue encountered is the management of
CARTs toxicities, of which the most serious are cytokine
release syndrome (CRS) and neurologic toxicity, though
the end-organ and hematologic toxicities are in most
cases reversible [138]. CART therapy has proven to be
effective in the treatment of B cell malignancies; there-
fore, a similar approach for treating T cell lymphomas
seems to be natural next step. Finding a proper target
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antigen is challenging as most of them are the same for
malignant and normal cells. Other important problems
are fratricide and purity of harvested autologous T lym-
phocytes, as both malignancy and CART product recruit
from the same cell population [139].

CARTSs in preclinical and clinical trials

Anti-CD7 CARTs

CD?7 expression is limited to T cells and starts appear-
ing in the early state of lymphocyte differentiation, which
makes it a great target for the treatment of T cell malig-
nancies. It is highly expressed not only on the T-ALL
blasts and about 30% of AML blasts but also in most
normal T cells. CD7 CART are targeted by themselves
as they also express CD7 antigens. This antigen may be
removed from T cells without jeopardizing its immuno-
competence. Png et al. applied a new approach to this
problem by using a protein expression blocker (PEBL)
based on an anti-CD7 single-chain variable fragment
coupled with an intracellular retention domain. This was
found to be an easy and effective way to obtain virtually
instant abrogation of CD7 expression and to avert the
fratricide effect. Cell lines and patient-derived xenograft
(PDX) models have provided data confirming robust and
specific cytotoxicity against investigated T cell malignan-
cies, including ETP-ALL which is one of the most aggres-
sive types. The authors suggest minimizing MRD before
allogeneic hematopoietic stem cell transplantation, as the
use of anti-CD7 cells, leads to the depletion of normal
T lymphocytes and immunodeficiency [140]. Another
way to manage the issue of sharing CD7 between CARTs
and malignant cells was proposed by Cooper et al. They
deleted CD7 along with the T cell receptor alpha chain
(TRAC) using CRISPR/Cas9 and generated CARTs tar-
geting CD7 (UCART7). Removal of TRAC blocks TCR-
mediated signaling, permitting the safe use of allogeneic
T cells and allowing for the creation of an “off-the-shelf”
product with no risk of contamination of autologous T
lymphocytes with malignant cells. The cells obtained effi-
ciently killed human T-ALL cell lines and patient-derived
primary T-ALL in vitro and in vivo in the murine model,
without resulting in xenogeneic GVHD [141]. Obtaining
an adequate number of autologous T cells without malig-
nant cell contamination is technically difficult. There-
fore, You et al. have investigated the possibility of using
the NK-92MI cell line to modify its TCR against the CD7
antigen. Cell lines and a mouse model were used in those
experiments. The use of CAR-NK cells in the animal
model has shown no significant toxicity, but a reduction
in tumor burden and tumor growth was followed by sig-
nificant survival prolongation. Compared with CAR-T
cells, CAR-NK cells demonstrate three main advantages:
direct killing of cancer cells by toxic granules, smaller
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cytokine release which brings a lower risk of CRS, and,
last but not least, the possibility of “off-the-shelf” product
development [135].

Anti-CD4 CARTs

Because CD4 is expressed on helper T lymphocytes and
CD4-positive malignancies, a preclinical study on NSG
mice with T-ALL tumors was conducted to investigate
the possibility of using CARTs directed against this anti-
gen [142]. The study showed a longer survival time and
about 80% more effective tumor reduction in comparison
with naive T cells treatment. Alemtuzumab was used and
proved to be efficient as a safety mechanism to eliminate
CARTs after treatment. Following these results, clini-
cal studies were planned. Currently, 3 recruiting clinical
phase-1 studies are investigating the clinical response,
safety, and pharmacokinetics of using CD4-specific
CARTs: in patients with CD4+ T cell leukemias/lympho-
mas (NCT04162340, NCT04219319, NCT03829540).
Because CARTs express CD4 themselves, similar to
targeting CD7, NK-92 cells were tested in vitro and
in vivo in a mouse model to kill CD4-positive malig-
nant cells [143]. In vitro PTCL cell lines derived from
both adult and pediatric primary cells were sensitive to
CD4-CARNK treatment. A xenograft mouse model also
showed that anti-CD4 CAR-NK cells were more effective
compared with vector control NK-92.

Anti-CD5 CARTs

CD5 is a negative TCR regulator present not only on nor-
mal T lymphocytes and thymocytes but also on T-ALL
and many PTCL subtype cells. Raikar et al. have tested
NK-cell and CD5-depleted Jurkat T cell lines as CAR car-
riers in the treatment of T cell malignancies in vitro and
in a xenograft T cell leukemia mice model [144]. Both
strategies were found to be effective. The lack of signifi-
cant immunosuppression and the in vitro/in vivo efficacy
of anti-CD5 CARTs/CARNKs open the gate to investi-
gating further possibilities regarding the adoption of cell
therapy utilizing this antigen for T cell leukemias and
lymphomas. A phase-I clinical trial took this approach to
10 patients with T cell malignancies expressing CD5 on
at least 50% of malignant cells. Nine patients were eval-
uated; a response was noted in 4 and CRS in 3 of them
[145].

Anti-CD30 CARTs

CD30 is a transmembrane receptor and a member of the
tumor necrosis factor (TNF) receptor superfamily. It is
expressed on a small subset of activated normal (non-
malignant) lymphocytes and is a common surface mol-
ecule for ALCL. It is also expressed in a subset of MF,
PTCL, and ATLL [54]. However, the risk of premature
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elimination of T or B cells during virus responses was
taken into consideration, though in an ex vivo study, the
anti-CD30 CAR-T cells did not impair cellular immune
responses [146, 147]. This suggests that the expression
of the CD30 molecule on the memory T cells is not suf-
ficient for being recognized and killed by anti-CD30
CARTs [148].

CD30 expression on hematopoietic stem and progeni-
tor cells (HSPCs) during activation may lead to disorders
of hematopoiesis including bone marrow aplasia. How-
ever, HSPCs compared to CTCL cells show resistance
against CAR-Ts-driven lysis and when co-cultured with
anti-CD30 CAR-Ts formed almost normal myeloid col-
ony formation [149, 150]. Moreover, in humanized mice
during HSPCs reconstitution autologous CD30-directed
CAR-T cells do not impair human peripheral T and B
cells, which allows us to presume low bone marrow tox-
icity of anti-CD30 CAR-Ts [150].

The presence of increased levels of soluble CD30 in the
plasma of patients with HL. and ALCL could raise con-
cerns about competitive CAR binding; however, in vitro
studies demonstrated that it did not negatively impact
the activity of anti-CD30 CAR-Ts [146, 150].

Anti-TCR

Targeting TCR itself seems to also be a promising
approach. Beta-chain regions are coded by two differ-
ent genes, TRBC1 and TRBC2. In healthy adults, T
cells express one of the two in about equal numbers but
malignancy develops from only one type [149]. In this
situation, targeting one of them would keep the other
population intact, thereby ensuring the proper immu-
nity of patients and preventing the fratricide of CARTs.
TRBC1- or TRBC2-targeting CARTs are in preclinical
studies [151] and in phase-1/Il ongoing clinical trials in
patients with relapsed or refractory TRBC1 positive TCL
(AUTO4) (NCT03590574).

Other approaches

Immunotoxins

Immunotoxins are hybrid molecules containing a bio-
logic toxin chemically conjugated to monoclonal anti-
body, cytokine, or growth factor that binds specifically
to target cells [152]. Immunotoxins are predicted to be
more efficient than mAb in target tissues such as bone
marrow and skin, where mAb have poor therapeutic
functions due to a lack of accessory cells from the innate
immune system to initiate antibody-dependent cellular
phagocytosis, antibody-dependent cellular cytotoxicity,
or complement-dependent cytotoxicity [153]. To date,
the FDA has approved only one immunotoxin for the
treatment of T cell hematologic malignancy. With overall
response rates between 30 and 50%, denileukin diftitox
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(anti-CD25; Ontak®) was approved in 1999 for the treat-
ment of persistent or relapsed CD25-positive CTCL [154,
155]. The drug was used until 2014, when, due to produc-
tion issues related to E. coli expression and purification,
its marketing was discontinued. Denileukin diftitox was
composed of two components: a full-length sequence of
IL-2, which could bind to the IL-2 receptor on T cells,
and a modified cytotoxic diphtheria toxin amino acid
chain [156].

Recently, Wang et al. once more investigated the
potential of IL2 fusion toxin. The group compared
the efficacy of IL-2 fusion toxin with developed anti-
human CCR4 immunotoxin (CCR4 IT) and demon-
strated that CCR4 IT showed greater tumor response in
a CD25+ CCR4+ CTCL mouse model than IL-2 fusion
toxin. What'’s more, the group constructed an IL2-CCR4
bispecific IT and showed that it was significantly more
effective than either IL2 fusion toxin or CCR4 IT alone,
therefore presenting a novel, promising targeted thera-
peutic drug candidate for the treatment of refractory and
relapsed CTCL patients [153].

Currently, E7777, a new version of Ontak® with
improved purity and a high percentage of active mono-
mer is being tested in patients with persistent or recur-
rent CTCL. In a phase-I study carried out in Japanese
patients, E7777 showed an objective response rate of
38%, with preliminary but clinically meaningful antitu-
mor activity observed [157]. The phase-III clinical trial is
now underway (NCT01871727).

miR-155 inhibitor (cobomarsen)
MicroRNAs (miRNAs) are small, 21-22-nucleotide (nt)
noncoding RNAs that function as a posttranscriptional
regulators of protein expression in normal and pathologi-
cal cellular processes [158]. miR-155 plays a role in the
immune response, lymphocyte development, function
and differentiation [159, 160]. In addition, an elevated
level of miR-155 is associated with genomic instability
of malignant cells, sustained cell proliferation and sur-
vival [161]. Increased expression of miR-155 was shown
in many solid tumors and hematological malignancies,
including NKTCL and CTCL [162, 163]. miR-155, a
microRNA associated with poor prognosis in lymphoma
and leukemia, has been implicated in the progression of
MF [153], the most common form of CTCL.
Cobomarsen is a synthetic locked oligonucleo-
tide inhibitor of miR-155 that was shown to inhibit
cell proliferation and induce cell apoptosis in MF and
HTLV-14+CTCL cells [164]. Cobomarsen is currently
being tested in three clinical trials. A phase-I study is
being conducted to establish the safety, tolerability, phar-
macokinetics, and potential efficacy of the tested drug in
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patients with certain lymphomas and leukemias, includ-
ing CTCL (NCT02580552).

An ongoing phase-II trial is focused on comparing the
effects of the efficacy and safety of cobomarsen to vori-
nostat, a drug that has already been approved for the
treatment of CTCL (SOLAR, NCT03713320). Another
phase-II study, which is a follow-up to the SOLAR study,
focuses on patients who have confirmed disease progres-
sion following treatment with vorinostat and will reveal
the tolerability and safety of cobomarsen based on the
potential side effects (PRISM, NCT03837457).

Phosphoinositide 3-kinase 8/y inhibitors(pi3ki)
Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase
involved in intracellular signal transduction. Four cata-
lytic subunits of PI3K exist in human cells (a, B, §, and
y) [165]. The PI3K-8 and PI3K-y isoforms are preferen-
tially expressed in leukocytes and extensively modulate
both innate and adaptive immune function [166]. Multi-
ple pathways mediated by PI3K-6 and/or PI3K-y contrib-
ute to the survival, proliferation, and differentiation of
malignant hematopoietic cells through tumor cell-auton-
omous effects. At the same time, cancer cells can modu-
late the tumor microenvironment through juxta-, para-,
and endocrine effects on non-malignant stromal and
immune cells that involve PI3K signaling. Recent stud-
ies have suggested that PI3K-y may also suppress anti-
tumor immune responses involving innate and adaptive
effector cells [167]. PI3K-y signaling functions through
C/EBPpP as a key inhibitor of phagocytosis by tumor-
associated macrophages (TAMs). In this state, TAMs
negatively regulate effector T and NK cells by secret-
ing soluble immunosuppressive factors and expressing
membrane-bound immune checkpoint molecules such
as PD ligand 1 (PDL1). Selective inhibition of PI3K-y in
solid tumor models can induce an immunostimulatory
transcriptional program and M1 macrophage phenotype
that restores CD8+T cell activation. Thus, there are at
least 3 different mechanisms through which PI3K-§,y
inhibition could be active against lymphoid malignancies.
The first involves the blocking of mitogenic and survival
signaling within the tumor cell (cell autonomous). The
second involves the blocking of mitogenic and survival
signaling induced by factors within the tumor microen-
vironment, including cytokines, chemokines, and jux-
tacrine interactions. Finally, inhibition of PI3K-§, PI3K-y,
or both together could activate anti-lymphoma immune
responses.

PI3Ki in clinical trials

Duvelisib (IPI-145) is an oral, dual inhibitor of PI3K-8 and
PI3K-y [168]. PI3K-8/y inhibition may directly inhibit
malignant T cell growth, making duvelisib a promising
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candidate for patients with PTCL or CTCL. Inhibition of
either isoform may also contribute to clinical responses
by modulating non-malignant immune cells. These dual
effects were investigated in a TCL cohort from a phase-
1, open-label study of duvelisib in patients with relapsed
or refractory PTCL (n=16) and CTCL (n=19), along
with in vitro and in vivo models of TCL (NCT01476657)
[169]. The overall response rates in patients with PTCL
and CTCL were 50.0% and 31.6%, respectively (P=0.32).
There were 3 complete responses, all among patients
with PTCL. Activity was seen across a wide spectrum of
subtypes. The most frequently observed grade 3 and 4
adverse events were transaminase increases (40% alanine
aminotransferase, 17% aspartate aminotransferase), mac-
ulopapular rash (17%), and neutropenia (17%). In sum-
mary, duvelisib demonstrated promising clinical activity
and an acceptable safety profile in relapsed/refractory
TCL, as well as preclinical evidence of both tumor cell-
autonomous and immune-mediated effects.

Tenalisib (RP6530) is a novel, highly specific, dual
PI3K-8/y inhibitor with nano-molar potency. In the
first phase-I, open-label study to evaluate the safety,
pharmacokinetics, and efficacy of tenalisib in patients
with relapsed/refractory hematologic malignancies, 35
patients were enrolled [170]. No dose-limiting toxicity
was reported at any of the dose levels. The most com-
mon treatment-emergent adverse events irrespective of
causality were asthenia and cough in 15 (43%) patients
and pyrexia in 13 (37%) patients. The most frequently
reported related treatment-emergent adverse events
(TEAE) were diarrhea, nausea, and vomiting. Related
grade 3/4 adverse events were limited to events of hyper-
triglyceridemia, neutropenia, and diarrhea. Of 31 patients
included in the efficacy analysis, a complete response
was seen in 2 (7%) patients and a partial response in 4
(13%) patients, with an overall response rate of 19% and
a disease-control rate of 61%. The median duration of
response was 5.7 months. Responders demonstrated
a marked downregulation of phospho-AKT on C1DS8.
Tenalisib demonstrated acceptable safety up to 1200 mg
twice a day with no dose-limiting toxicities. A consistent
clinical response was seen at doses of 200 mg BID and
above. Pharmacodynamics correlated well with clinical
outcome. Further phase-1/II studies are being undertaken
to evaluate efficacy across different histologies.

In a second study, histologically confirmed patients,
with>1 prior therapy, received tenalisib orally in a
28-day cycle in doses of 200 to 800 mg twice daily in
the escalation phase (n=19) and 800 mg twice daily in
the expansion phase (n=39) [171]. The most frequently
reported TEAE and related TEAE were fatigue (45%)
and transaminase elevations (33%), respectively. The
most frequently reported related grade>3 TEAE was
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transaminase elevation (21%). Two dose-limiting toxici-
ties occurred in the 800 mg fed cohort; hence, an 800 mg
fasting dose was deemed MTD. Tenalisib was absorbed
rapidly with a median half-life of 2.28 h. ORR in 35
evaluable patients was 45.7% (3 CR and 13 PR), and the
median duration of response was 4.9 months. Respond-
ing tumors showed a marked downregulation of CD30,
IL-31, and IL-32a. With acceptable safety and promis-
ing clinical activity, tenalisib can be a potential thera-
peutic option for relapsed/refractory TCL. Currently, a
phase-1/II combination study with romidepsin is ongo-
ing (NCT03770000). The safety and efficacy data sup-
port the development of tenalisib as monotherapy or in
combination with existing or novel targeted therapies in
patients with hematological malignancies. Ongoing data
from studies of tenalisib as monotherapy in indolent
NHL (NCT03711578) and in combination with romidep-
sin in TCLs (NCT03770000) indicate that tenalisib is well
tolerated. With a favorable safety profile and promising
clinical activity, tenalisib holds promise as an emerging
potential therapeutic option for patients with relapsed/
refractory TCL.

Anaplastic lymphoma kinase inhibitors (Alki)
Anaplastic lymphoma kinase (ALK) is a receptor tyros-
ine kinase belonging to the insulin receptor superfamily,
sharing a high degree of homology with leukocyte tyros-
ine kinase (LTK) [172]. As a receptor tyrosine kinase of
insulin receptor (IR) subfamily, anaplastic lymphoma
kinase (ALK), has been validated to play important roles
in various cancers, especially in non—small cell lung can-
cer (NSCLC) and anaplastic large cell lymphoma (ALCL).
The presence of ALK fusion proteins and the constitutive
ALK tyrosine kinase activity represent a therapeutic tar-
get in all malignancies with ALK rearrangement. Further,
considering that ALK is not widely expressed in adult tis-
sue, few toxic effects might be expected from treatment
aimed at blocking ALK function. Currently, the FDA has
approved five small-molecule inhibitors of ALK, includ-
ing crizotinib, ceritinib, alectinib, brigatinib, and lorla-
tinib, against ALK+ ALCL. Novel type-I1/2 and type-II
ALK inhibitors with improved kinase selectivity and an
enhanced capability to combat drug resistance have also
been reported [173—175]. Moreover, the “proteolysis tar-
geting chimera” (PROTAC) technique has been success-
fully applied in developing ALK degraders [176-178],
which opened a new avenue for targeted ALK therapies.

ALKi in clinical trials

Crizotinib

ALCL-inclusive trials and case series of ALCL patients
treated with the first-generation ALK inhibitor crizotinib
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have yielded remarkably positive results, particularly in
the pediatric population [179, 180].

In a study by the Children’s Oncology Group (COG),
21 out of 26 pediatric patients exhibited a complete
response to ALK inhibition using crizotinib as a front-
line monotherapy [181]. Unfortunately, the discontinu-
ation of crizotinib led to abrupt relapse of ALK-Positive
lymphoma patients [182].

Ceritinib

A phase 1b study of ceritinib was conducted in patients
with ALK+ ALCL (NCT01283516). The study showed
that two of three ALK+ ALCL patients treated at a
dose of 750 mg/d achieved CR and 1 PR [183]. The
responses were ongoing for all 3 patients, with dura-
tions of >20 months. Two patients experienced adverse
events that required ceritinib dose reductions. A
recently completed phase Ib study evaluating crizotinib
in ALCL demonstrated an overall response rate of 53%,
with 47% of patients obtaining a complete remission
[184].

Currently, several clinical trials are running on cri-
zotinib, lorlatinib, and ceritinib (NCT03505554,
NCT02419287, and NCTO01979536) with promising
preliminary results. Despite the preliminary successes
reported for ALK kinase inhibition in ALK+ ALCL,
resistance mutations have been reported [185], decreas-
ing the sensitivities of ALCL cells to various ALK inhibi-
tors [186]. Therefore, a cocktail of ALK inhibitors, as
compared to a single inhibitor, may prove to be most
effective if used upfront to preempt selection for resistant
clones that would lead to relapse.

BCL11B inhibition

B cell lymphoma/leukemia 11B gene (BCL1IB)
encodes a Kriippel-like C2H2-type zinc finger tran-
scription factor playing an important role in T cell
development. It has been shown by us and others that
BCL11B is overexpressed in T cell neoplasms [187,
188] and that suppression of BCLIIB using siRNA
leads to massive apoptosis of malignant T cells but
not normal T lymphocytes [189]. The selective Bclllb
dependence of transformed T cells makes it an attrac-
tive target for novel therapeutic strategies directed
against T-ALL and TCLs. Our group is currently run-
ning experiments in an inducible BCL11B knock-out
mouse model spontaneously developing T-ALL to
determine the therapeutic effect of BCLI1B suppres-
sion. However, to date, a specific BCLI1B inhibitor has
not been discovered.
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Antibiotic treatment

Due to the progressive immunodeficiency and skin bar-
rier breakdown, bacterial infections constitute a major
clinical problem in patients with CTCLs. Indeed, poten-
tial infectious involvement in triggering or promoting
CTCLs has long been suspected, with inconsistent results
from many studies [190]. One of the pathogens proposed
to play a role in CTCLs pathogenesis is Staphylococcus
aureus, as its infection was connected to disease severity
[191]. It was hypothesized that staphylococcal enterotox-
ins (SE) provide a persistent antigen stimulus for T lym-
phocytes resulting in the expansion of malignant T cells
[192]. Additionally, it was shown that antibiotic treat-
ment of S.aureus is associated with a clinical improve-
ment in CTCL patients [193].

Recently, Lindahl et al. proposed a new therapeu-
tic strategy for CTCL patients colonized by S.aureus
[194]. A study showed the clinical benefits of short-
term, aggressive antibiotic therapy on disease activity in
8 patients with advanced-stage CTCL. Immunohisto-
chemistry, global messenger RNA expression, and cell-
signaling pathway analysis showed that antibiotic therapy
resulted in decreased expression of IL-2 receptor CD25,
STAT3 signaling, and cell proliferation in lesional skin. In
addition, in the case of some patients, clinical improve-
ment lasted for longer than 8 months, which proposes a
novel therapeutic strategy for the treatment of advanced
CTCLs.

Currently, two clinical trials are examining the effi-
cacy of doxycycline antibiotic treatment alone or in
combination with other drugs in CTCL patients. In the
early phase-I study, a combined approach of doxycy-
cline and imiquimod, a drug enhancing the host immune
system to destroy cancer cells, is being investigated
(NCT03116659). Additionally, a phase-1I study is exam-
ining doxycycline monotherapy in patients with relapsed
CTCL (NCTO02341209). The results of completed and
ongoing clinical trials of targeted therapies in T cell lym-
phomas are summarized in Tables 1 and 2, respectively.

Conclusion

In contrast to tremendous improvement in the treat-
ment of B cell lymphomas, advances in T cell lymphomas
have been hindered by the rarity of each individual sub-
type, an incomplete understanding of the pathophysiol-
ogy, and a lack of large clinical trials. Recent fundamental
insights into the pathophysiology of TCL have generated
potentially ground-breaking therapeutic breakthroughs
and resulted in numerous ongoing clinical trials with a
variety of target-specific agents. Although therapeutic
improvements in TCL, except ALK+ ALCL, are not yet
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spectacular, it might be expected that in the near future,
more effective TCL subtype-specific treatments will be
elaborated.
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