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Abstract 

Genetic heterogeneity of tumor is closely related to its clonal evolution, phenotypic diversity and treatment resist‑
ance, and such heterogeneity has only been characterized at single‑cell sub‑chromosomal scale in liver cancer. Here 
we reconstructed the single‑variant resolution clonal evolution in human liver cancer based on single‑cell mutational 
profiles. The results indicated that key genetic events occurred early during tumorigenesis, and an early metastasis 
followed by independent evolution was observed in primary liver tumor and intrahepatic metastatic portal vein 
tumor thrombus. By parallel single‑cell RNA‑Seq, the transcriptomic phenotype of HCC was found to be related with 
genetic heterogeneity. For the first time we reconstructed the single‑cell and single‑variant clonal evolution in human 
liver cancer, and dissection of both genetic and phenotypic heterogeneity will facilitate better understanding of their 
relationship.
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To the Editor,
The genetic heterogeneity in hepatocellular carcinoma 
(HCC) has been extensively studied by bulk or multi-
region sequencing [1, 2], and more recently at single-cell 
sub-chromosomal scale [3, 4]. Analysis at single-variant 
resolution, however, is still lacking. To address this issue, 
here we employed a single-cell strategy to dissect the sin-
gle-variant clonal structure of HCC, and investigate the 
relationship between genetic and phenotypic heteroge-
neity (Fig. 1a). A total of 5 HCC patients (HCC1, HCC2, 
HCC5, HCC8 and HCC9) were analyzed, including one 

(HCC8) with both primary tumor and the intrahepatic 
portal vein tumor thrombus (PVTT) (Additional file  1: 
Supplementary Methods, and Additional file 2: Fig. S1).

Great inter-tumor genetic heterogeneity of HCC 
was revealed by pseudo-bulk whole exome sequencing 
(WES), with different somatic mutations and mutational 
signatures observed among patients (Additional file  2: 
Fig. S2 and Additional file 3: Table S1). To further explore 
the intra-tumor heterogeneity, ~ 60 mutation sites (Addi-
tional file  4: Table  S2) were then selected from each 
patient for target sequencing on single cells. High quality 
single-cell mutation data were obtained with good corre-
lations between mutated cell fractions and WES-derived 
variant allele frequency values, as well as with low allele 
drop-out rates in most samples (Additional file 2: Fig. S3).

The clonal structures of liver tumor tissues were then 
uncovered by single-cell mutational profiles. Both HCC1 
and HCC2 exhibited a single-clone structure with lim-
ited heterogeneity, while a multi-clone structure was 
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observed in HCC9 (Additional file 2: Fig. S4). The evolu-
tionary history of tumor cells in HCC9 was reconstructed 
by employing mutation combination analysis in single 
cells. The initiated cell was malignantly transformed to 
the founder Clone-1 as 9 genes were mutated, where 4 of 
them are COSMIC Census drivers [5]. Other clones were 
then derived from Clone-1 by acquisition of extra sub-
clonal mutations.

A common origin but independent evolution pattern 
was observed in primary tumor and metastatic PVTT. 
Single cells from both tumor tissues in HCC8 shared 
mutations on 10 genes, where 7 of them are Census driv-
ers: CCR4, KMT2A, ZEB1, AKT3, MUC16, BRD4 and 
ETV6 (Fig. 1b, c). Clone-1 with the 10 shared mutations 
represented a common origin, and other cells in both 
tumor tissues had divergent extra mutations (Fig.  1c). 
This implied an early stage metastasis followed by inde-
pendent evolution, consistent with recent observation of 
early metastatic seeding in other types of solid tumor [6]. 
Two clones within PVTT shared PVTT-private clonal 
mutations on 3 genes, where KIAA1549 and NCOR1 are 
Census drivers related to tumorigenesis [7, 8]. Mutations 
on these two genes thus might be metastasis-related early 
genetic events. Interestingly, nine out of ten mutations 
in Clone-1 were T > A substitutions (Fig.  1d) related to 
carcinogen aristolochic acids [9], consistent with previ-
ous suggestion of early rather than late exposure for HCC 
development [10]. This suggested that early genetic event 
during liver tumorigenesis may be related to specific eti-
ology. The phylogenetic tree of single cells also supported 
the multi-clone structure in HCC8 (Fig. 1e), which rep-
resented genuine tumor phylogeny different from that 
derived from bulk or multi-region sequencing [11].

The inter- and intra-tumor genetic heterogeneity in 
HCC were found consistent with phenotypic heteroge-
neity by parallel single-cell RNA-Seq (Additional file 2: 
Fig. S5). Tumor cells from 4 patients formed separate 
clusters, illustrating patient-specific transcriptomic 
profiles (Fig. 2a–c and Additional file 2: Fig. S6a, b). For 
intra-tumor heterogeneity, the sub-chromosomal scale 
copy number inference from global transcriptomic 
profiles in HCC1 or HCC2 were quite similar within 
each patient, consistent with their single-clone struc-
tures (Additional file  2: Fig. S6c, d). For HCC9, both 
copy number inference and differentially expressed 
gene analysis identified tumor sub-populations, echo-
ing its relatively higher genetic heterogeneity (Fig.  2d, 
e). Interestingly, the genes mutated specifically in each 
tumor showed similar expression patterns among sin-
gle cells from different patients, and clustering of those 
genes exhibited a mixture of patient origin (Fig.  2f ). 
This suggested that the tumor-specific mutations in 
HCC might cause phenotypic heterogeneity by altering 
the expressions of other genes rather than their own. 
The direct link between genetic and phenotypic het-
erogeneity in HCC, however, still await further clarifi-
cation with new single-cell multi-omics tool that could 
co-detect point mutation and gene expression [12].

In summary, here we reconstructed single-cell clonal 
evolution in human liver cancer at single-variant reso-
lution. The common origin but independent evolu-
tionary fate for primary and metastatic liver tumors 
observed here may help understanding liver cancer 
progression, and single-cell dissection of both genetic 
and phenotypic heterogeneity will provide information 
for their functional linkage.

(See figure on previous page.)
Fig. 1 Single‑cell analysis revealed a common origin but independent evolution of primary and metastatic liver tumors. a Overview of the 
single‑cell analysis strategy of human liver cancer. b Mutational status of SNV/INDEL sites in single cells from paratumor, primary tumor and PVTT 
tissues in HCC8. c Clonal evolution in HCC8 with genes mutated at each step shown. Dashed circle: virtual ancestor clone in PVTT. *COSMIC Cancer 
Gene Census catalogued driver genes. d Statistics of nucleotide substitution types for clone‑specific point mutations newly acquired from the most 
recent ancestor in HCC8 as shown in (c). e Maximum parsimony tree of single cells from HCC8 based on nucleotide sequences at the target sites. 
Scale bar: nucleotide substitution rate
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Fig. 2 Genetic and phenotypic heterogeneity are showing consistence in liver cancer. a Cell clusters in scRNA‑Seq analysis. b Heatmap showing 
patient‑specific tumor marker genes. c The expression patterns of representative markers. d Copy number changes inferred from global 
transcriptomic profile of single cells in HCC9, with boxes highlighting sub‑populations. e Heatmap (left) and t‑SNE plot (right) showing the 
sub‑populations in HCC9 based on differentially expressed genes. f The expression patterns of genes mutated in each HCC sample in scRNA‑Seq 
data. Genes were grouped by tissue origin in the upper panel, and clustered by expression patterns in the lower panel
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Additional file 2: Figure S1. Overview of the single‑cell analysis strategy 
of human HCC. Figure S2. Single‑cell mixture WES revealed inter‑tumor 
genetic heterogeneity of HCC. Figure S3. High quality single‑cell muta‑
tion data were obtained by target sequencing. Figure S4. Single‑cell 
clonal structures of HCC1, HCC2 and HCC9 based on point mutations. 
Figure S5. scRNA‑Seq revealed the constituent cell types of HCC. Figure 
S6. scRNA‑Seq revealed the inter‑tumor and intra‑tumor heterogeneity of 
HCC. Figure S7. Schematic representation of major findings in this study.

Additional file 3: Table S1. Exonic mutations in single‑cell WGA mixtures 
from HCC. This table shows all the exonic mutations derived from WES of 
single‑cell WGA mixtures from HCC1‑T, HCC2‑T, HCC5‑T, HCC9‑T, HCC8‑T 
and HCC8‑PVTT. Mutations were called with GATK, and annotated with 
ANNOVAR and Oncotator. SNPs were filtered using dbSNP141 and 1,000 
Genomes Project (v3) database. The synonymous mutations were further 
filtered. This table is related to Fig S2.

Additional file 4: Table S2. Mutation sites and amplification primers for 
single‑cell target sequencing. This table shows the full list of target sites 
and PCR primers used in single‑cell target amplification for HCC1, HCC2, 
HCC9 and HCC8. The primer sequences include the adaptor sequences 
that can be used for downstream library preparation with illumina Nextera 
XT Index Kit and multi‑plexed sequencing.
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