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Abstract 

B-cell lymphoma is a group of hematological malignancies with high clinical and biological heterogeneity. The 
pathogenesis of B-cell lymphoma involves a complex interaction between tumor cells and the tumor microenviron-
ment (TME), which is composed of stromal cells and extracellular matrix. Although the roles of the TME have not been 
fully elucidated, accumulating evidence implies that TME is closely relevant to the origination, invasion and metastasis 
of B-cell lymphoma. Explorations of the TME provide distinctive insights for cancer therapy. Here, we epitomize the 
recent advances of TME in B-cell lymphoma and discuss its function in tumor progression and immune escape. In 
addition, the potential clinical value of targeting TME in B-cell lymphoma is highlighted, which is expected to pave 
the way for novel therapeutic strategies.
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Introduction
Lymphomas mainly comprise Hodgkin lymphoma (HL) 
and non-Hodgkin lymphoma (NHL), representing a het-
erogeneous group of lymphoproliferative diseases. B-cell 
lymphomas account for almost 95% of all lymphoma 
cases [1], among which diffuse large B-cell lymphoma 
(DLBCL) is the most common subtype, accounting for 
approximately 30% of all NHL cases [2]. Patients with 
B-cell lymphomas are usually characterized by lym-
phadenopathy, extranodal disease or both and present 
the potential for multiple organ involvement. Therefore, 
early diagnosis and therapy are essential. With the devel-
opment of molecular diagnosis techniques, efforts have 
been made to better classify B-cell lymphoma. How-
ever, due to the heterogeneity of this disease, only a few 

strategies are applied to routine diagnosis and prognosis 
prediction.

The tumor microenvironment (TME) is a complex 
network that comprises cellular and noncellular compo-
nents, forming a physical barrier around tumor cells [3]. 
Accumulating studies have suggested that the TME com-
ponents play important roles in the initiation and main-
tenance of carcinogenesis instead of being bystanders [4]. 
TME is instrumental in a variety of biological processes, 
including pathogenesis, progression, metastasis and drug 
resistance, through sustained proliferation and immune 
escape [5]. Given the limited efficacy of standard thera-
pies in several patients, TME-based therapies have been 
explored as new treatment strategies to achieve a more 
immunogenic environment and better drug delivery, ulti-
mately increasing the response rates of patients. Recent 
studies suggest that the composition of TME is essential 
for the pathogenesis of lymphoma. Moreover, the TME 
also provides new strategies for targeted therapies and 
tumor prognosis prediction. In summary, this review may 
offer novel therapeutic strategies for B-cell lymphoma 
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through describing the essential elements of the TME, 
TME–targeted therapy and clinical applications, and 
novel technologies applied in TME detection.

Composition of TME in B‑cell lymphoma
The TME can be divided into two parts: the immune 
microenvironment that contains immune cells and the 
nonimmune microenvironment dominated by fibroblasts 
[6]. The immune microenvironment consists of T and B 
lymphocytes, tumor-associated macrophages (TAMs), 
myeloid-derived suppressor cells (MDSCs), tumor-
associated neutrophils (TANs), natural killer (NK) cells, 
dendritic cells (DCs) and others. These cells mediate 
the immunosuppressive microenvironment and escape 
immunity. The nonimmune microenvironment mainly 
consists of stromal cells, including cancer-associated 
fibroblasts (CAFs), extracellular matrix (ECM), pericytes, 
mesenchymal stromal cells and other secreted mol-
ecules, including growth factors, cytokines, chemokines 
and extracellular vesicles (Fig.  1) [7]. These TME cells 
express different biomarkers and play a variety of roles 

in the tumorigenesis and prognosis of B-cell lymphoma 
(Table 1).

TAMs
As the most intensive immunosuppressive cell popula-
tions in the TME, TAMs were responsible for the inhibi-
tion of recruitment and activation of T cells via secreting 
cytokines, chemokines and other factors, thereby pro-
moting immunosuppression [26]. TAMs are usually clas-
sified into M1 and M2 phenotypes. The classification and 
identification of TAMs are related to their immunomod-
ulatory functions [27]. M1-like macrophages are con-
sidered to be cytotoxic and participate in the antitumor 
process. However, during the development of tumors, 
TAMs usually transform into the M2 phenotype [28]. 
M2-like macrophages produce Th2 cytokines, such as 
interleukin (IL)-4, IL-10, IL-13, matrix metalloprotein-
ases (MMPs) and transforming growth factor-β (TGF-
β), which participate in multiple signaling pathways. 
TAMs contribute to tumor progression by modulating 

Fig. 1 Major constituents of the TME and targeted therapies. The figure depicts the typical microenvironment of B-cell lymphoma. Tumor 
microenvironment refers to the internal environment in which tumor cells produce and live, major cellular and noncellular components. It includes 
not only the tumor cells but also the immune and inflammatory cells, fibroblasts and other cells around them. It also comprises the intercellular 
substance, micro-vessels and biological molecules infiltrated in the nearby area. Current strategies targeting TME components are also highlighted
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angiogenesis, immunosuppression and chronic inflam-
mation via complex interaction between signaling path-
ways [29].

MDSCs
MDSCs originate from immature myeloid cells and are 
divided into two major subsets: polymorphonuclear 
(PMN)-MDSCs and monocytic (M)-MDSCs. PMN-
MDSCs are more similar to neutrophils in morphol-
ogy and phenotype, whereas the resemblance between 
M-MDSCs and monocytes is remarkable [30]. TME-
derived MDSCs play an intricate role in immunosuppres-
sion. Apart from promoting the expansion of regulatory 
T cells (Tregs), MDSCs also assist in the secretion and 
activation of inhibitory molecules, such as arginase1 
(Arg1), inducible nitric oxide synthase (iNOS), reac-
tive oxygen species (ROS) and prostaglandin E2 (PGE2), 

thereby suppressing the function of effector T cells [31]. 
It was recently demonstrated that various characteris-
tics of the TME could stimulate tumor cells to secrete 
exosomes. Tumor-derived exosomes accelerate the acti-
vation and expansion of MDSCs by transporting func-
tional substances, such as microRNAs  (miRNAs), IL, 
TGF-β and PGE2 [31, 32].

TANs
TANs, the most abundant circulating leukocytes, could 
be polarized to the N1 and N2 phenotypes. Owing to 
the functional plasticity, the neutrophils exert either 
antitumor or protumor effects. In the early stage of 
tumorigenesis, TANs are mainly the N1 phenotype 
and exert antitumor function by activating IL-18 and 
secreting interferon (IFN)-β. However, TANs usu-
ally transform into the N2 phenotype during tumor 

Table 1 Markers and functions of cells in TME

TME, tumor microenvironment; TAMs, tumor-associated macrophages; MDSCs, myeloid-derived suppressor cells; PMN-MDSCs, polymorphonuclear myeloid-derived 
suppressor cells; M-MDSCs, monocytic myeloid-derived suppressor cells; TANs, tumor-associated neutrophils; NK cells, natural killer cells; CAFs, cancer-associated 
fibroblasts; DCs, dendritic cells; pDCs, plasmacytoid dendritic cells; mDCs, myeloid dendritic cells; DLBCL, diffuse large B-cell lymphoma; HL, Hodgkin lymphoma; FL, 
follicular lymphoma; cHL, classical Hodgkin lymphoma; NS-cHL, nodular sclerosis classical Hodgkin lymphoma

Cell type Common markers Major role in tumors Effects in B‑cell lymphoma References

TAMs M1 CD68+

CD80+

CD86+

Anti-tumorigenic DLBCL: M2 TAMs correlate with poor prognosis
HL:  CD68+ TAMs correlate with poor prognosis
FL: High  CD68+ TAMs correlate with longer survival rates after 

R-CHOP

[8–10]

M2 CD163+

CD204+

CD206+

Pro-tumorigenic

MDSCs PMN-MDSCs CD11b+

CD14−

CD15+

CD66+

Pro-tumorigenic DLBCL: M-MDSCs correlate with poor prognosis
HL: PMN-MDSCs correlate with poor prognosis
FL: Unknown

[11–13]

M-MDSCs Lin−

CD11b+

CD14+

HLA-DRlow

TANs N1 CD16+

CD66b+

CD170low

Anti-tumorigenic DLBCL: TANs correlate with poor prognosis
HL: High neutrophil‐lymphocyte ratio correlates with poor prog-

nosis in NS-cHL
FL: Unknown

[14–16]

N2 CD66b+

CD11b+

CD170high

Pro-tumorigenic

NK cells bone marrow NK cells CD56bright

CD16−
Anti-tumorigenic DLBCL: Low NK cells correlate with shorter PFS

HL: Unknown
FL: Low peripheral blood NK cells count correlate with shorter 

PFS and OS

[17, 18]

mature NK cells CD56dim

CD16+

CAFs α-SMA+

S100A4+

FAP+

CD10+

Pro-tumorigenic DLBCL: CAFs associate with favorable prognosis
HL: CAFs protect Hodgkin and Reed–Sternberg cells from 

Brentuximab-Vedotin induced injury in NS-cHL
FL: CAFs correlate with poor prognosis

[19–22]

DCs pDCs CD123+

CD303+

CD304+

Pro-tumorigenic DLBCL: DCs correlate with longer survival
HL: Unknown
FL: Follicular DCs correlate with poor prognosis

[23–25]

mDCs CD1c+

CD141+
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progression. TANs of the N2-like phenotype promote 
tumor progression by regulating proliferation, angio-
genesis and metastasis of cancer cells [14]. They also 
inhibit T cell activation by expressing myeloperoxidase, 
Arg1, ROS and nitric oxide [30, 33]. The specific mech-
anism of TAN functional type transition in the TME is 
still unclear, but several studies have demonstrated that 
TGF-β could polarize neutrophils into the N2 pheno-
type [34].

Tumor‑infiltrating NK cells
NK cells, innate cytotoxic lymphocytes of the immune 
system, contribute to the prevention of viral infection and 
tumor growth. NK cells contain two subtypes:  CD56dim 
 CD16+ NK cells and  CD56bright  CD16− NK cells. The 
 CD56dim subtype can kill other cells and accounts for 
the majority of NK cells [17]. The function of NK cells is 
regulated by the dynamic balance between stimulatory 
and suppressive cell surface receptors [35, 36]. Inhibitory 
receptors on NK cells could recognize major histocom-
patibility complex class I (MHC-I) molecules. Therefore, 
the decreased expression of MHC-I will lead to the acti-
vation of NK cells [36]. Natural killer group 2D (NKG2D), 
an activating receptor, mediates antitumor and antiviral 
responses through recognizing ligands that are ubiqui-
tously expressed by virus-infected cells and in the TME, 
such as MICA, MICB or ULBP/RAET1 [35]. Regulation 
of the above dynamic balance provides an innovative per-
spective for NK cell-mediated therapy.

CAFs
CAFs are a prominent component of TME with sig-
nificant heterogeneity and plasticity. In various types of 
cancer, the origins, phenotypes and functions of CAFs 
are different. However, it is difficult to define CAFs due 
to the lack of specific markers [37]. CAFs contribute to 
cancer progression through modulating a variety of bio-
logical processes, including angiogenesis, matrix for-
mation and release of growth factors, cytokines and 
exosomes [38]. In addition, the secretome, matrisome, 
surfaceome and metabolome of CAFs could also fuel 
immune evasion, respectively [39]. In contrast, some sub-
types of CAFs, such as  Slit2+ and  CD146+ CAFs, exert 
tumor-suppressive effects and even increase sensitivity 
of chemotherapy [40]. Although there is a growing inter-
est in developing therapeutic strategies for CAFs, several 
challenges, including the extent of CAFs heterogeneity, 
the roles of distinct CAFs subtypes and how to selectively 
target these subtypes, are not fully understood.

ECM
ECM represents a protein network surrounding cells, 
including collagens, proteoglycans, laminin and fibronec-
tin [41]. CAFs are the main source of ECM synthesis and 
modification [42]. ECM is crucial for tissue homeostasis 
and normal organ development. Aberrant remodeling of 
the ECM mediated by collagen deposition or degradation 
could promote tumor progression. Mechanistically, the 
remodeled ECM performs various biological functions, 
including enhancing cell proliferation, increasing cell 
death resistance and inducing angiogenesis [43, 44].

Other components of TME
Despite the importance of the interactions between the 
above cells and tumor progression, it is notable that other 
components of the TME could also influence the fate 
of tumors. Reprogrammed monocytes could accelerate 
tumor growth by promoting angiogenesis and remode-
ling the ECM. Different monocyte subsets can also differ-
entiate into TAMs or DCs, which indirectly participate in 
tumor progression [45]. Immunosuppressive tumor-infil-
trating DCs suppress the antitumor immunity of T cells 
[46]. These results indicate that the TME is an essential 
intrinsic portion for the regulation of tumor occurrence, 
development, invasion and metastasis. Thus, under-
standing the components of the TME involved in tumo-
rigenesis will contribute to developing novel therapeutic 
strategies.

Targeting the TME in B‑cell lymphoma
Targeting components of the TME
As mentioned above, the cellular and noncellular com-
ponents of the TME are involved in tumor progression 
and the immune response, which provides novel insights 
for targeted therapies (Fig. 2). Therapeutic strategies are 
mainly divided into three categories, including deplet-
ing existing cells, preventing them from being recruited 
to tumor sites and reprogramming them into antitumor 
subtypes [47]. Several promising agents targeting the 
TME in B-cell lymphoma are summarized in Table 2.

Targeting TAMs
Several therapeutic strategies targeting TAMs in B-cell 
lymphoma are currently being investigated. The col-
ony-stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF-
1R) signaling pathway is essential for the recruitment, 
polarization and functional regulation of TAMs [48]. In 
mantle cell lymphoma (MCL), the secretion of CSF-1 
polarizes monocytes into specific  CD163+ M2-like 
TAMs (MφMCLs), which promotes the proliferation 
of lymphoma cells. It has been demonstrated that tar-
geting CSF-1R could abrogate MφMCL-dependent 
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MCL survival [49]. TAMs, also known as nurse-like 
cells (NLCs), are correlated with the tumorigenesis 
of chronic lymphocytic leukemia (CLL). Pacritinib, a 
JAK2/FLT3 inhibitor, was proved to prevent CLL pro-
gression by depleting NLCs [50]. Recent studies have 

verified that CSF-1/CSF-1R blockade improves the 
efficacy of diverse immunotherapy modalities, such as 
programmed cell death 1 (PD-1) or cytotoxic T-lym-
phocyte-associated antigen 4 (CTLA-4) antagonists 
[51].

Fig. 2 TME targeting strategies to treat B-cell lymphoma. MDSC, TAM (M2), TAN (N2) and Treg inhibit the process of the antitumor immune 
response through several inhibition pathways and establish an immunosuppressive TME

Table 2 Clinical trials of agents based on TME cells for B-cell lymphoma treatment

TME cells Target Agent Indication Phase Identifier

TAMs SIRPα TTI-622 R/R lymphoma
R/R multiple myeloma
Newly diagnosed acute myeloid leukemia

I NCT03530683

GS-0189 R/R NHL I NCT04502706

CD47 Hu5F9-G4 R/R NHL I NCT02953509

MDSCs PI3Kδ/γ Tenalisib (P65300) iNHL II NCT03711578

TANs SIRPα IBI188 Advanced lymphoma I NCT03717103

CD47/CD19 TG-1801 B-cell lymphoma I NCT03804996

NK cells iC9/CAR.19/IL15-transduced CB-NK Cells B lymphoid malignancies
NHL
CLL
ALL

I/II NCT03056339

CD19-targeted high-affinity NK DLBCL I NCT04052061

AFM13 R/R HL I NCT01221571

II NCT02321592

IL-15 ALT-803 R/R iNHL I/II NCT02384954

CAFs FGFR JNJ-42756493 Advanced or refractory lymphoma I NCT01962532
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TAMs are highly dependent on the CCL2-CCR2 sign-
aling to mobilize from the bone marrow to the site of 
inflammation in the TME. CCR2 inhibitors induce the 
accumulation of monocytes in bone marrow, resulting in 
reduced numbers of TAMs [51]. Yao et al. reported that 
CREBBP/EP300 mutations could regulate the FBXW7-
NOTCH-CCL2/CSF1, polarizing TAMs to the M2 phe-
notype and promoting cell proliferation in DLBCL [52].

In addition, the combination of CD47 on the surface of 
tumor cells and SIRPα on TAMs could induce immune 
escape. Targeting the CD47-SIRPα axis has shown prom-
ising results in hematological malignancies [53]. It was 
recently demonstrated that the therapeutic effect of 
CD47 blockade (Hu5F9-G4) combined with rituximab 
has synergistic activity in an early phase clinical trial of 
DLBCL and follicular lymphoma (FL) [54].

MiRNAs are endogenous noncoding small RNAs par-
ticipate in the occurrence and development of human 
malignancies. Recent studies have clarified that the spe-
cific miRNAs are involved in regulating the polarization 
direction and functional phenotype of TAMs. For exam-
ple, miR-130, miR-33 and miR-155 can transform TAMs 
from the M2-like to M1-like phenotype [55, 56].

Targeting MDSCs
Considering the roles of MDSCs in hematological malig-
nancies, it is reasonable to serve MDSCs as a promising 
target. Signal transducer and activator of transcription 3 
(STAT3) and cyclooxygenase 2 (COX2)/PGE2 play a car-
cinogenic role in a variety of malignant tumors, which 
participate in the generation, maturation and accumu-
lation of MDSCs [57]. The application of COX2 inhibi-
tors could significantly reduce the abundance of MDSCs 
and block the function of MDSCs [58]. The results of a 
large population-based study demonstrated the survival 
advantages for newly diagnosed DLBCL patients who 
received COX2 inhibitor [59]. Emerging studies indi-
cate that the phosphatidylinositol 3-kinase (PI3K)/AKT 
pathway participates in tumorigenesis by facilitating the 
immunosuppressive state of TME [60]. In HL, previ-
ous investigations have revealed that RP6530, a PI3Kδ/γ 
inhibitor, decreases the percentage of MDSCs, repolar-
izes TAMs to the M1-like phenotype and downregulates 
the expression of iNOS, thereby leading to tumor regres-
sion [61].

In addition, miRNAs could also affect the function 
of MDSCs. MiR-30a increases the immunosuppres-
sive function of MDSCs by decreasing SOCS3 mRNA 
in B-cell lymphoma. Targeting miR-30a could reduce 
MDSC-mediated immunosuppressive and the number of 
MDSCs [62]. Li et al. reported that c-Rel, a novel immune 
checkpoint in MDSCs, participated in various processes, 
containing development, function and metabolism of 

MDSCs. Chen and colleagues developed R96A, a c-Rel 
inhibitor, which can significantly reduce the progression 
of lymphoma and synergistically enhance the response to 
anti-PD-1 antibodies [63].

Targeting TANs
Substantial studies have examined various compounds 
capable of modulating neutrophils [64]. Similar to the 
cases for TAMs, the combination of SIRPα and CD47 
on TANs also mediates the immune escape. In Burkitt 
lymphoma (BL), KWAR23 (an anti-SIRPα antibody) was 
found to combine with SIRPα at high affinity and conse-
quently increased the TANs-mediated phagocytosis of 
BL cells [65].

Inhibition of TANs during tumor progression serves as 
another effective strategy. In TME, it is implied that the 
CXCL12/CXCR4 axis plays a complex role in regulating 
the retention of TANs at inflammatory sites [66]. Emerg-
ing studies have revealed that AMD3100, an effective 
CXCR4 antagonist, could reverse migration and maintain 
the balance between bone marrow and peripheral blood, 
thereby inhibiting tumor growth and metastasis [67].

In addition, the CXCR2 axis is proved to be involved in 
the recruitment of N2 phenotype cells. DLBCL-derived 
IL-8 interacts with CXCR2 on TANs, forming neutrophil 
extracellular traps, and further activates the downstream 
pathway of Toll-like receptor 9 (TLR9) to boost the pro-
liferation and migration of DLBCL cells. Nevertheless, 
preliminary evidence showed that deoxyribonuclease 
I, neutrophil elastase inhibitor and blocking CXCR2 
or TLR9 could restrain the progression of DLBCL [68]. 
Noteworthy, potential cautions and risks are still existing, 
such as intolerable adverse effects and infections.

NK cell‑based immunotherapy
Recently, NK cell-based therapy has evolved to become 
the major area of immunotherapy, and it may comple-
ment the limitations of T cell-based therapy [35]. The 
function of NK cells could be restored by blockade of 
checkpoint inhibitors. Natural killer group 2A (NKG2A), 
a type II membrane receptor, inhibits NK cells by bind-
ing to HLA-E in CLL [69]. Therefore, blocking NKG2A 
can effectively restore the function of NK cells. In addi-
tion, killer cell immunoglobulin-like receptors (KIRs) 
inhibit the activation of NK cells by binding to HLA-C. 
Lirilumab, an anti-KIR monoclonal antibody (mAb), 
could enhance the effect of rituximab and the spontane-
ous cytotoxicity of NK cells by restraining the binding of 
KIRs to MHC-I antigen in B-cell lymphoma [70]. Fur-
thermore, blockade of other inhibitory receptors, such as 
T cell immunoreceptor with immunoglobulin and ITIM 
domain, T cell immunoglobulin mucin receptor 3 and 
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PD-1, has shown promising potential for NK cell-based 
immunotherapy [71].

Direct enhancement of NK cell activity is considered 
another type of NK cell-based therapy. Cytokines, such as 
IL-2 or IL-15, could stimulate the activation and prolif-
eration of NK cells. Therefore, it is necessary to provide 
NK cells with survival factors to increase their persis-
tence in  vivo [72]. NK cell-based therapy shows advan-
tages over targeting T cells in some respects, providing 
an alternative immunotherapeutic method for T cell-
based therapy.

Targeting CAFs
Given the tumor-promoting effect of CAFs, targeting 
CAFs alone or in combination with other immunother-
apies has emerged as a promising therapeutic approach 
[73]. Strategies targeting CAFs are currently being 
explored, including (1) locating and depleting CAFs via 
cell surface markers, (2) targeting related signaling path-
ways downstream effectors, (3) restoring activated CAFs 
and (4) targeting CAF-derived ECM proteins and associ-
ated signaling [74]. Although many strategies have been 
explored, clinical success is still lacking in B-cell lym-
phoma, which may be related to the heterogeneity and 
lack specific biomarkers of CAFs [75].

Targeting the ECM
MMPs, enzymes targeting the ECM that cause collagen 
degradation, could delay the process of tissue regenera-
tion and influence the survival, expansion and progres-
sion of tumors [76]. MMP-9, one type of MMPs, has been 
proved to be involved in the angiogenesis of NHL [77]. In 
DLBCL, the M2 TAMs could promote tumor progression 
by inducing cleavage of ECM via legumain [78]. As the 
ECM can act as a barrier to prevent effective drug deliv-
ery, targeting the ECM is expected to overcome therapy 
resistance by improving effective drug delivery [79]. In 
addition, the ECM is also considered to play a critical role 
in the survival and maintenance of cancer stem cells.

Targeting other TME cells
Furthermore, targeting other TME cells also provides 
novel insights for clinical treatment. Personalized DC 
vaccines display great potential in facilitating efficient 
and targeted tumor immunotherapy by activating T 
cell immunity and suppressing Tregs [80]. In terms of 
eosinophils, ample evidence indicates that they playing 
significant role in the TME and influence the response 
to therapy in malignancies. Eosinophils can release 
chemokines, such as IFN-γ, which are essential for 
antagonization of CTLA-4-induced vessel normaliza-
tion, thereby promoting angiogenesis [81]. However, as 
increasing number of patients are treated with these new 

regimens, longer follow-up is needed to determine the 
clinical value of targeting eosinophils for cancer treat-
ment. Targeting monocytes may also prolong survival 
and provide higher rates of response for certain patients 
because monocyte-derived TAMs are enriched in genes 
correlated with immunosuppression, indicating their 
contribution to tumor progression [82].

Targeting hypoxia, a hallmark of the TME
Due to the rapid growth of tumors, most of the TME is 
characterized and affected by hypoxia. Hypoxia could 
induce TAM polarization [83], promote the accumula-
tion of MDSCs and Tregs [84] and downregulate the 
activity of NK cells (Fig.  3) [85]. Hypoxia inducible fac-
tor-1 (HIF-1) is a transcription factor composed of 
HIF-1α and HIF-1β. HIF-1α synthesis is regulated by 
PI3K or mitogen-activated protein kinase (MAPK) signal 
pathways [86]. High expression of HIF-1α induces tumor 
cells to adapt to hypoxia and grow rapidly [87]. In MCL, 
HIF-1α participates in the downregulation of BACH2, 
which not only accelerates tumor formation but also pro-
motes tumor spread to the spleen and bone marrow [88]. 
It has been reported that HIF-1α induces the expression 
of hexokinase II to promote the development of B-cell 
lymphoma, which provides an innovative perspective for 
targeted therapy [89]. Through the vascular endothelial 
growth factor A (VEGFA)/vascular endothelial growth 
factor receptor 1 (VEGFR1) axis, HIF-1α contributes 
to angiogenesis and promotes lymphoma cells to resist 
apoptosis [90].

On the other hand, HIF-2α has been indicated to pro-
mote the survival of hypoxic cells [91]. MK-6482 and 
PT2385, inhibitors of HIF-2α, are currently applied in 
renal cell carcinoma [92, 93] and capable of achieving 
desirable therapeutic effects. Further investigations are 
needed to explore the efficacy of targeting hypoxia for the 
treatment of B-cell lymphoma.

Immunotherapies for reversion of T cell exhaustion
PD‑1/programmed cell death ligand 1 (PD‑L1)
PD-1/PD-L1 is a negative modulatory signaling path-
way that leads to the exhaustion of T cell immunity. 
Under normal circumstances, the combination of PD-1 
and PD-L1 on cytotoxic T lymphocytes (CTLs) con-
trols excessive immunity. However, many tumor cells 
also express PD-L1 to protect themselves [94]. The 
PD-1/PD-L1 blockade restores T cells to an activated 
state and elicits more pronounced antitumor effects 
by rescuing exhausted T cells through JAK/STAT and 
PI3K/AKT pathways [95, 96]. In the management of 
B-cell lymphoma, the PD-1/PD-L1 blockade therapy 
has shown potential effects (Table  3). Recent stud-
ies have illuminated that a novel antibody (YM101) 
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blocking TGF-β and PD-1/PD-L1 pathways and pro-
moting the formation of "hot" immune-inflamed TME, 
shows better antitumor effects than single anti-PD-L1 
antibody treatment [97]. Moreover, combination with 
antibody–drug conjugates could be a feasible option 
for relapsed/refractory (R/R) B-NHL, which exhibits 
advantages over the use of PD-1 inhibitor alone [98].

However, the clinical applications of PD-1/PD-L1 
blockade may be hindered by the decreased proportion 
of responding patients and acquired resistance dur-
ing treatment. Recent studies have demonstrated that 
PD-1 blockade combined with anti-CD20 mAbs could 
deplete lymphoma cells, reshape the TME and achieve 
long-term antitumor responses by inducing immune 
cell infiltration [108]. Interestingly, the heterogeneity 
of the TME makes the efficacy of PD-1/PD-L1 block-
ade different. “Hot” TME is associated with high infil-
tration of tumor infiltration lymphocytes (TILs) and 
accompanied by higher levels of IFN, which may indi-
cate the potential of therapy benefits. In contrast, non-
inflammatory tumors with a “cold” TME may respond 
poorly to PD-1/PD-L1 blockade [109]. Therefore, the 

abundance of TILs also acts as a potential predictor to 
forecast the efficacy of PD-1/PD-L1 inhibitors [110].

CTLA‑4
CTLA-4 is a negative immunomodulator and constitu-
tively expressed on Tregs [111]. CTLA-4 provides inhibi-
tory signals to T cells and shares B7 ligands, such as B7-1 
(CD80) and B7-2 (CD86), with CD28. Compared with 
CD28, CTLA-4 presents a higher affinity [112]. Different 
from PD-1 blockade, which relieves the immunosuppres-
sion of T cells, anti-CTLA-4 therapies mainly enhance 
T cell activation and proliferation by downregulating 
the immune suppression mediated by Tregs [113]. They 
selectively remove Tregs from tumors through antibody-
dependent cell-mediated cytotoxicity and deplete Tregs 
via an Fc-dependent mechanism [114]. Ingram et  al. 
found that administration of H11 without Fc fragment-
mediated CTLA-4 blockade significantly attenuated the 
antitumor effect [115]. Collectively, anti-CTLA-4 agents 
need to modify the Fc domain of mAbs to deplete Tregs 
for therapeutic effects.

Fig. 3 Impact of hypoxic TME and targeted therapy. Growth factors regulate HIF-1α through MAPK/ERK and PI3K/AKT/mTOR pathway, 
consequently induce the simulation of HIF-1α mRNA transactivation. Under the hypoxic microenvironment, HIF-1α in cells up-regulates the 
expression of PD-L1 in hypoxic tumor cells, prevents MDSC from maturation at the tumor site and involves the up-regulation of CD47 on the 
surface of tumor cells. After CD47 combines with SIRPα on the surface of macrophages, tumor cells provide a robust “don’t phagocytize me” signal, 
thus preventing the phagocytosis of macrophages
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Results from recent clinical trials have shown that 
CTLA-4 alone or in combination with other agents exert 
a positive effect in the treatment of melanoma [116], but 
further investigations of the application in B-cell lym-
phoma are warranted [117]. Patel et  al. observed that 
CTLA-4 was the main checkpoint protein within the 
classical HL (cHL) TME, and Hodgkin Reed–Sternberg 
cells exploited the interaction between CTLA-4 and 
CD86 as an escape pathway [118]. Emerging evidence 
suggests that anti-CTLA-4 agents synergizes with anti-
CD20 mAbs in treating R/R B-cell lymphoma [119].

Chimeric antigen receptor (CAR)‑T cells
T cells can be engineered to express a CAR to target cer-
tain cancer cells. Generally, the CAR consists of three 
parts: (1) a single-chain antibody fragment (sc Fγ) that 
is responsible for recognizing the antigen; (2) a trans-
membrane region that connects the transition region 
inside and outside of the cell; and (3) an intracellular 
signal domain that transmits TCR-like signaling to cell 

when combining with antigen outside of the cell [120]. 
CARs could locate and recognize tumor cells and release 
various effectors, effectively killing tumor cells and 
consequently achieving the purpose of treating malig-
nant tumors [121]. Four CAR-T cell products currently 
approved by FDA are summarized in Table 4.

Although CAR-T cell therapies targeting CD19, CD22, 
CD30 and so on have revealed significant clinical effects 
in hematological malignancies [127–129], the senes-
cence and exhaustion of T cells negatively influence the 
effect. It was confirmed that engineered CAR-T cells to 
overexpress c-Jun could decrease or displace AP-1i from 
chromatin, thereby preventing T cell exhaustion [130]. 
Agonists of T cell receptors, 4-1BB and OX40, could pro-
vide another stimulatory signal for CAR-T cells, as they 
increase the activity of T cells and make CAR-T cells 
resistant to the suppressive effects of TME [131]. Moreo-
ver, the urokinase-type plasminogen activator receptor-
specific CAR-T cells have emerged as a novel insights due 
to it is capable of ablating senescent cells [132].

Table 3 Results from clinical trials of PD-1/PD-L1 blockade in B-cell lymphoma

Identifier B‑cell lymphoma Antibody, dose Clinical significance References

Anti-PD-1 monoclonal 
antibody

NCT02332668 R/R HL (n = 15) Pembrolizumab
2 mg/kg q3w

ORR 60%, CR 13%, PR 47% [99]

NCT03155425 R/R cHL (n = 75) Camrelizumab
200 mg q2w

ORR 76%, CR 28%, PR 48% [100]

NCT02961101 NCT03250962 R/R cHL (n = 86) Camrelizumab
200 mg q3w
or
Decitabine 10 mg/d, d1-5
 + Camrelizumab 200 mg, d8 q3w

Camrelizumab (n = 19): CR 32%
Decitabine + Camrelizumab (n = 42): CR 

71%

[101]

NCT03114683 R/R cHL (n = 96) Sintilimab
200 mg q3w

ORR 80.4%, CR 34%, PR 47% [102]

NCT03209973 R/R cHL (n = 70) Tislelizumab
200 mg q3w

ORR 87.1%, CR 62.9%
9 months: PFS 74.5%

[103]

NCT01953692 R/R PMBCL (n = 21) Pembrolizumab
10 mg/kg q2w (n = 10)
200 mg q3w (n = 11)

ORR 48%, CR 33%, PR 14% [104]

NCT02332980 R/R CLL (n = 16)
RT DLBCL (n = 9)

Pembrolizumab
200 mg q3w

ORR 16% (CLL:0%, DLBCL:44%)
CR (DLBCL) 11%, PR (DLBCL) 22%

[105]

Anti-PD-L1 monoclonal 
antibody

NCT02401048 R/R FL (n = 27)
R/R DLBCL (n = 34)

Ibrutinib 560 mg qd
 + Durvalumab 10 mg/kg q2w

ORR (all patients) 25%
ORR (FL) 26%
ORR (GCB DLBCL) 13%
ORR (non‐GCB DLBCL) 38%
CR (FL) 4%
CR (GCB DLBCL) 6%
CR (non-GCB DLBCL) 31%
median PFS 4.6 months
median OS 18.1 months

[106]

NCT02541604 HL (n = 9)
NHL (n = 3)

Atezolizumab 15 mg/kg (≤ 18 years)
Atezolizumab 1200 mg (18-29 years)

PR (HL) 22.2%
PR (NHL) 33.3%

[107]
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With further investigations on CAR-T cell therapies, 
strategies targeting nontumor components of TME 
have also been proposed. Heparan sulfate proteoglycans 
(HSPG) is an integral component of the ECM, and hep-
aranase (HPSE) degrades HSPGs. Therefore, to expe-
dite CAR-T cell penetration into the tumor stroma, the 
researchers have designed CAR-T cells overexpressing 
HPSE to degrade HSPG [133]. Fibroblast activation pro-
tein (FAP) could modify the ECM by changing fibronec-
tin orientation, and the FAP-redirected CAR-T cells have 
been established to deplete CAFs expressing FAP. These 
armored CAR-T cells decrease tumor vascular density, 
disrupt the spatial orientation of tumor cells and inhibit 
the genesis of tumor stroma, which may exert pro-
found effects on tumor growth [134]. TAMs expressing 
folate receptor β (FRβ) are similar to M2 macrophages. 
FRβ-specific CAR-T cells reprogram the TME and sig-
nificantly delay tumor progression by depleting immuno-
suppressive TAMs [135]. CAR-T cells that target tumor 
vasculature, metabolism, hypoxia, and other immuno-
suppressive cells and cytokines also show great clini-
cal potential [136].

The antitumor efficacy of other immune cells, such as 
macrophages, NK cells and Tregs, are explored as well 
[137]. It has been reported that genetically engineered 
macrophages with CAR could enhance phagocytic 

ability, induce M2 cell transform into the M1 phenotype, 
resist the effects of immunosuppressive cytokines and 
strengthen the antitumor activity of T cells [138]. Liu 
et al. found that CAR-NK cells could partly overcome the 
toxic effects of CAR-T cells and reduce the incidence of 
severe cytokine release syndrome and related neurologic 
toxic effects [139]. Zhang et al. reported that the induced 
pluripotent stem cells could supply an infinite source for 
CAR-expressing macrophages, which have enhanced 
antitumor effects both in vitro and in vivo [140].

TME‑mediated drug resistance
Although the mechanisms of drug resistance induced 
by heterogeneity within the TME is distinct, some stud-
ies suggest that the TME is crucial in drug resistance, 
resulting in limited clinical benefit for patients with can-
cer [141]. A variety of factors contribute to determining 
the clinical responses, and distinguishing the three basic 
immune profiles is essential to enhance the patients’ 
responses to immunotherapy. (1) Inflamed TME: There 
are enormous numbers of infiltrating immune cells 
(especially  CD8+ T cells), high expression of PD-L1 and 
high level of inflammatory cytokines. The reason for 
drug resistance may be that T cells express other inhibi-
tory immune checkpoints [142, 143]. In this regard, a 
combination of immune checkpoint inhibitors could be 

Table 4 Results of currently approved CAR-T cell products for B-cell lymphoma

Cell product Target Cell dose Indication Clinical significance Complications References

Tisagenlecleucel 
(Kymriah)

CD19 0.1–6 ×  108 R/R DLBCL ORR 52%, CR 40%, PR 
12%

Cytopenias:32%
Infections:20%
NEs (grade 3 or 

worse):12%, 
CRS (grade 3 or 
worse):22%

[122]

Axicabtagene ciloleucel 
(Yescarta)

CD19 2 ×  106/kg R/R large B-cell lym-
phoma

ORR 83%, CR 58% Pyrexia:87%
Anaemia:68%
NEs (grade 3 or 

worse):32%
CRS (grade 3 or 

worse):11%

[123]

2 ×  106/kg R/R FL ORR 95%, CR 80% NEs (grade 3 or 
worse):19%

CRS (grade 3 or 
worse):11%

[124]

Brexucabtagene Auto-
leucel (Tecartus)

CD19 2 ×  106/kg R/R MCL ORR 85%, CR 58% Cytopenias:94%
Infections:32%
NEs (grade 3 or 

worse):31%, 
CRS (grade 3 or 
worse):15%

[125]

Lisocabtagene maraleu-
cel (Breyanzi)

CD19 50/100/150 ×  106 R/R large B-cell lym-
phoma

ORR 73%, CR 53% Neutropenia:60%
Anaemia:37%
Thrombocytopenia:27%
NEs (grade 3 or 

worse):10%, CRS 
(grade 3 or worse):2%

[126]
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selected. Emerging discoveries indicated that the combi-
nation of CTLA-4 and PD-1 blockers increased response 
rates and efficacy [144]. (2) Immune-excluded TME: 
The process of effector T cells infiltration is blocked by 
tumor blood vessels, stroma and other physical bar-
riers, eventually leading to drug resistance [142]. As a 
key barriers of immune infiltration into the TME, Tregs 
exclude pro-inflammatory cells from the TME and limit 
the activity of effector cells [145]. (3) Noninflamed TME 
(immune-desert TME): Such a TME is characterized by 
the presence of immunosuppressive cells and the absence 
of immune cells in the tumor tissue [142]. Hence, trans-
forming a “cold” (noninflamed) into a “hot” (inflamed) 
TME could be an ideal way to facilitate the infiltration, 
activation and proliferation of effector T cells [146].

TME characteristics with prognostic utility
Several studies have discovered that the composition of 
TME cells is highly relevant to the prognosis of B-cell 
lymphomas, such as cHL, DLBCL and FL [147]. Gener-
ally, CD163 is a biomarker of TAMs (M2 phenotype) in 
malignant tumors. It was reported that a higher level of 
 CD163+ and a higher  CD163+/CD68+ cell ratio were 
linked to poorer progression-free survival (PFS) and 
overall survival (OS) in DLBCL [148]. High expression 
levels of LAG3 in TAM-rich regions are associated with 
poorer OS [149]. It is reported that in high-grade lym-
phomas, like DLBCL and BL, TANs produce a prolifer-
ation-inducing ligand, the high expression of which is 
closely related to inferior OS [150]. In FL and DLBCL, 
increased NK cell infiltration is always  associated with 
a favorable prognosis [18]. A recent study proposed a 
novel prognostic risk model based on eosinophil counts. 
The results suggest that eosinophil counts facilitate anti-
CD19 CAR-T cell therapy and positively correlate with 
clinical outcomes in B-NHL [151].

A series of studies have proved that the prognos-
tic roles of the expression of PD-1 and PD-L1 remain 
unclear. Many investigators have found that PD-L1 
expression is related to an inferior prognosis. Kiyasu 
et  al. suggested that PD-L1+ tumor cells had shortened 
survival in patient with DLBCL, compared to those 
with PD-L1− tumor cells [152]. A meta-analysis sup-
ported that PD-L1 expression in tumor cells of DLBCL 
patients was significantly correlated with poor prog-
nosis [153]. However, Kwon et al. reported no prognos-
tic significance of PD-L1 expression in DLBCL patients 
treated with R-CHOP [154]. Additionally, Ishikawa et al. 
demonstrated that  PD-L1 expression on microenviron-
ment immune cells was strongly associated with better 
OS in patients with DLBCL [155]. Likewise, Pollari et al. 
reported that high expressions levels of PD-L1 on TAMs 

and TILs were related to prolonged survival in primary 
testicular lymphoma [156].

TME of B‑cell lymphoma in the era of novel technology
Single‑cell RNA sequencing (scRNA‑seq)
ScRNA-seq, a novel technology, could be used to com-
prehensively analyze cell type-specific transcriptomic 
changes, thereby deepening the understanding of hetero-
geneity in the TME [157]. The development of scRNA-
seq has significantly improved the ability to overview 
specific genes, but it cannot detect spatial information. 
The recently developed spatial transcriptome method 
can compensate for this shortcoming, which will facili-
tate the understanding of tumorigenesis and progression 
[158]. The databases with cancer scRNA-seq datasets for 
decoding and visualizing the functional status of cancer 
cells have been established, such as SC2disease [159], 
CancerSEA [160], Vascular Single Cells [161], PanglaoDB 
[162], Cell Marker [163], Animal Cell Atlas [164] and 
Alona [165].

Nanoparticle (NP)‑based immunotherapies
Due to the biological characteristics of NPs, they can 
be used to accurately deliver drugs [166]. The regula-
tory effects of NPs on the TME are reflected in the fol-
lowing aspects: (1) relieving the immunosuppressive 
TME with NPs modified by various ligands, (2) deliver-
ing tumor-associated antigens and adjuvants to stimulate 
antigen-presenting cells through NPs, thus enhancing 
the antitumor immune response, and (3) affecting the 
abnormal structure of the TME and reshaping the tumor 
immune microenvironment with NPs [167]. Notably, 
before nano-immunotherapy becomes a large-scale clini-
cal strategy, researchers need to be cautious about keep-
ing the balance between therapeutic benefit and toxicity 
risks. Owing to their superparamagnetic properties and 
high surface-to-volume ratios, the novel nanomaterials 
are engineered in clinical applications by enhancing the 
specificity of chemotherapy and controlling the release 
speed of drugs [168]. The NPs are considered to be an 
emerging dimension of immunotherapy research.

Other novel technologies
Given that there are numerous tumor-associated muta-
tions and phenotypic variations in tumors, explorations 
of targeting the TME with genetic therapies and armed 
oncolytic viruses could promote the tumor response or 
restrain tumor tolerance [169]. For instance, the hya-
luronidase-armed oncolytic virus could degrade the 
hyaluronan-rich matrix in an attempt to improve virus 
penetration and inhibit tumor growth in xenograft 
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models. A phase I clinical study also supports that hya-
luronidase-armed oncolytic viruses could modulate the 
TME more pro-inflammatory and alleviate potential tox-
icity and unwanted cytokine release [170]. TME–targeted 
therapies in combination with immunotherapies have 
emerged as a promising approach for cancer treatment. 
Modified second-generation CAR-T cells could remodel 
the immunosuppressive TME and revive exhausted T 
cells, which may further improve clinical efficacy [7].

Conclusions
In this review, we systematically summarize that the 
composition of the TME plays a vital role in various 
processes, including the progression, treatment, drug 
resistance and prognosis of B-cell lymphoma. Targeting 
TME components is expected to provide novel insights 
for the precise treatment of B-cell lymphoma. Neverthe-
less, there are still many unresolved issues, such as drug 
resistance and the feasibility of drug combination. Fur-
ther studies are warranted to verify and promote the clin-
ical applications of TME-based targeted therapy. A deep 
understanding of the contribution of the TME to B-cell 
lymphomas will help us provide patients with more feasi-
ble and effective treatment strategies.
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