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LETTER TO THE EDITOR

Homogeneously high expression of CD32b 
makes it a potential target for CAR-T therapy 
for chronic lymphocytic leukemia
Guoling Wang1,2†, Xiaolei Sun1†, Shiyu Zuo1, Chuo Li1, Qing Niu1, Yonghui Xia1, Yuan Meng1, Min Liu1, 
Zihao Fang3, Xi Yang3, Yanyu Jiang4, Sheng Wang5, Haidong Cui6, Huifang Huang7, Erlie Jiang1, 
Dongming Zhou8, Qi Deng4*, Jing Pan9* and Xiaoming Feng1,2,7*  

Abstract 

CD19 chimeric antigen receptor (CAR)-T cells have been used to treat patients with refractory chronic lymphocytic 
leukemia (CLL). However, approximately 50% of patients do not respond to this therapy. To improve the clinical 
outcome of these patients, it is necessary to develop strategies with other optimal targets to enable secondary or 
combinational CAR-T cell therapy. By screening a panel of surface antigens, we found that CD32b (FcγRIIb) was homo-
geneously expressed at high site density on tumor cells from CLL patients. We then developed a second-generation 
CAR construct targeting CD32b, and T cells transduced with the CD32 CAR efficiently eliminated the  CD32b+ Raji leu-
kemic cell line in vitro and in a mouse xenograft model. Furthermore, CD32b CAR-T cells showed cytotoxicity against 
primary human CLL cells that were cultured in vitro or transplanted into immunodeficient mice. The efficacy of CD32b 
CAR T cells correlated with the CD32b density on CLL cells. CD32b is not significantly expressed by non-B hematopoi-
etic cells. Our study thus identifies CD32b as a potential target of CAR-T cell therapy for CLL, although further modifi-
cation of the CAR construct with a safety mechanism may be required to minimize off-target toxicity.
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To the editor:
Chronic lymphocytic leukemia (CLL) is a hematologi-

cal neoplasm mostly diagnosed in the elderly. Refractory 
and relapsed (r/r) CLL patients have a poor prognosis 

with limited therapeutic options [1, 2]. Chimeric anti-
gen receptor (CAR)-T cells targeting CD19 have shown 
activity in CLL, but can only induce complete remission 
in about 30%-60% of the patients [3, 4]. It is essential to 
develop alternative targets for secondary or combina-
tional CAR-T cell therapies for CLL.

Since target antigen site density and expression per-
centage on tumor cells are critical determinants of 
CAR-T cell efficacy [5], we aimed to identify a target anti-
gen that was expressed at high levels on all CLL cells. The 
expression levels of B cell-associated antigens (CD19/
CD20/CD22/CD32) and 3 previously suggested targets 
(CD23/ROR1/FcμR) were examined on leukemic cells 
from CLL patients (Additional file  1: Table  S1). CD32 
(FCGR2) was expressed on 100%  CD5+CD19+ CLL cells 
from all patients, similar to CD19 (Fig.  1a, Additional 
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file  3: Fig. S1a). The average site density of CD32 was 
much higher than that of CD19 and the other antigens 
tested (Fig. 1b, Additional file 3: Fig. S1b). CD32 has three 
isoforms, CD32a, b, c; CD32b shares the same extracel-
lular domain with CD32c [6]. RNA sequencing revealed 
that leukemic cells and Raji cells expressed abundant 
CD32b and low levels of CD32c but little CD32a (Fig. 1c). 
A soluble scFv derived from the CD32b-specific antibody 
2B6 confirmed the homogeneously high expression of 
CD32b on CLL (Figs.  1d–f, Additional file  3: Fig. S1d). 
CD32b was not significantly expressed on hematopoi-
etic stem/progenitor cells and most mature blood cells, 
but was expressed in a small proportion of dendritic cells 
(Fig. 1g–h).

Second-generation CAR constructs with scFv derived 
from the CD32b-specific antibodies 2B6 and NOV2108 
were developed (Fig.  2a, b, Additional file  2). Since the 
CLL cell line MEC1 only partially expressed CD32, we 
used the Raji cell line, which had homogeneous CD32b 
expression, to evaluate the activity of CD32b CAR-T cells 
(Additional file  3: Fig. S2a, b). 2B6bbz showed slightly 
higher cytotoxicity against Raji cells than did 2108bbz 
in  vitro, and 2B6bbz T cells proliferated and strongly 
diminished the leukemia burden and prolonged survival 
in Raji-engrafted mice (Fig.  2c-i, Additional file  3: Fig. 
S2c, d).

In vitro cytotoxicity of 2B6bbz to primary CLL cells 
was higher than that of 2108bbz (Additional file  3: Fig. 
S3b). 2B6bbz T cells displayed similar anti-CLL cyto-
toxicity with CD19 CAR-T cells when the expression of 
CD19 and CD32 in leukemia was similar, and 2B6bbz was 
superior to CD19 CAR-T cells when the expression of 
CD32 in leukemia was higher than CD19 (Fig. 2j). More-
over, cytotoxicity of 2B6bbz T cells positively correlated 
with CD32 density across different samples (Fig. 2k).

The in  vivo anti-CLL activity of 2B6bbz T cells 
was assessed in NSG mice transplanted with patient 

samples (Fig.  2l). 2B6bbz T cells were as potent as 
CD19 CAR-T cells: they achieved complete clearance of 
CLL in 80% (8/10) of mice and showed robust prolifera-
tion in most mice (Fig. 2m-n, Additional file 3: Fig. S4b, 
c). Loss of CD32b expression was not observed (Addi-
tional file 3: Fig. S4d). Due to the limited persistence of 
CLL in mice, we could not evaluate whether 2B6bbz T 
cells could provide a long-term cure effect. Since this 
model has been widely used to evaluate the in vivo effi-
cacy of new drugs in CLL [7], our results indicate that 
CD32b CAR-T cells have potent cytotoxicity against 
CLL cells in vivo.

CD32b CAR-T cells may cause B cell aplasia, which 
can be managed with immunoglobulin infusion. Pre-
vious reports have shown the expression of CD32b in 
some normal tissues and cells, including airway smooth 
muscle cells, liver sinusoidal endothelial cells, Kupffer 
cells and placenta [8, 9], which may cause potential off-
target toxicities of CD32b CAR-T cell therapy. How-
ever, CD32b may still be an applicable target, since 
the potential off-target toxicity could be alleviated by 
decreasing CAR affinity for antigen or adopting a syn-
Notch or zipper safety gate, which has been validated in 
various CAR-T cell studies [10–12]. Therefore, it would 
be feasible to improve the safety of CD32b CAR-T cells 
based on these modifications.

In summary, our study identifies CD32b as an anti-
gen that is homogeneously expressed at high levels on 
CLL cells. CD32b CAR-T cells showed killing efficacy 
against primary CLL cells in  vitro and in  vivo. CD32b 
is therefore a promising target for CAR therapy in CLL, 
although further evaluation of off-target toxicities and 
optimization with safety modifications are needed 
before conducting clinical trials.

Fig. 1 CD32b is homogeneously expressed at high level on primary CLL cells, but not significantly expressed on non-B hematopoietic cells. a 
Expression (% positive) of CD32 (n = 41), CD19 (n = 41), CD20 (n = 33), CD22 (n = 29), CD23 (n = 29), ROR1 (n = 22) and FcμR (n = 22) in CLL samples 
(from CLL patients in Additional file 1: Table S1). b Evaluation for site density of CD32 and other antigens in CLL patients (sample size was the same 
as a) using Quantibrite-PE beads. c Transcriptional profile of Fcgr2a, Fcgr2b and Fcgr2c from 2 CLL samples and Raji cell line by RNA sequencing. 
d Flow cytometric analysis of surface expression of CD32, CD32b and CD19 in 7 CLL patients. e Expression (% positive) of CD32, CD32b and CD19 
in CLL patients (n = 7). f Site density comparison among CD32b, CD32 and CD19 in CLL patients (n = 7). Data in e–f belong to Pt 42–48, and 
the expression of CD32 and CD19 on samples from Pt 42–48 is not included in a–b. h Flow cytometric analysis of surface expression of CD32 
on peripheral blood cells and HSPCs  (CD34+  CD38− HSCs and  CD34+  CD38+ HPCs) from a healthy donor. i Flow cytometric analysis of CD32b 
expression on normal peripheral blood cells and HSPCs from a healthy donor. FPKM: expected number of Fragments Per Kilobase of transcript 
sequence per Millions base pairs sequenced. HSC, hematopoietic stem cell; HPC, hematopoietic progenitor cell; NK, natural killer; DC, dendritic 
cells. Data were representative of two independent experiments. Unpaired two-tailed Student’s t test was used for statistical analyses in a, b; paired 
two-tailed Student’s t test was used in e and f (*P < 0.05, **P < 0.01, ***P < 0.001)

(See figure on next page.)
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Abbreviations
CAR : Chimeric antigen receptor; CLL: Chronic lymphocytic leukemia; CR: 
Complete response; r/r: Refractory and relapsed; FcγRIIb: Low affinity immu-
noglobulin gamma Fc region receptor II-b; mAb: Monoclonal antibodies; 
scFv: Single-chain variable fragment; FPKM: Expected number of Fragments 
Per Kilobase of transcript sequence per Millions base pairs sequenced; PBMC: 
Peripheral blood mononuclear cell; PB: Peripheral blood; CC: Complete clear-
ance; NC: Not clearance; HSC: Hematopoietic stem cell; HPC: Hematopoietic 
progenitor cell; BM: Bone marrow; NK: Natural killer; DC: Dendritic cells.
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Additional file 1: Table S1. Patients’ information and expressional charac-
teristics of all antigens.

Additional file 2. Materials and Methods.

Additional file 3: Fig. S1. CD32 expresses higher than other antigens on 
primary CLL samples. a Flow cytometric analysis of surface expression of 
CD32, CD19, CD20, CD22, ROR1, FcμR and CD23 in 4 CLL samples. CLL cells 
were gated as  CD19+CD5+ cells. b Site density comparison between CD32 
and CD19 in CLL patients (n = 41). c Quantification of mRNA transcripts 
from Raji cells, THP-1 cells and leukemic cells of 2 CLL patients by RNA 
sequencing. d 293T cells were genetically modified to express CD32a and 
CD32b; cells (unmodified 293T,  CD32a+ 293T and  CD32b+ 293T) were 
stained with 2B6-scFv-Flag Ab, 2108-scFv-Flag Ab and anti-CD32 mAb 
(clone FUN-2). Fig. S2. CD32b CAR-T against Raji cells in vitro and in vivo. 
a Flow cytometry analysis of CAR expression in T cells following lentiviral 
transduction. Left, control T cells; middle, T cells transduced with 2B6bbz; 
right, T cells transduced with 2108bbz. CARs were detected by CD32b-His 
followed by an anti-His-APC second antibody stain. b Flow cytometric 
analysis of surface expression of CD32b on the B-cell leukemia cell lines 
Mec-1 and Raji. c Antigen-specific cytokine production in response to 
 CD32b+ Raji cells. 2B6bbz and control T cells were incubated with Raji cells 
(2 ×  104) respectively for 24 h in E: T ratio of 1:1. The various proteins in the 
culture supernatant were detected using the bead-based “LEGENDplex 
multi-analyte assay.” d Representative flow cytometric plot and flow gating 
strategy of peripheral blood from Raji-NSG mice 15 days after receiving 
2B6bbz or control T cells. Fig. S3. CD32b CAR-T had potent cytotoxicity 
to primary CLL. a Flow cytometry analysis of CAR expression in T cells 
following lentiviral transduction. Left, control T cells; left-center, T cells 

transduced with 2B6bbz; right-center, T cells transduced with 2108bbz; 
right, T cells transduced with CD19 CAR. CARs were detected by CD32b-
His/CD19-Fc followed by an anti-His-APC/anti-Fc second antibody stain. b 
Specific cytotoxicity of 2B6bbz, 2108bbz or control T cells after coculture 
with primary CLL cells for 36 h at the indicated E:T ratios; c Antigen-specific 
cytokine production of 2B6bbz, CD19 CAR-T and control T cells in response 
to 24 h co-culturing with primary CLL cells. Fig. S4. 2B6bbz T against 
primary CLL cells in vivo. a Flow cytometric analysis of tumor percentage in 
peripheral blood before T cells infusion. b Representative flow cytometry 
plot of bone marrow, spleen and peripheral blood, from CLL-NSG mice 
after receiving CAR-T cells for 18 days. c Treatment response of 2B6bbz and 
CD19 CAR-T cells against mice transplanted with different antigen density 
primary CLL cells. d Flow cytometric analysis of CD32 and CD19 expression 
on CLL cells from peripheral blood of NSG mice before and at 7 days after 
CAR-T infusion. e Quantification of the percentage of CLL cells in peripheral 
blood, bone marrow, spleen and liver from CC and NC CLL-NSG mice after 
receiving CAR-T cells for 18 days. f Number of CAR-T cells in peripheral 
blood, bone marrow, spleen and liver from CC and NC CLL-NSG mice after 
receiving CAR-T cells for 18 days. Fig. S5. mRNA expression profile of fcgr2b 
and fcgr2c in normal human tissues at mRNA level according to publicly 
available database (BioGPS: fcgr2b, http:// biogps. org/# goto= gener eport & 
id= 2213; fcgr2c, http:// biogps. org/# goto= gener eport & id= 9103)
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(See figure on previous page.)
Fig. 2 CD32b CAR-T efficacy against Raji cells and primary CLL cells. a Diagram indicating constructions of two CD32b CAR sequences (scFvs from 
clone 2B6 or NOV2108). b NOV2018 scFv binds Ig-like C2-type 1 domain of CD32b, whereas 2B6 binds binding domain of CD32b. c Cytotoxicity 
of CD32b CAR-T targeting Raji cells after incubation for 36 h at the indicated effector-to-target (E: T) ratios; control T cells were used as negative 
controls. d Schematic of the Raji xenograft model. NSG mice were injected via tail vein with 3 ×  105  luciferase+ Raji cells on day-5. Bioluminescent 
imaging was performed on day 0 to quantify engraftment and then weekly measured. Control T cells or 2B6bbz T cells (1 ×  106) were injected 
IV on day 0. e Representative bioluminescent imaging at day 0, 7, 14 and 42 after injection of Raji cells. f Flow cytometric analysis of Raji cells in 
peripheral blood from Raji-NSG mice (from e). g Bioluminescent signal for each treatment group over time. Data represent mean values of each 
group ± SD. h Log-rank survival curve was used for survival analysis of Raji xenograft mice treated by 2B6bbz or control T cells. Data of g and h 
were summarized from 4 independent experiments. (Control, n = 12; 2B6bbz, n = 14). i Flow cytometric analysis of CAR-T cells in peripheral blood 
from Raji-NSG mice (from e). j Specific cytotoxicity targeting of CLL by 2B6bbz and CD19 CAR-T cells after incubation with primary CLL cells for 36 h 
at the indicated E:T ratios; Three representative CLL patient examples are shown. k Correlation between 2B6bbz T cytotoxicity and CD32 density 
across different patient CLL samples. l Schematic of the primary CLL xenograft model. NSG mice were sublethally irradiated (150 cGy) on day -3 and 
injected with 2–4 ×  107 CLL PBMCs via the tail vein on day -3. Engraftment was confirmed by flow cytometry in PB around day 0. Mice were then 
injected with 5 ×  105 2B6bbz T, CD19 CAR-T cells or control T cells via the tail vein and bled weekly to quantify CLL burden. m Response of primary 
CLL-NSG mice treated with 2B6bbz T (CC, n = 8; NC, n = 2), CD19 CAR-T (CC, n = 4; NC, n = 6) or control T cells (NC, n = 10). n Number of CAR-T and 
tumor residue in PB, BM, liver and spleen from CLL-NSG mice after receiving CAR-T cells for 18 days. Data of m and n were summarized from four 
independent experiments. M indicates mouse. CC, complete clearance (defined as tumor residual less than 0.001% in all the tissues detected); 
NC, not clearance (mouse couldn’t be defined as CC); BM, bone marrow; PB, peripheral blood. Chi-square test was used for statistical analysis in 
m. Log-rank (Mantel–Cox) test was used for statistical analysis in h. Unpaired two-tailed Student’s t test was used for statistical analyses in g and j. 
Pearson correlation analysis was used in k. (*P < 0.05, **P < 0.01, ***P < 0.001)
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