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LETTER TO THE EDITOR

Integrated proteogenomic analysis revealed 
the metabolic heterogeneity in noncancerous 
liver tissues of patients with hepatocellular 
carcinoma
Haotian Liao1†, Jinpeng Du1†, Haichuan Wang1, Tian Lan1, Jiajie Peng2,3, Zhenru Wu4, Kefei Yuan1* and 
Yong Zeng1*   

Abstract 

Understanding the adjacent liver microenvironment of hepatocellular carcinoma (HCC) with possible metastasis 
tendency might provide a strategy for risk classification of patients and potential therapies by converting the unique 
metastasis-inclined microenvironment to a metastasis-averse one. In this study, we performed an integrated prote-
ogenomic analysis to have a comprehensive view on the heterogeneity of hepatic microenvironment contributing 
to HCC metastasis. Pairing mRNA-protein analysis revealed consistent and discordant mRNA-protein expressions in 
metabolism regulations and cancer-related pathways, respectively. Proteomic profiling identified three subgroups 
associated with the recurrence-free survival of patients. These proteomic subgroups demonstrated distinct features 
in metabolic reprogramming, which was potentially modified by epigenetic alterations. This study raises the point of 
metabolic heterogeneity in HCC noncancerous tissues and may offer a new perspective on HCC treatment.
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To the Editor,
Hepatocellular carcinoma (HCC) is an aggressive malig-
nancy characterized by high rate of relapse after sur-
gery due to intrahepatic metastasis. Nevertheless, there 
are still patients who undergo surgical resection having 
favorable outcomes with no detectable recurrence during 
follow-up, suggesting the heterogeneity in local microen-
vironment of noncancerous sites dictating the ability of 
a tumor to metastasize [1, 2]. On the other hand, HCC 

is usually present in the background of inflamed fibrotic 
and/or cirrhotic liver with extensive lymphocyte infiltra-
tion caused by chronic hepatitis, indicating that the met-
astatic propensity of HCC might be influenced by local 
tissue microenvironment of the host [3]. Indeed, several 
cellular and acellular components in liver microenvi-
ronment have been highlighted in the development or 
potential regression of HCC hepatic metastasis [4]. Based 
on the above reasons, understanding the liver micro-
environment with possible metastasis tendency might 
provide a strategy for risk classification of patients and 
potential therapies of metastatic HCC by converting the 
unique metastasis-inclined phenotype (MI) to a metasta-
sis-averse (MA) one.

To comprehensively understand the heterogeneity of 
hepatic microenvironment contributing to HCC metas-
tasis, we performed a proteogenomic analyses integrating 
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epigenomic, transcriptomic and proteomic data. A total 
of 77 noncancerous liver tissues from 77 HCC patients 
were selected in current study (Fig. 1a). After pathologi-
cal inspection and quality controls during library prepa-
ration, the availability of methylation, RNA-sequencing 
(RNA-seq) and proteome data for each HCC candidate 
is listed in Fig. 1a (lower panel), in which > 96% patients 
have all of the three omics data.

Initially, 6,350 proteins were identified by multiplexed 
tandem mass tag (TMT) mass spectrometry (MS) with 
an average of 5,331 in each sample. After removing pro-
teins with missing value in > 50% of the samples, 5,445 
proteins with imputed value were selected for the fol-
lowing analyses. Pairing transcriptomic and proteomic 
data from 74 patients resulted in 3,834 mRNA-protein 
pairs, which showed an overall correlation close to 0 
with only 16.1% (617/3,834) significant positive correla-
tions (multiple-test adjusted P < 0.01, Fig.  1b). This fact 
highly suggested a large amount of post-transcriptional 
modifications in noncancerous liver tissues. Table  S1 
(Additional file 3) listed the top 20 genes with the highest 
mRNA-protein correlations, among which a larger num-
ber of metabolism-related genes were identified, such 
as FN3KRP, GSTT1, AKR1C2, DPYS, SULT2A1 and 
GSTZ1. Strikingly, genes involved in various metabolic 
processes had the strongest positive mRNA-protein cor-
relations (Fig. 1c; Additional file 1: Table S2), which was 
consistent with the findings in HCC tumor tissues [5]. 
Notably, mRNA-protein pairs with significant discord-
ant expression were involved in various cancer-related 
pathways (Additional file 1: Fig. S1 and Table S2), which 
might be owing to the high level of somatic mutation 
burden in cirrhotic liver [6], potentially leading to the 
aberrant post-transcriptional regulation of these genes 
[7]. Despite that co-expression network analysis identi-
fied a major functional module consisting of multiple 
metabolic genes in RNA-seq network, no enrichment 
module was detected in proteomic network (Fig.  1d). 
These facts highlighted the necessity of using proteome 
data to reflect the authentic expression profile of liver 
microenvironment.

In order to evaluate the heterogeneity and homo-
geneity among noncancerous samples, we then per-
formed unsupervised clustering based on top 25% 

most varied proteins among the included samples 
(Additional file 1: supplementary methods and Fig. S2) 
and identified three subgroups among the 77 samples 
(Fig. 2a). While S1 and S2 patients have similar expres-
sion patterns, there is a perceptible difference between 
S3 and each of them (Kruskal–Wallis test). Clinico-
pathologic parameters such as higher AFP level, tumor 
thrombus and advanced TNM stages were more prom-
inent in S3 than the other two subgroups. Through 
manual curation (full list in Table S3, Additional file 3), 
we found that each subgroup was characterized by var-
ious level of metabolism-related proteins. For example, 
fructose-bisphosphate aldolase C, which is involved in 
numerous metabolism pathways [8], was ranked in the 
top 20 proteins in Fig. 2a (Additional file 3: Table S4). 
To explore this inter-sample heterogeneity, we quan-
tified the activity of a metabolic pathways in each 
subgroup using a pathway activity score algorithm as 
previously described [9]. Indeed, significant metabolic 
heterogeneity was found among these three subgroups, 
each of which demonstrated a unique profile of meta-
bolic activity (Fig.  2b). By dividing patients into two 
groups based on the occurrence of early relapse (within 
2 years after surgery), we found that the proportion of 
early relapse samples in S2 subgroups was significantly 
different from both S1 and S3 subgroups (Fig. 2c, left 
panel). Moreover, the proteomic subgroups signifi-
cantly had different recurrence-free survival within 
2  years after surgery (Fig.  2c, right panel). Multivari-
able analysis authenticated the role of proteomic sub-
groups as independent prognosticators after adjusted 
for clinicopathologic factors. After stratifying patients 
according to TNM stage, however, proteomic sub-
groups showed no correlation with patient prognosis 
(Fig. 2d, right panel), supporting the effect from tumor 
tissue on the molecular features of corresponding 
noncancerous liver tissue. Nevertheless, the propor-
tion of early relapse samples in S2 subgroups was still 
significantly different from both S1 and S3 subgroups 
regardless of tumor stages (Fig. 2d, left panel). Mean-
while, the abundance of p62 protein, high expression 
of which in non-tumor human liver has been proved 
to be able to predict rapid HCC recurrence after cura-
tive treatment [10], was also compared among these 

Fig. 1  The study design and correlation analyses between mRNA and proteome data. a Study workflow. b Distribution of correlations for 
mRNA-protein pairs across 74 samples (the red dashed line indicates the median value of mRNA-protein correlations). c GSEA enrichment 
analysis showed pathways with positive mRNA-protein correlations (Kolmogorov–Smirnov test, Benjamini–Hochberg adjusted P < 0.01. The mean 
correlation was shown in parentheses, which was followed by the adjusted P value. Individual proteins in each pathway were represented as bars 
on the x axis, in which golden bars indicate positive correlations, and purple ones indicate negative correlations). d Co-expression networks of 
protein and mRNA data respectively, based on Joint Random Forest (JRF) method

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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three subgroups. The result showed distributed differ-
ence of p62 abundance among proteomic subgroups 
(Fig.  2e), which further validated the findings in our 
survival analyses. Given that tumor thrombus is one 
of the most important recurrence-related factors, we 
compared proteomic profiles between samples with 
or without tumor thrombus, which revealed 447 dif-
ferentially expressed proteins (Fig.  2f ), among which 
31 metabolism-related proteins and p62 protein were 
identified. Moreover, Gene Set Enrichment Analysis 
(GSEA) also showed that the differentially expressed 
proteins were enriched in metabolism-related path-
ways (Fig. 2g). Based on the above, a crucial dysregula-
tion of metabolism was also observed in noncancerous 
tissues, which was similar with the situation in tumor 
tissues [5].

Although it was not the main purpose of this study, we 
also conducted a supervised analysis to identify repre-
sentative prognostic protein markers (Additional file  2: 
Fig. S3a), which resulted in two proteins, GNG7 (G Pro-
tein Subunit Gamma 7) and MCIDAS (Multiciliate Dif-
ferentiation And DNA Synthesis Associated Cell Cycle 
Protein), showing differential expression between MI 
and MA samples (defined by Budhu et  al. [3], see Sup-
plementary methods in Additional file 1). Using median 
as the cutoff (Additional file  1: Supplementary meth-
ods), both two proteins demonstrated significant pre-
dicting values on the recurrence-free survival, which 
was further confirmed by multivariable analysis (Addi-
tional file 2: Fig. S3b). Regarding the potential function 
of these two markers, tumors with high GNG7 showed 
significant upregulation of various pathways relevant 
to cell signaling and metabolism (Additional file  2: Fig. 
S3c), while those with high MCIDAS were featured with 
upregulation of pathways related to tumor progressions, 
cell cycle, immune response and metabolism (Additional 
file 2: Fig. S3d).

Intrahepatic metastasis of HCC is accompa-
nied by alterations in the immune status of the 
tumor-surrounding issue [3], suggesting the poten-
tial relationship between HCC recurrence and liver 
immune microenvironment. To further depict the 

microenvironment of the noncancerous livers, we enu-
merated cell subsets in each proteomic subgroup from 
transcriptomes. While S1 and S2 samples demon-
strated similar enrichment for each cell type, percepti-
ble difference was also found in the proportion of cell 
component between S3 and S1/S2 samples (Additional 
file  2: Fig. S4a). Since no difference in stroma scores 
was observed among the three subgroups (Additional 
file  2: Fig. S4c), the difference in microenvironment 
score (Additional file 2: Fig. S4d) was mainly contrib-
uted by the heterogeneity in immune cell infiltration 
(Additional file 2: Fig. S4b).

At the same time, we also evaluated the epigenetic reg-
ulation of gene expression by using methylation data. A 
total of 10,9624 differentially methylated regions (DMRs) 
across all autosomes were detected among the three sub-
groups (Additional file 2: Fig. S5a), the majority of which 
are located within intergenic regions (Additional file  2: 
Fig. S5b). Since hypermethylated DMRs are expected to 
be associated with decreased gene expression, we ana-
lyzed the potential effect of DMRs on mRNA and pro-
tein expressions using a Gaussian mixture model, which 
identified 1,664 proteins significantly attenuated by 
DMRs regions (Additional file  2: Fig. S5c), correspond-
ing to 43.4% of all the 3,834 genes analyzed. Intriguingly, 
these attenuated proteins were mainly enriched in vari-
ous metabolism pathways (Additional file  2: Fig. S5d), 
which highly suggested that expressions of these meta-
bolic proteins can be regulated by the methylation status 
of the corresponding genes, which led to the metabolic 
heterogeneity among the proteomic subgroups. Fig. S6 
(Additional file  2) demonstrated the overlaps of results 
from RNA-seq, methylation profiling and proteome 
analysis.

In summary, we proved the heterogeneity of HCC non-
cancerous tissues was caused by dysregulation of metab-
olism, which was potentially modified by epigenetic 
alterations and significantly correlated different survival 
outcomes. These findings revealed the potential of using 
metabolic inhibitors to prevent early recurrence of HCC 
after surgery.

(See figure on next page.)
Fig. 2  Proteomic stratification of samples included and their clinicopathologic relevance. a Heatmap for the differentially expressed proteins 
among the tree subgroups (n = 1,009, Kruskal–Wallis test, Benjamini–Hochberg adjusted P < 0.05). b Metabolic pathway activities in each proteomic 
subgroups, with statistically non-significant values (random permutation test P > 0.05) shown as blank. c Proportion of patients with early relapse 
in each subgroups (left panel, Fisher’s exact test); Kaplan–Meier curves for recurrence-free survival based on proteomic subgroups (right panel, 
Log-rank test). d Proportion of S1 and S3 subgroups with early relapse at different TNM stages (left panel, Fisher’s exact test); Kaplan–Meier curves 
for recurrence-free survival of S1 and S3 subgroups at different TNM stages (right panel, Log-rank test). e Quantifications of p62 protein in each 
subgroup (Kruskal–Wallis test). f–g The heatmap (f) and GSEA results (g) of significantly differentially expressed proteins (Kruskal–Wallis test, 
Benjamini–Hochberg adjusted P < 0.05) in patients diagnosed with or without tumor thrombus, among which the 31 differentially expressed 
metabolism-related proteins were labeled on the right side of the heatmap
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Fig. 2  (See legend on previous page.)
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