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Targeting extracellular matrix stiffness 
and mechanotransducers to improve cancer 
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Abstract 

Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts 
with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune 
evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and 
mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and 
stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the devel-
opment of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and 
effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on 
the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug 
resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progres-
sion. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM 
stiffness-induced oncogenic signaling, cancer progression and drug resistance.
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Introduction
The extracellular matrix (ECM) is a general scaffold to 
maintain tissues and organs homeostasis [1]. It is also 
a critical component of cancer microenvironment that 
supports tumorigenesis [2]. During tumor development 
and progression, the complex ECM network is estab-
lished by fibrillar or non-fibrillar collagens, elastin, pro-
teoglycans, glycoproteins, laminins, fibronectins and 
other matrix proteins. ECM not only provides nests for 
cancer and stroma cells, but also serves as a reservoir 
for growth factors and cytokines. Furthermore, ECM 

interacts with neighboring cells and initiates diverse 
cellular signaling cascades to promote tumor growth 
and metastasis. Collagens are the main components of 
ECM. Previous studies have demonstrated that many 
collagen proteins are overexpressed in human tumors, 
and correlated with poor prognosis in cancer patients 
[3]. While there are many collagen genes, ELN is the 
only gene encoding the elastin precursor tropoelas-
tin in humans [4]. Extracellular tropoelastin aligns on 
microfibrils scaffold and then assembles into elastic fib-
ers [4]. Except for collagens and elastin, the high molec-
ular weight polymer hyaluronan and its fragments play 
important roles in cancer development and progression 
by remodeling the tumor microenvironment and repro-
gramming cancer metabolism [5, 6]. Other substances 
within the ECM, such as laminins and fibronectins, also 
are critical for tumorigenesis [7, 8]. The diverse com-
ponents in the tumor ECM work in concert to promote 
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tumor growth, invasion and metastasis. These ECM 
components can be potential prognostic biomarkers 
and therapeutic targets for cancer.

The ECM is a complex structure that is dynamically 
remodeled by the synthesis and degradation of ECM 
proteins [9]. Cleavage of ECM components by matrix 
metalloproteinases (MMPs), adamalysins and meprins 
is an important mechanism of dynamic regulation of 
ECM abundance and structure [10]. During tumorigen-
esis, ECM breakdown may lead to the release of growth 
factors and cytokines that are sequestered by ECM, 
thereby inducing tumor cells growth, angiogenesis and 
inflammation. On the other hand, a change in the abun-
dance of ECM components contributes to different 
tissue density and stiffness. Accumulating evidences 
demonstrate that mammographic density is positively 
associated with breast cancer risk [11]. Matrix stiffen-
ing also contributes to increased cancer risk in fibrotic 
organs [12]. Indeed, ECM stiffening alone can induce 
the malignant transformation of mammary epithelial 
cells [13]. Similar effects of matrix stiffness are also 
detected in the carcinogenesis of liver, pancreas and 
other tissues [14–16]. Increased ECM stiffness may be 
another hallmark of cancer. While the ECM stiffness in 
the brain, lung, breast or pancreas is usually less than 
1000 Pa, it may reach 4–10 kPa in tumors at these sites 
[17].

Matrix stiffness is tightly regulated by cancer micro-
environment such as hypoxia [18, 19]. Meanwhile, sys-
temic health problem such as obesity may affect breast 
adipose microenvironment and raise the matrix stiff-
ness [20]. Matrix stiffening generates mechanical cues 
that act on stromal cells, parenchymal cells, premalig-
nant cells or cancer cells, and stimulate cell transdiffer-
entiation, autophagy, epithelial-mesenchymal transition 
(EMT), cell migration, invasion and metabolic repro-
gramming [21, 22]. Given that matrix stiffening may 
increase the risk of cancer development and progres-
sion, pharmacological intervention in matrix stiffness 
is emerging as an option for cancer prevention and 
treatment. A better understanding of the mechanisms 
underpinning the regulation of tumorigenesis by matrix 
stiffness is critical for identifying druggable targets in 
this process. Herein, we introduce recent advances in 
identifying the regulators of matrix stiffness and sum-
marize the progresses in elucidating the mechanisms 
underpinning the promotion of tumor development, 
progression and drug resistance by matrix stiffening. 
Based on these conceptual advances, we discuss what 
ECM stiffness-related targets may be of therapeutic 
potential for cancer patients. Insight into the matrix 
biology may inspire better therapeutic approaches for 
cancer.

The regulators of ECM stiffness
The ECM proteins collagens and elastin are critical con-
tributors to ECM stiffness. Activation of many key sign-
aling pathways such as TGFβ, insulin-like growth factor 
(IGF)/IGF1R and PI3K/Akt can promote the synthe-
sis of ECM proteins [23–27] (Fig.  1). The endoplasmic 
reticulum-resident protein Hsp47 is a molecular chaper-
one that promotes procollagens folding and processing. 
Increased Hsp47 expression may enhance the secretion 
of collagens into the ECM, thereby promoting collagens 
deposition. In addition, Hsp47 interacts with decorin, 
lumican and fibromodulin to promote their secretion 
into the ECM [28]. Secreted proteome acidic and rich 
in cysteine (SPARC) is another matrix chaperone that 
binds collagens in the ECM, prevents collagens degra-
dation, and facilitates correct collagens assembly [29]. 
Hence, both intracellular and extracellular chaperones 
are involved in the regulation of ECM proteins secretion 
and deposition.

Site-specific post-translational modification of colla-
gen is critical for the solubility and alignment of collagen. 
Both the density and the alignment of collagens or elas-
tin are critical determinants of ECM stiffness. Collagens/
elastin cross-linking and the highly organized matrix 
fibers are responsible for matrix stiffening [30, 31]. Stro-
mal cells-secreted lysyl oxidases (LOX) are the major 

Fig. 1  The regulation of ECM stiffness by tumor and stromal cells. 
Hypoxia or growth factors such as TGFβ can induce the expression 
of collagen/elastin cross-linking factors in tumor and stromal cells, 
leading to increased ECM stiffness. ECM stiffening reciprocally acts 
on tumor and stromal cells thereby generating a vicious cycling. M∅, 
macrophage; CAF, cancer-associated fibroblast; MSC, mesenchymal 
stem cell
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enzymes that catalyze covalent cross-linking of both col-
lagens and elastin [32–34]. Mechanistically, LOX-cata-
lyzed oxidative deamination of lysine and hydroxylysine 
residues in collagen and elastin precursors generates ally-
sine residues that react with other allysine or lysine resi-
dues to form cross-links [4]. The fibrogenic messenger 
TGF-β1 can induce LOX expression in diseases such as 
cancer. In addition, lysyl hydroxylase 2 (LH2) specifically 
hydroxylates lysine residues in collagen telopeptides, 
which is critical for the formation of stabilized cross-links 
[35]. Either tumor cells- or cancer-associated fibroblasts 
(CAFs)-secreted LH2 induces hydroxylysine aldehyde-
derived collagen cross-links in tumor stroma and then 
increases tumor stiffness [22, 36, 37]. LH2 is frequently 
overexpressed in various types of cancer. The transcrip-
tion factors HIF1A, SMADs and GATA3 directly induce 
LH2 expression [18, 35, 38]. Moreover, FK506 binding 
protein (FKBP) 65, a peptidyl-prolyl cis–trans isomer-
ase, interacts with LH2 and promotes its dimmerization, 
thereby enhancing collagen pyridinoline cross-linking 
[39]. FKBP10 also promotes collagen cross-linking by 
interacting with LH2 [40]. Besides, collagen cross-linking 
is regulated by tissue transglutaminases [41]. The joint 
promotion of collagen cross-linking by LOX and trans-
glutaminase synergistically increases tissue stiffness.

Furthermore, overexpression of collagen prolyl 
4-hydroxylase alpha-1/2 (P4HA1/2) in cancer cells and 
fibroblasts may increase collagen deposition [18, 42]. LH2 
co-operates with P4HA1/2 to increase matrix stiffness by 
enhancing the alignment of deposited collagen fiber [18]. 
In addition, the stellate cells in some tissues, such as pan-
creatic and hepatic stellate cells, contribute to hypoxia-
induced matrix stiffening by overexpression of LH2 [31]. 
HIF1A act as a master regulator of LOX, P4HA1/2 and 
LH2 to mediate the regulation of matrix stiffness by 
hypoxia [43]. On the other hand, matrix stiffening can 
promote hepatic stellate cells differentiation into myofi-
broblasts that produce matrix proteins, resulting in a 
vicious cycling [44]. Activated hepatic stellate cells also 
produce periostin, which is capable of up-regulating LOX 
and LOXL to facilitate matrix stiffening [45]. In contrast, 
fibronectin negatively regulates liver fibrosis and matrix 
stiffness by inhibiting hepatic stellate cells activation and 
response to TGFβ [46]. Hence, different matrix proteins 
may positively or negatively regulate ECM stiffness.

Rho-GTPases are members of the Ras homology pro-
teins family. Rho-associated protein kinase (ROCK) is 
another mediator of the cross-talk between tumor cells 
and microenvironment [47]. While Rho kinase (ROCK) 
is a mechanosensor of matrix stiffness, it also feed-for-
wards to increase tissue stiffness through β-catenin-
mediated synthesis of collagen, fibronectin and periostin 
[48, 49]. In addition, ROCK2 inhibits p21 expression 

but enhances NF-kB and tenascin C expression, indicat-
ing the up-regulation of tissue rigidity by ROCK2 [50]. 
However, one study indicates that treatment of KrasG12D/
p53R172H mice with a ROCK inhibitor leads to increased 
collagen in pancreatic ductal adenocarcinoma [51]. It 
remains unclear how to interpret these inconsistent roles 
of ROCK in regulating ECM stiffness. Further studies are 
warranted to address this issue.

In addition, matrix stiffness is regulated by oncogenes 
and tumor suppressor genes. The transcription factors 
Twist1 and ZEB1 are powerful oncogenes that promote 
EMT and cancer metastasis. ZEB1 can up-regulate LOX 
and LOXL2 expression by inhibiting miR-200, thereby 
promoting collagen cross-linking and matrix stiffening 
[52]. While the roles of Twist1 in cancer cells are well 
studied, little is known about the involvement of Twist1 
in tumor stroma cells. Overexpression of Twist1 not 
only promotes the fibroblasts-CAFs transition, but also 
increases matrix stiffness by promoting the expression 
of collagen type VI α1 chain in CAFs [53]. In addition, 
Twist1 may act as a mechanoresponser to matrix stiffness 
[54]. High matrix stiffness leads to the release of Twist1 
from GAP SH3 domain-binding protein 2 (G3BP2), 
thereby promoting Twist1 nuclear translocation and 
enhancing EMT in tumor cells [54]. These studies collec-
tively demonstrate that Twist1 integrates the matrix stiff-
ness-mediated cross-talk between CAFs and tumor cells.

In the tumor microenvironment, senescent mesenchy-
mal stem cells (MSCs) may increase collagen density and 
matrix stiffness [55]. On the other hand, tumor stiffness 
reciprocally regulates MSCs differentiation and repro-
grams mesenchymal stromal cells to enhance their pro-
tumorigenic activities [56]. Besides, many growth factors 
can stimulate ECM stiffness. Except for TGFβ, activa-
tion of platelet derived growth factor receptor-alpha 
in mammary fibroblasts leads to increased hyaluronic 
acid and collagen deposition in the mammary fat pad, 
thereby increasing mammary stiffness [57]. The interplay 
between ECM stiffness and growth factor signaling is 
critically involved in cancer progression, immune surveil-
lance and drug resistance.

The regulation of tumor growth and metastasis 
by matrix stiffness
Matrix stiffness may change the mechanical proper-
ties of tissues and tumors. Tumor cells and stromal cells 
can respond to the matrix stiffening-induced mechani-
cal signal by mechanosensors or mechanotransducers. 
ECM stiffening typically induces mechanical pertur-
bations of the lipid bilayer and activation of the TRP 
(transient receptor potential) family channels and Piezo 
channels, the evolutionarily conserved ion channels 
linking ECM stiffening-related mechanical force to cell 
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signaling pathways, especially the Ca2+-signaling in 
tumor and stromal cells [58–60]. The transmembrane 
receptor integrin, which can promote cancer stemness 
and drug resistance, is a mechano-signal transducer that 
can be activated by Piezo [61, 62]. The physical interac-
tion between the extracellular domain of integrins and 
ECM proteins induces the assembly of cytoplasmic com-
plexes consisting of scaffold proteins (vinculin, talin, pax-
illin, etc.), focal adhesion kinase (FAK), Src and PI3K/
Akt, thereby coordinating focal adhesion and cytoskel-
eton assembly with matrix mechanical cues [63]. Rap1 
GTPase also responds to matrix stiffening by stabilizing 
integrins and recruiting vinculin to focal adhesions [64]. 
In addition, ROCK activation may be induced by ECM 
stiffening and then promotes integrin signaling, MAPK 
activation and SNAIL stabilization [65–67]. Integrin, 
integrin-linked kinase (ILK), SNAIL and Src also up-
regulate the expression and activation of YAP, another 
critical mechanotransducer that can feed-forward to 
up-regulate Piezo1 expression [66, 68–71]. Of note, YAP 
does not always respond to stiff ECM [72]. The ECM 
stiffening-induced diverse signaling in tumor and stromal 
cells may promote tumor growth, angiogenesis, metasta-
sis, immune evasion and drug resistance (Fig. 2).

Stimulation of tumor growth by ECM stiffening
As described above, mammographic density is critically 
correlated with the development of breast cancer. Previ-
ous studies have uncovered many mechanisms under-
lying the promotion of mammary tumorigenesis by 
increased mammary stiffness. Matrix stiffness switches 
prolactin signals from physiological STAT5 activation to 
protumorigenic Src/FAK and MMP activation and pro-
motes the protumorigenic cross-talk between estrogen 
and prolactin in breast cancer cells [73, 74]. In addition, 
FAK-Rho-ERK signaling is involved in the promotion 
of mammary epithelial cells growth by matrix stiffness-
induced mechanical stimuli [75]. ECM stiffness also 
stimulates mammary epithelial cells proliferation by 
down-regulating miR-203 expression and up-regulating 
ZNF217-mediated Akt activation [76]. On the other 
hand, ECM stiffness may indirectly promote breast can-
cer cells proliferation by enhancing mesenchymal stem 
cells differentiation into CAFs [77].

Stellate cells are associated with fibrosis in liver and 
pancreas. Matrix stiffness may induce fibroblasts or stel-
late cells autophagy through integrin- and FAK-medi-
ated stabilization of AMPKα at focal adhesions, which 
promotes adjacent cancer cells growth [78]. Meanwhile, 
activation of RhoA-Akt-P300 axis by ECM stiffness pro-
motes the differentiation of hepatic stellate cells into 
myofibroblasts that enhance the outgrowth of metastatic 
liver cancer [14]. Angiogenesis is important for sustained 

tumor growth. ECM stiffness stimulates tumor angiogen-
esis by promoting the activation of splicing factors and 
then increasing the production of protein kinase C (PKC) 
βII and the extra domain-B splice variant of fibronec-
tin in endothelial cells [79, 80]. Furthermore, stiff ECM 
may promote nucleotide synthesis and tumor growth by 
preventing LATS1/2- and TRAF2-mediated degrada-
tion of phosphoribosyl pyrophosphate synthetase 1/2 
[81]. Together, these studies demonstrate that ECM stiff-
ness may promote tumor growth by jointly regulate both 
tumor and stromal cells.

Stimulation of cell migration and cancer metastasis by ECM 
stiffening
While ECM is supposed to be a barrier for cell migra-
tion, cancer cells or cancer-associated fibroblasts 
may secret proteases to remodel the ECM and break 
through the barrier. On the other hand, ECM can pro-
vide migration tracks to facilitate directional cancer 
cell migration [82]. As described above, ECM stiffen-
ing-induced mechanical stimuli may lead to increased 
actomyosin contractility in neighboring cells. Upon 
ECM stiffening, increased actomyosin contractility 
results in the activation of RhoA-mDia1 signaling and 

Fig. 2  Regulation of tumor angiogenesis, growth, metastasis, 
immune evasion and drug resistance by ECM stiffness. ECM 
stiffening-induced mechanical cues drive tumor cells proliferation, 
CAFs/stellate cells autophagy and endothelial cells growth, thereby 
stimulating angiogenesis and tumor growth. ECM stiffening also 
promotes cancer metastasis by inducing EMT and cancer cells 
migration. The promotion of macrophage polarization and T cells 
exhaustion by ECM stiffening contributes to immune evasion in 
cancer
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microtubule network remodeling, which allows adeno-
matous polyposis coli protein to recruit a set of RNAs 
to the contractile protrusions and promotes cell migra-
tion [83].

On the other hand, ECM stiffening can activate the 
mechanosensor Piezo1, which is a mediator of mechani-
cal force-induced cancer metastasis [84]. Downstream 
of integrin and Piezo1, YAP activation may promote cell 
migration by stimulating aerobic glycolysis and MMP-7 
expression [85, 86]. Besides, transient receptor potential 
vanilloid 4 (TRPV4) is another mechanosensitive ion 
channel that may act as a sensor of ECM stiffness [87]. 
TRPV4 can promote matrix stiffness-induced EMT by 
enhancing Akt activation and YAP/TAZ translocation 
into the nucleus [88].

ECM stiffness-induced mechanical forces also down-
regulate ubiquitin domain-containing protein 1 expres-
sion or redistribute ubiquitin domain-containing 
protein 1 to cell–cell contacts and prevent the associa-
tion between the E3 ubiquitin ligase β-TrCP and YAP1, 
thereby suppressing YAP1 degradation and facilitating 
ROCK2-dependent YAP1 activation, EMT, cancer cells 
migration and invasion [89, 90]. In addition, the stimula-
tion of EMT by ECM stiffness may be mediated by Twist1 
and discoidin domain receptor 2, which is up-regulated 
by p300-c-Myb-LEF1 axis [54, 91].

Ephrin receptor is another cell membrane protein that 
mediates ECM stiffness-induced EMT and cancer metas-
tasis. Ligand-independent activation of ephrin receptor 
EPHA2 by matrix stiffening leads to LYN kinase-medi-
ated Twist1 phosphorylation and nuclear transloca-
tion, thereby promoting EMT, cancer cells invasion and 
metastasis [92]. Matrix stiffness promotes liver cancer 
metastasis by integrin- and TGFβ-mediated up-regula-
tion of Snail [21]. Furthermore, the metastatic potential 
of cancer cells may be heterogenous in a microenviron-
ment with stiff ECM. Cancer cells with increased viscos-
ity have greater invasive potential [93].

While a stiff ECM may promote cancer progression by 
integrin-, FAK- and YAP/TAZ-mediated signaling, it is 
also reported that a soft ECM can stimulate cell invasion 
by inhibiting cell adherence and upregulating the secre-
tion and activation of MMP [94]. Moreover, depletion of 
the epithelial cell-associated vacuolar ATPase ‘a2’ isoform 
in mammary gland renders breast tumors being soft but 
highly metastatic [95]. Although the defective ECM gly-
cosylation and cross-linking may be responsible for the 
low ECM stiffness in this model, it is still unclear whether 
other ECM stiffness-independent effects contribute to 
the pro-metastasis effect of epithelial cell-associated 
vacuolar ATPase ‘a2’ isoform depletion. Nevertheless, it 
warrants further studies to uncover how cancer cells may 
adapt to changes in the ECM stiffness.

The promotion of cancer drug resistance by ECM 
stiffening
Since the EMT program is a critical contributor to anti-
cancer drug resistance [96], it is not surprising that ECM 
stiffness may regulate the response to cancer therapy. 
Previous study has demonstrated that ECM stiffness 
induces EMT and paclitaxel resistance in pancreatic can-
cer [97]. Of note, many mechanisms may be involved in 
the regulation of cancer drug resistance by ECM stiff-
ness. The long noncoding RNA nuclear paraspeckle 
assembly transcript 1 is responsive to a stiff ECM, lead-
ing to increased paraspeckle that contributes to chemo-
therapy resistance [72, 98]. In addition, the triple negative 
breast carcinoma cells MDA-MB-231 exhibit ECM stiff-
ness-dependent resistance to doxorubicin due to YAP 
activation [99]. Also, the sensitivity of hepatocellular car-
cinoma and ovarian cancer cells to platinum therapy can 
be reduced by a stiff ECM through integrin-, FAK-, Akt-, 
STAT3- and YAP-dependent mechanisms [100, 101]. 
Another mechanism of ECM stiffness-dependent sen-
sitivity to genotoxic drugs involves DNA double-strand 
breaks repair efficiency [98]. The activity of MAP4K4/6/7 
is higher in soft ECM-surrounded cancer cells com-
pared with stiff ECM-neighboring cells, which results in 
elevated ubiquitin phosphorylation, impaired ubiquitin 
signaling at DNA double-strand breaks sites, DNA repair 
deficiency and increased sensitivity to genotoxic agents 
[102]. However, another study indicates that a stiff ECM 
may sensitize triple negative breast carcinoma cells to 
chemotherapy by enhancing proapoptotic JNK activity, 
while triple negative breast carcinoma cells surrounded 
by a soft ECM may be resistant to chemotherapy as a 
result of elevated NF-κB activity and decreased JNK 
activity [103]. This paradigm highlights the plasticity of 
cancer cells in adaptation to changes in ECM stiffness.

Metformin is an anti-diabetes drug that also has anti-
cancer effects [104]. ECM stiffening compromises the 
up-regulation of PTEN and down-regulation of Akt 
activity by metformin, leading to metformin resistance 
[105]. Moreover, ECM stiffness can affect the sensitivity 
of cancer cells to molecular-targeted agents. Sorafenib 
is one of the first-line systemic therapies for advanced 
hepatocellular carcinoma [106]. The sensitivity of hepa-
tocellular carcinoma cells to sorafenib is reduced in a stiff 
microenvironment, due to the activation of integrin-JNK 
signaling [107]. As described above, tissue stiffness can 
promote angiogenesis [79]. Recent study also demon-
strates that increased ECM stiffness in colorectal liver 
metastasis may enhance anti-angiogenic therapy resist-
ance [108]. Besides, increased ECM stiffness reportedly 
promotes breast cancer cells resistance to the HER2 
inhibitor lapatinib and melanoma cells resistance to the 
BRAF inhibitor vemurafenib [109, 110]. Collectively, 
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these studies demonstrate that ECM stiffness is a deter-
minant of the response to pathways-targeted anticancer 
agents.

The regulation of cancer immunity by ECM stiffness
Immune checkpoints blockade is another treatment for 
cancer [111, 112]. Evasion of the immune surveillance 
is critical for tumor growth. The mechano-signal trans-
ducers Piezo1, integrin and YAP are tightly involved 
in cancer immunity [113, 114]. Given that the mecha-
notransducer integrin may activate TGFβ and promote 
immune evasion [114], ECM stiffening may promote 
immune evasion in cancer. Programmed death-ligand 1 
(PD-L1) can help cancer cells resist immune surveillance. 
Stiff ECM may enhance PD-L1 expression in cancer cells. 
ECM stiffening-induced increase in extracellular pres-
sure often leads to hypoxia. It is unclear whether the 
up-regulation of PD-L1 by stiff matrix is dependent on 
YAP/TAZ or HIF1A, which positively regulates PD-L1 
expression [115–117]. Together with autocrine TGFβ 
signaling, high collagen density and ECM stiffening may 
reduce the abundance and function of cytotoxic T cells in 
tumors [118]. Besides, high collagen density and Piezo1 
activation may promote macrophages polarization and 
enhance their immunosuppressive phenotype, leading 
to reduced cytotoxic T cells abundance and proliferation 
[113, 119, 120]. ECM stiffness is negatively correlated 
with T cells infiltration in tumors and the efficacy of PD1 
blockade therapy [121]. Meanwhile, collagen may directly 
promote CD8+ T cells exhaustion through interacting 
with CD17 and LAIR1 [122]. Hence, high collagen den-
sity may directly or indirectly promote immune evasion 
and immunotherapy resistance in cancer. The regulation 
of other immune checkpoints by ECM stiffening remains 
to be studied.

While the above-mentioned studies suggest that 
Piezo1 and integrin may contribute to immune eva-
sion in cancer, other studies also indicate that integrin 
is critical for T cells activation [123]. In addition, pre-
vious studies suggested that Piezo1 might be involved 
in T cells activation [124]. However, recent study in an 
animal model of experimental autoimmune encepha-
lomyelitis demonstrates that Piezo1 deletion in T cells 
does not affect effector T cells function but paradoxi-
cally expand the pool of immunosuppressive regulatory 
T (Treg) cells, suggesting that activation of Piezo1 in T 
cells may enhance immune response in this autoimmune 
disease [125]. The same study also finds that deletion of 
Piezo1 in Treg cells may inhibit immune response [125]. 
Besides, dendritic cells are critical for activating T cells 
and evoking an immune response [126]. While increased 
extracellular pressure may promote dendritic cells matu-
ration and CD4+ T cell proliferation [127], one study 

indicates that increased substrate stiffness appears to 
hamper the ability of dendritic cells to evoke immune 
response in vitro [128]. Another study also demonstrates 
that mechanical stiffening inhibits the migration of den-
dritic cells [129]. In contrast, one study indicates that an 
increase in mechanical stiffness may promote the activa-
tion of dendritic cells during cancer immunotherapy by 
activating the mechano-signal transducers Piezo1 and 
TAZ [130]. Together, these studies indicate that the roles 
of ECM stiffness in immunity are complex and immune 
cell type-dependent. The effects of ECM stiffening on 
immune surveillance may be dependent on the balance 
among diverse pathways in different cell types. It war-
rants further studies to address and clarify the effects of 
ECM stiffness on immune surveillance and cancer immu-
notherapy in more relevant in vivo models.

The targets and drugs for intervention in ECM 
stiffness
Since the rigid and cross-linked ECM not only promotes 
tumorigenesis but also impairs the intratumoral distri-
bution of immune cells and anticancer drugs, target-
ing ECM stiffness may be a strategy to treat cancer and 
overcome drug resistance. Previous studies have dem-
onstrated that some of the regulators of ECM stiffness, 
the mechanosensors and mechanotransducers are drug-
gable. Since fibrillar collagen is a major contributor to 
increased ECM stiffness, direct depletion of collagen by 
recombinant collagenase has emerged as potential cancer 
therapeutics. In addition, the inhibitors of Hsp47, LOX, 
LOXL2, LOXL3, integrin, Piezo1, TRPV4, ILK, YAP/
TAZ and TEAD have been developed (Fig.  3). Many of 
these inhibitors show anticancer activities in preclinical 
studies.

Collagen chaperone‑targeted agents
Given the essential roles of Hsp47 in the folding, secre-
tion and assembly of collagens, Hsp47 may be a potential 
target for the treatment of ECM-related disorders such 
as fibrosis and cancer. TGFβ can induce the expression 
of Hsp47. The TGFβ inhibitor pirfenidone can inhibit 
Hsp47 and collagen expression, which may contrib-
ute to the antifibrotic effect of pirfenidone [131]. The 
small molecule AK778 and its cleavage product Col003 
can inhibit the interaction between Hsp47 and colla-
gen, thereby destabilizing the collagen triple helix and 
suppressing its secretion [132]. Other virtual screen-
ing identified some compounds that may interrupt the 
interaction between Hsp47 and collagen [133]. One of 
these compounds, methyl 6-chloro-2-oxo-2,3-dihydro-
1,2lambda ~ 4 ~ ,3-benzodithiazole-4-carboxylate, shows 
antifibrotic effect [134]. In addition, preclinical stud-
ies have demonstrated that vitamin A-coupled lipid 
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nanoparticles containing siRNA against Hsp47 could 
inhibit hepatic, pulmonary and pancreatic fibrosis [135, 
136]. The safety of ND-L02-s0201 injection, a vitamin 
A-coupled lipid nanoparticle containing siRNA against 
Hsp47, has been evaluated in healthy humans and sub-
jects with hepatic fibrosis (Table 1). While the anticancer 
effect of vitamin A-coupled lipid nanoparticle contain-
ing siRNA against Hsp47 is unclear, the PEGylated pol-
yethylenimine-coated gold nanoparticles containing 
all-trans retinoic acid and siRNA against HSP47 could 
inhibit ECM deposition, enhance drug delivery to pan-
creatic tumors and improve chemotherapy efficacy [137]. 
Overall, the development of Hsp47 inhibitors is still in 
its infancy. It deserves further studies to determine the 
safety and efficacy of these identified Hsp47 inhibitors in 
cancer therapy. While SPARC is also a chaperone for col-
lagens, it has anticancer effects and adipogenesis-inhib-
iting function [138]. Therefore, it appears that SPARC 
inhibition is not an appropriate option for cancer therapy.

Preclinical and clinical development of Lysyl 
oxidase‑targeted agents
Given that lysyl oxidases are critical inducers of ECM 
rigidity, inhibition of lysyl oxidases is a promising 

approach to reduce matrix stiffness. Both pan-LOX 
family inhibitors and specific inhibitors of a LOX fam-
ily member have been developed [139, 140]. These LOX 
inhibitors exhibit anticancer effects in preclinical stud-
ies. β-aminopropionitrile (β-APN) is a pan-LOX inhibi-
tor that can suppress the migration and invasion of breast 
cancer cells [141]. However, prolonged treatment with 
β-APN may have adverse effects such as aortic injury 
and osteolathyrism, which precludes the administra-
tion of this compound in clinic. Instead, PXS-5505 is 
another pan-LOX inhibitor that has been proved safe in 
phase I clinical trial. A phase I/IIa study has been initi-
ated to evaluate the safety and tolerability of PXS-5505 
in patients with primary, post-polycythemia vera or 
post-essential thrombocythemia myelofibrosis (Table 1). 
Moreover, some dual LOX/LOXL2 or LOXL2/LOXL3 
inhibitors have been developed. The aminomethyl-
enethiophene scaffold-bearing  inhibitor CCT365623 is 
a dual LOX/LOXL2 inhibitor that can suppress breast 
cancer growth and metastasis [142]. The indole-based 
fluoroallylamine PXS-51020A and PXS-5153A are 
LOXL2/LOXL3 inhibitors have antifibrotic activity in 
preclinical models of liver and lung metastasis [143, 144]. 
In addition, preclinical studies have demonstrated that 
PAT-1251/GB2064, a highly selective LOXL2 inhibitor 
based on a benzylamine with 2-substituted pyridine-4-yl-
methanamines, has collagen accumulation-lowering and 
tumor-suppressing effects [145]. After phase I clinical 
trial of PAT-1251 demonstrated that it was well tolerated, 
a phase IIa trial in patients with myelofibrosis has been 
initiated (Table  1). Another pan-LOX inhibitor PXS-
5382A has also been tested in healthy volunteers.

Simtuzumab is a humanized IgG4 monoclonal anti-
body against LOXL2. Although this drug shows pre-
clinical promise and well tolerability, phase II studies of 
simtuzumab have demonstrated that it has no clinical 
benefit in patients with idiopathic pulmonary fibrosis, 
primary myelofibrosis, post-polycythemia vera myelofi-
brosis, post-essential thrombocythemia myelofibrosis, 
advanced fibrosis caused by non-alcoholic steatohepati-
tis, metastatic pancreatic adenocarcinoma and metastatic 
KRAS mutant colorectal carcinoma [146–149]. So far, the 
prospect of simtuzumab in cancer therapy remains to be 
poor.

Preclinical and clinical development of Piezo1‑, TRPV4‑ 
or integrin‑targeted agents
Except for the regulators of collagen and elastin cross-
linking, mechanosensors or mechanotransducers may 
be alternative targets for intervention of ECM stiffness-
induced signaling. The mechanosensor Piezo1 not only 
mediates the effects of ECM stiffness on cancer cells, but 
also contributes to ECM rigidity-induced expansion of 

Fig. 3  The antagonists of ECM stiffness regulators and 
mechano-signal transducers. Some of the inhibitors of collagen 
chaperone Hsp47, lysyl oxidases, mechanosensors Piezo1 and TRPV4, 
mechanotransducers integrin, ILK, FAK, YAP and TEAD are shown



Page 8 of 15Jiang et al. Journal of Hematology & Oncology           (2022) 15:34 

immunosuppressive myeloid cells [113]. While gadolin-
ium and ruthenium red can inhibit Piezo1, the tarantula 
venom-derived peptide GsMTx4 is more selective inhibi-
tor of Piezo1 and other cationic mechanosensitive ion 
channels [150]. Although GsMTx4 can suppress immune 
evasion in cancer [113], its effects on tumor growth and 
metastasis remain elusive. It warrants further studies to 
develop small-molecule inhibitors of Piezo1 or monoclo-
nal antibodies against Piezo1.

Besides Piezo1, another mechano-sensitive ion 
channel TRPV4 is involved in tumor progression. 
TRPV4 antagonists, such as HC-067047, RN-1734, 
RN-9893, GSK2193874, PF-05214030, GSK2798745 
and GSK3491943, have been developed in recent years 
[151, 152] (Fig.  3). Among them, GSK2798745 is the 
first TRPV4 blocker that has been evaluated in clini-
cal trial. Early phase clinical trial has demonstrated 
that GSK2798745 is safe and well tolerated in humans 
[153]. While TRPV4 promotes cancer cells proliferation, 

migration and extravasation, activation of TRPV4 in 
endothelial cells suppresses vascular endothelial growth 
factor signaling, normalizes tumor vasculature, inhibits 
tumor growth and metastasis, and improves cancer ther-
apy [154, 155]. It is unclear whether the normalization of 
tumor vasculature is a unique function of TRPV4 but not 
other mechanosensors. In addition, activation of TRPV4 
inhibits glioma by inducing lethal mitophagy [156]. 
Pharmacological activation of TRPV4 by GSK1016790A 
also induces melanoma and breast cancer cells death 
and inhibits breast tumor growth [157, 158]. Hence, the 
effects of TRPV4 may be cell type- or cancer type-spe-
cific. The potential validity of TRPV4 agonists or antag-
onists in cancer therapy needs more studies. Of note, 
systemic administration of TRPV4 agonists may have 
severe effects that preclude clinical application [159].

As mentioned above, integrin is a critical mechano-
signal transducer that mediates the tumor-promoting 
effects of ECM stiffening. Therefore, targeting integrin 

Table 1  The clinical trials of drugs targeting LOX, Hsp47, integrins, YAP1 or TRPV4 (clinicaltrials.gov)

Trial ID Target Drug Combination Conditions Phase Estimated 
or actual 
enrollment

Status/results

NCT04676529 Pan-LOX PXS-5505 None Myelofibrosis I/IIa 24 N.A

NCT02852551 LOXL2 PAT-1251 None Healthy adults I 78 This compound was 
well tolerated [140]

NCT04305496 LOXL2 PAT-1251 None Myelofibrosis II 21 Recruiting

NCT04183517 LOX PXS-5382A None Healthy adults I 18 N.A

NCT01369498 LOXL2 Simtuzumab Ruxolitinib Myelofibrosis II 54 Simtuzumab alone or 
the addition of simtu-
zumab to ruxolitinib 
did not have clinical 
benefit [149]

NCT01472198 LOXL2 Simtuzumab Gemcitabine Pancreatic cancer II 250 The addition of simtu-
zumab to gemcitabine 
did not improve clini-
cal outcomes [146]

NCT01858935 Hsp47 ND-L02-s0201 injec-
tion

None Healthy adults I 56 Completed

NCT00689221 Integrin Cilengitide Temozolomide & 
radiotherapy

Glioblastoma III 545 The addition of cilen-
gitide to temozolo-
mide chemoradiother-
apy did not improve 
outcomes [161]

NCT04177108 Integrin ATN-161 Carboplatin Malignant glioma I/II 82 Completed

NCT00066196 Integrin MEDI-522 Dacarbazine Metastatic mela-
noma

II 110 Completed

NCT00401570 α5β1Integrin Volociximab Gemcitabine Metastatic pancre-
atic cancer

II 40 Completed

NCT04590664 YAP1 Verteporfin None Glioblastoma I/II 24 Recruiting

NCT03033225 YAP1 Verteporfin Photodynamic 
therapy

Advanced pancreatic 
carcinoma

II 30 Recruiting

NCT02119260 TRPV4 GSK2798745 None Healthy subjects and 
heart failure patients

II 61 This compound is safe 
and well tolerated 
[153]
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is an approach to unleash the effects of ECM stiffness 
on tumorigenesis. Preclinical studies have demon-
strated that integrin inhibitors could significantly sup-
press tumor growth and metastasis [160]. Cilengitide is 
a selective αvβ3/αvβ5 integrin inhibitor that has been 
assessed in phase III clinical trial for treating glioblas-
toma. Although cilengitide shows preclinical promise, 
the phase III trial demonstrates that cilengitide does 
not improve the effects of temozolomide on glioblas-
toma [161]. Randomized phase II study indicated that 
the effect of cilengitide and docetaxel on advanced 
non-small-cell lung cancer was similar [162], while it 
remains to know whether the addition of cilengitide to 
docetaxel may have clinical benefit. The α5β1-targeted 
peptide ATN-161 also showed no therapeutic benefits 
in clinical trials. Although other integrin-targeted 
agents including the anti-αVβ3 antibody etaracizumab 
(MEDI-522), the anti-α5β1 integrin antibody volocixi-
mab, the anti-αV antibodies intetumumab and abitu-
zumab have been developed and assessed in phase I/
II clinical trials, most of these trials are disappointing, 
and none of them have been tested in phase III trials. 
These data indicate that the roles of integrin in cancer 
may be much complex than expected. Since many inte-
grins are also expressed in immune cells, we need to 
consider the effects of integrin inhibitors on immune 
surveillance. One study indicated that treatment with 
cilengitide might enhance the tumor-promoting M2 
macrophages and reduce CD8(+) T cells [163]. It 
remains to know whether combination of integrin and 
immune checkpoints inhibitors has clinical benefits. 
In addition, low dose of cilengitide may paradoxically 
induce angiogenesis [164]. The pure αVβ3 antagonists 
TDI-4161 and TDI-3761 do not have such paradoxical 
effects [164]. It warrants further studies to determine 
the anticancer effects of these agents.

ILK is a critical regulator intracellular integrin sign-
aling. Several ILK inhibitors have been developed and 
evaluated in preclinical studies. Recently, the tripep-
tides that mimic a fragment of alpha parvin, one of 
the ILK-interacting proteins, have been generated to 
interfere with ILK activity [165]. Other ILK inhibitors 
include N-methyl-3-(1-(4-(piperazin-1-yl)phenyl)-5-
(4′-(trifluoromethyl)-[1,1′-biphenyl]-4-yl)-1H-pyrazol-
3-yl)propanamide and QLT0267 [166, 167]. Preclinical 
studies have demonstrated that N-methyl-3-(1-(4-
(piperazin-1-yl)phenyl)-5-(4′-(trifluoromethyl)-[1,1′-
biphenyl]-4-yl)-1H-pyrazol-3-yl)propanamide and 
QLT-0267 have anticancer activities in  vitro and 
in  vivo. So far, no ILK inhibitors have been tested in 
clinical trials for cancer therapy.

Preclinical and clinical development of YAP/TAZ‑targeted 
agents
YAP and TAZ are important mechanotransducers 
that mediate the pro-tumor effects of ECM stiffening, 
although ECM rigidity may also have YAP/TAZ-inde-
pendent effects. Verteporfin has been widely used as a 
YAP inhibitor and photosensitizer. Preclinical studies 
have demonstrated that verteporfin can effectively inhibit 
a various types of cancer [168]. Phase I/II clinical stud-
ies of photodynamic therapy with verteporfin or liposo-
mal verteporfin (Visudyne) has been completed or being 
conducted in patients with recurrent high-grade EGFR-
mutated glioblastoma or advanced pancreatic carcinoma 
[169] (Table 1).

YAP/TAZ often interacts with the TEA domain 
(TEAD) family proteins to regulate target genes expres-
sion. Pharmacological inhibition of YAP/TAZ-TEAD 
interaction is an approach to suppress YAP/TAZ sign-
aling. K-975 is a selective TEAD inhibitor that binds to 
a cysteine residue in the palmitate-binding pocket of 
TEAD and inhibits YAP/TAZ-TEAD interactions [170]. 
Preclinical study demonstrates that K-975 can inhibit 
malignant pleural mesothelioma [170]. Flufenamic acid 
is another disruptor of YAP-TAZ/TEAD interaction. In 
addition, many compounds that target different pockets 
in TEAD to block YAP-TAZ-TEAD interactions have 
been developed. Of note, YAP and TAZ are not only tran-
scriptional coactivators of TEAD, but also the coactiva-
tors of AP1 and STAT3 [171]. Hence, inhibition of YAP/
TAZ-TEAD interactions may be not enough to abrogate 
YAP-TAZ signaling. An alternative approach is reducing 
YAP/TAZ protein levels by targeted protein degradation 
using proteolysis targeting chimeras (PROTACs) [172]. 
The PROTAC technology has already shown promise in 
cancer therapy. Some of the small molecule PROTACs 
have been evaluated in phase I clinical trials.

Conclusions and perspectives
ECM stiffening coupled with ECM remodeling con-
stitutes a vicious cycle that drives cancer progression. 
Increased ECM stiffness triggers mechanotransducing 
signal to stimulate the secretion of MMP from cancer and 
stromal cells. Elevated MMP activity promotes the degra-
dation and reorganization of ECM components. Hence, 
ECM stiffness may be highly dynamic in cancer. The 
mechanotransduction-linked ECM remodeling is criti-
cal for the activation of cancer-associated stromal cells, 
tumor angiogenesis, immune evasion, tumor cells migra-
tion and invasion. ECM stiffness-related mechanical 
cues impinge on the cytoskeletal contractility of tumor 
and stromal cells. While integrins and focal adhesion 
dynamics are key mediators of ECM stiffening-induced 
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cancer progression, it remains to identify other players in 
responding to increased ECM stiffness and enabling the 
mechanosignal transduce to all components in the tumor. 
Meanwhile, it warrants further studies to determine 
the mechanisms underpinning the regulation of can-
cer microenvironment, immune surveillance and cancer 
metastasis by ECM stiffness.

Given the important roles of ECM stiffness in cancer 
progression, detection of tumor stiffness may help to 
predict the prognosis of cancer patients. Noninvasive 
measurement of tissue stiffness can be achieved by shear 
wave elastography, magnetic resonance elastography and 
transient elastography. These techniques have demon-
strated the correlation between tissue or tumor stiffness 
and clinicopathological characters. In addition, previous 
study indicates that collagen density is positively corre-
lated with ECM stiffness [173]. While total collagen and 
immature collagen cross-links can be measured by mass 
spectroscopy-based techniques, the density and organi-
zation of collagen in tissues can be detected by picrosir-
ius red staining viewed under polarized light microscopy 
[174]. It warrants further studies to determine the util-
ity of elastography and measurements of collagen den-
sity in cancer diagnosis, staging, classification and 
prognostication.

The biophysical effects of ECM stiffness on cancer may 
interfere with drug delivery and the sensitivity to antican-
cer agents. Hence, detection of tumor stiffness may help 
stratification of patients for therapy. Collagenase can be 
utilized to directly deplete collagen, reduce ECM stiff-
ness, improve drug penetration and sensitivity in tumor. 
However, there is concern about the safety of systemic 
collagenase treatment. The safety and bioavailability of 
recombinant collagenase may be improved by taking 
advantage of advanced biomaterials and drug delivery 
technologies [175]. An alternative approach is suppress-
ing collagen synthesis and assembly. Inhibitors of TGFβ, 
integrins and YAP/TAZ can reduce collagen synthesis. 
Except for inhibition of collagen synthesis and deposition, 
Piezo, integrins and YAP/TAZ inhibitors can also block 
ECM stiffness-induced mechanotransduction. Some of 
these potential therapeutic avenues have been translated 
into clinical trials. While the results of integrins inhibi-
tors in clinical trials are largely disappointing, we still 
expect that encouraging results may emerge from other 
pipelines such as the Hippo/YAP pathway inhibitors. Of 
note, there may be many obstacles and challenges for tar-
geting ECM stiffness in cancer, due to the complex roles 
of ECM in cancer progression and the dynamic nature of 
ECM remodeling. Previous study indicated that transient 
mechano-intervention by short-term ROCK inhibition 
might improve the effect of chemotherapy on pancreatic 
carcinoma [176]. It warrants further studies to determine 

whether transient or prolonged ablation of ECM stiffen-
ing or remodeling is optimal for improving therapeutic 
efficacy in different types of cancer. The development 
of spatial-temporally controllable procedures to reverse 
ECM stiffening holds promise in improving chemother-
apy efficacy [177]. As our knowledge of tumor matrix 
biology expands, we look forward to more targets being 
identified and more promising drugs being developed for 
cancer therapy.
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