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CORRESPONDENCE
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Abstract 

Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migra-
tion. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, 
which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome 
inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling 
pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity 
produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endo-
plasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking 
out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, 
primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low 
patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitiv-
ity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.
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To the Editor,
Multiple myeloma (MM) is a hematological malignancy 
that remains largely incurable and most patients relapse 
after one or more treatment regimens [1, 2]. The thera-
peutics currently available improve patient survival and 
quality of life, but resistance to therapy and disease pro-
gression remain unsolved issues [3]. Proteasome inhibi-
tors (PIs) have been used as the frontline therapies for 
newly diagnosed and relapsed or refractory MM patients 
for the last two decades [4, 5]. Although PIs have shown 
encouraging therapeutic results, primary and secondary 
drug resistances and relapse after long-term treatment 

are inevitable in most treated patients. LPA is a naturally 
occurring phospholipid that regulates cell proliferation 
[6], survival [7] and migration [8] and exerts its effects 
on target cells by binding to G protein-coupled receptors 
(GPCRs), including LPAR1-6 [9]. Herein, we explored the 
mechanism underlying the regulation of LPA/LPAR2 axis 
on MM resistance to PI-induced apoptosis in  vitro and 
in vivo.

MM patients (Fig. 1a) and MM-bearing mice (Fig. 1b) 
produced high levels of circulating LPA than their 
healthy controls. Moreover, primary MM cells from 
LPA-high patients were more resistant to PI-induced 
apoptosis than MM cells from LPA-low patients (Fig. 1c), 
and LPA treatment significantly decreased apoptosis of 
human primary MM cells (Fig. 1d) and cell lines (Addi-
tional file  1: Fig. S1a) induced by bortezomib (BTZ) or 
carfilzomib (CFZ), but not melphalan, dexamethasone, 
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or pomalidomide (Additional file  1: Fig. S1b). Consist-
ent with MM data in Oncomine (Fig. 1e–f), only LPAR2 
among 6 LPA receptors was highly expressed in human 
primary MM cells (Fig.  1g) and cell lines (Additional 
file 1: Fig. S1c). These results suggested that the effect of 
LPA on MM may be derived by LPAR2. Indeed, inhibit-
ing LPAR2 activity (Additional file 1: Fig. S1d) or knock-
ing out LPAR2 (Fig. 1h) abolished LPA-induced apoptosis 
resistance in BTZ- or CFZ-treated MM cells. Further 
mechanistic study showed that LPA enhanced the phos-
phorylation of MEK1/2 and ERK1/2 only in Ctr- but not 
in LPAR2-KO MM cells (Fig. 1i, j, Additional file 1: Fig. 
S1e–S1f), and inhibiting MEK1/2-ERK1/2 signal cascade 
significantly attenuated the protective effect of LPA on 
BTZ- or CFZ-induced apoptosis in MM cells (Fig.  1k, 
Additional file 1: Fig. S1g).

To elucidate the molecular mechanisms downstream 
of LPA-LPAR2-MEK1/2-ERK1/2 pathway, Ingenuity 
Pathway Analysis (IPA) (Fig. 1l) and gene set enrichment 
analysis (GSEA) (Fig.  1m, Additional file  1: Fig. S2a–
S2b) were used. Results showed that LPA significantly 

increased mitochondrial oxygen consumption rates 
(OCRs) in MM cells (Additional file  1: Fig. S2c–S2d) 
and this increase was impaired when LPAR2 was absent 
(Fig.  1n–o) or MEK1/2-ERK1/2 signal was deficient 
(Additional file 1: Fig. S2e–S2g). Additionally, mitochon-
drial respiration inhibited by BTZ or CFZ was restored 
by LPA treatment (Fig. 1p, Additional file 1: Fig. S2h–S2i) 
along with increased production of NAD+ (Fig. 1q) and 
ATP (Fig.  1r) and reduced activity of 26S proteasome 
(Fig. 1s) due to disruption of NAD+/DADH balance con-
sistent with our GSEA analysis (Additional file 1: Fig. S2j–
S2k) and a previous report [10]. As enhanced OXPHOS 
and ATP production are  involved in ER protein folding/
refolding essential for MM cell survival [11], we fur-
ther analyzed this process in MM cells. Results showed 
that genes involved in ER protein folding/refolding were 
highly expressed in MM cells of patients compared to 
normal plasma cells (Fig.  2a, Additional file  1: Fig. S3a) 
and positively correlated with the level of LPAR2 in MM 
patients (Fig. 2b, Additional file 1: Fig. S3b). ER protein 
folding/refolding ability (Fig. 2c) and ER ATP distribution 

Fig. 1  LPA enhances MM cell resistance to PIs through LPAR2-mediated MEK1/2-ERK1/2 signal pathways and enhanced OXPHOS in mitochondria. 
a Levels of LPA in serum of normal healthy controls and MM patients. b Levels of LPA in serum of 5TGM1 or Vk*MYC MM-tumor free (Ctr) and tumor 
bearing (TB) mice. Ctr, control, MM-tumor free mice; TB: MM-tumor-bearing mice. c The primary MM cells isolated from BM of MM patients (n = 20) 
were divided into LPAlow and LPAhigh groups based on their serum levels of LPA and treated with BTZ or CFZ for one hour, then the apoptosis was 
measured after 24-h incubation. d Human primary MM cells isolated from BM of MM patients were treated with BTZ or CFZ for one hour, after 
wash and 24-h incubation with or without 4 μg/mL LPA, the apoptosis of the cells was determined. e Relative mRNA expression of LPA receptors 
in CD138+ cells of MM patients and plasma cells of normal healthy controls from GSE5900 array data. Values were normalized with normal healthy 
controls. f Overall survival of MM patients with high (LPAR2High) or low (LPAR2Low) LPAR2 expression based on published Oncomine data (GSE9782). 
g Surface expression of different LPA receptors on human primary MM cells isolated from BM of MM patients (n = 10). h Ctr-KO and LPAR2-KO 
ARP1 or MM.1S cells were pulsed with BTZ or CFZ for 1-h and then incubated with or without 4 μg/mL LPA for 24 h. The apoptosis of the cells 
were determined. Ctr-KO, MM cells transfected with lentivirus containing empty vector; LPAR2-KO, MM cells transfected with lentivirus containing 
LPAR2 sgRNA. i, j Ctr-KO and LPAR2-KO ARP1 or MM.1S cells were treated without (PBS) or with 4 μg/mL LPA and phosphorylation level of MEK1/2 
and ERK1/2 was determined by western blot. Mock, MM cells without treatment; Ctr-KO, MM cells transfected with lentivirus containing empty 
vector; LPAR2-KO, MM cells transfected lentivirus containing LPAR2 sgRNA. k Ctr-KO and LPAR2-KO ARP1 or MM.1S MM cells were pulsed with BTZ 
or CFZ for one hour, followed by wash and culture with kinase inhibitors PD184352 (PD, 5 μM) or SCH772984 (SCH, 20 μM) for 24 h in the present/
absent 4 μg/mL LPA, then the apoptotic rates were determined. l IPA analysis of canonical signaling pathway in MM cells treated without (PBS) 
or with 4 μg/mL LPA. The circle surface area is proportional to -log (P value) and the color intensity of circles indicates the Z score. m GSEA result 
of GO_OXIDATIVE_PHOSPHORYLATION gene signatures. NES, normalized enrichment score; FDR, false discovery rate. n, o OCRs of Ctr-KO and 
LPAR2-KO ARP1 cells treated with or without LPA (n) and summarized result of the basal respiration, ATP-linked respiration, maximal respiration, and 
spare capacity for Ctr-KO and LPAR2-KO ARP1 and MM.1S cells treated with or without LPA (o). p ARP1 and MM.1S cells were pulsed with BTZ or CFZ 
for 1 h and the cells were washed and cultured with or without LPA for another 24 h. Representative summarized results of the basal respiration, 
maximal respiration, and spare capacity for ARP1 and MM.1S cells. q–s Relative production of NAD+ (q), ATP (r), and the relative proteasome activity 
(s) of Ctr-KO and LPAR2-KO ARP1, U266, and MM.1R cells treated with vehicle (PBS) or LPA (4 μg/mL) for 24 h. Results are shown as means ± S.E.M.. 
The survival rate was analyzed by log-rank (Mantel–Cox) test. *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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(Fig. 2d–e) were increased in LPA-treated MM cells. ER 
retained relatively high ROS levels due to protein fold-
ing processes (Additional file  1: Fig. S3c–S3f) and ROS 
assays (Additional file 2) [12] showed that the capacity of 
MM cells to buffer the formation of ROS was enhanced 
by LPA (Fig. 2f, Additional file 1: Fig. S3g). Suppression 
of MEK1/2-ERK1/2 signal by PD184352 and SCH772984 
abolished this buffer capacity (Fig.  2f, Additional file  1: 
Fig. S3g), further suggesting the dependence of LPA 
function on MEK1/2-ERK1/2 pathway.

To further investigate the translational potential of 
targeting LPAR2-mediated signal cascade to overcome 
MM cell PI resistance in  vivo, we examined the thera-
peutic effect of CFZ on human Ctr- or LPAR2-KO ARP1- 
(Fig. 2g, h) or MM.1S-Luc (Fig. 2i, Additional file 1: Fig. 
S3h) bearing mice. Consistent with in vitro results, CFZ 
treatment resulted in significantly smaller tumor burdens 

and prolonged survival in mice bearing LAPR2-KO MM 
cells compared to Ctr-KO MM cells (Fig.  2g–i, Addi-
tional file 1: Fig. S3h). Similarly, combination of CFZ with 
LPAR2 inhibitor dramatically reduced tumor burden 
and prolonged mouse survival compared to CFZ alone 
(Fig.  2j, k), indicating the translational potential of tar-
geting LPAR2-mediated signal cascade to overcome MM 
cell PI resistance in vivo.

In summary, we described a novel mechanism underly-
ing the induction of MM resistance to PI-induced apop-
tosis. Our findings may not only contribute to a better 
understanding of the importance of the bioactive lipid in 
MM resistance of PIs but also highlight the importance 
of targeting LPA-LPAR2-mediated signaling pathway as a 
potential therapeutic approach to overcome MM resist-
ance to PI treatment in patients.

(See figure on next page.)
Fig. 2  LPAR2 deficiency or inhibition sensitizes human MM cells to PI treatment through regulating mitochondrial OXPHOS-mediated ER protein 
folding/refolding and proteasome activity. a Heatmap showing the relative expression of LPAR2 and genes involved in protein folding/refolding in 
ER in normal plasma cells and patient-derived MM cells from GSE15695. b Correlations between LPAR2 and gene cluster involved in protein fold/
refolding in ER, including PPIB, CANX, GANAB, HSPBP1, PIAD4, PFDN1, CALR, CCT5, CCT6A, ERP44, DNAJA1, DNAJB11, HSPA5, and PPIA, in patient-derived 
MM cells from GSE15695. c–e Bar graphs depicting the summarized results of the reduced/oxidized meroGFP in ER (c), the ATP/ADP ratio in ER (d) 
and cytosol (e) of ARP1, MM.1S, and MM.1R cells treated without (PBS) or with 4 μg/mL LPA. f ARP1 and MM.1S cells were pre-treated with vehicle 
(PBS), LPA (4 μg/mL), vehicle + PD184352 (5 μM), LPA + PD, vehicle + SCH772984 (20 μM), or LPA + SCH for 24 h followed with or without 30-min 
H2O2 (0.08%) treatment, then the ROS levels were measured. g, h NSG mice were injected i.v. with 2 × 106 Ctr-KO or LPAR2-KO ARP1-luc MM cells. 
On day 7 after tumor inoculation, vehicle or 3 mg/kg CFZ were i.p. injected for 2 consecutive days in a week and repeated for 3 weeks. Tumor 
burden measured by bioluminescent imaging (g and left panel of h) and serum concentration of IgA kappa light chain (middle panel of h) and 
survival (right panel of h) were showed. i NSG mice were injected i.v. with 2 × 106 Ctr-KO or LPAR2-KO MM.1S-luc MM cells and treated as above. 
Summarized results showing tumor burden measured as bioluminescent images (left panel of i) and serum concentration of IgA lambda light chain 
(middle panel of i) and survival (right panel of i) of indicated mice. j, k NSG mice were injected i.v. with 2 × 106 ARP1 (j) or MM.1S (k) MM cells. On 
day 7 after tumor inoculation, vehicle, AT1 (0.2 mg/kg), CFZ (3 mg/kg) or CFZ + AT1 were i.p. injected for 2 consecutive days in a week and repeated 
for 3 weeks. Tumor burdens (left panels) and survival (right panels) were monitored. Results are shown as means ± S.E.M. *P < 0.05; **P < 0.01; 
***P < 0.001; n.s., not significant
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