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Abstract 

Natural killer (NK)/T-cell lymphomas are aggressive malignancies with a predilection for Asian and South American 
populations. Epstein–Barr virus (EBV) infection in lymphoma cells is universal. Predominantly extranodal, NK/T-cell 
lymphomas are divided clinically into nasal (involving the nose and upper aerodigestive tract), non-nasal (involving 
the skin, gastrointestinal tract, testes, and other organs), and aggressive leukaemia/lymphoma (involving the mar‑
row and multiple organs) subtypes. Initial assessment should include imaging with positron emission tomography 
computed tomography (PET/CT), quantification of plasma EBV DNA as a surrogate marker of lymphoma load, and 
bone marrow examination with in situ hybridization for EBV-encoded small RNA. Prognostication can be based on 
presentation parameters (age, stage, lymph node involvement, clinical subtypes, and EBV DNA), which represent 
patient factors and lymphoma load; and dynamic parameters during treatment (serial plasma EBV DNA and interim/
end-of-treatment PET/CT), which reflect response to therapy. Therapeutic goals are to achieve undetectable plasma 
EBV DNA and normal PET/CT (Deauville score ≤ 3). NK/T-cell lymphomas express the multidrug resistance phenotype, 
rendering anthracycline-containing regimens ineffective. Stage I/II nasal cases are treated with non-anthracycline 
asparaginase-based regimens plus sequential/concurrent radiotherapy. Stage III/IV nasal, and non-nasal and aggres‑
sive leukaemia/lymphoma cases are treated with asparaginase-containing regimens and consolidated by allogeneic 
haematopoietic stem cell transplantation (HSCT) in suitable patients. Autologous HSCT does not improve outcome. 
In relapsed/refractory cases, novel approaches comprise immune checkpoint blockade of PD1/PD-L1, EBV-specific 
cytotoxic T-cells, monoclonal antibodies, and histone deacetylase inhibitors. Future strategies may include inhibition 
of signalling pathways and driver mutations, and immunotherapy targeting the lymphoma and its microenvironment.
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Introduction
Lymphomas arising putatively from natural killer (NK) 
cells were first reported more than seventy years ago [1]. 
Variously referred to as polymorphic reticulosis, lethal 
midline granuloma, and angiocentric T-cell lymphoma 
[2, 3], most of these lymphomas show features typi-
cal of NK-cells, being negative for surface CD3; positive 
for cytoplasmic CD3 epsilon (ε), CD56, and cytotoxic 
molecules (perforin, granzyme B, or TIA1); with T-cell 

receptor (TCR​) gene in germline configuration [4, 5]. 
Epstein–Barr virus (EBV) infection of the lymphoma 
cells is universal, which can be detected by in situ hybrid-
ization (ISH) for EBV-encoded small RNA (EBER). In a 
minority of cases, the lymphoma is of bona fide T-cell 
lineage, being positive for surface CD3, CD56, cytotoxic 
molecules, and possesses clonally rearranged TCR​ genes 
[5]. The current World Health Organization (WHO) lym-
phoma classification adopts the nomenclature of NK/T-
cell lymphoma to reflect its possible NK-cell or T-cell 
origin [6].

NK/T-cell lymphomas show a strong predilection 
for Asian and South American populations [2, 4, 7], 
although cases from Western populations are increas-
ingly reported [8]. Clinically, NK/T-cell lymphomas are 
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predominantly extranodal. In about 80% of cases, the ini-
tially involved sites are the nasal cavity, paranasal sinuses, 
nasopharynx, oropharynx, and upper aerodigestive tract. 
Collectively, they are referred to clinically as the nasal 
subtype (Fig.  1a–d). In about 15–20% of cases, the pri-
mary presentation sites include the skin, gastrointestinal 
tract, testicles, and salivary glands. Collectively, they are 
referred to clinically as the non-nasal subtype (Fig. 1e–g). 
Notably, these sites are also where nasal NK/T-cell lym-
phomas metastasize to. In < 5% of cases, the lymphoma 
may be disseminated on presentation with hepatosple-
nomegaly, lymphadenopathy, marrow involvement, and a 
leukaemia phase. These disseminate cases are referred to 
clinically as the aggressive lymphoma/leukaemia subtype 
[2, 5] and pathologically as aggressive NK-cell leukaemia 
by the WHO classification [9].

Diagnostic evaluation and differential diagnoses
WHO diagnostic criteria stipulate that, in addition 
to standard histopathologic features, NK/T-cell lym-
phoma must be EBV+, and express either CD56 or 

cytotoxic molecules. If both CD56 and cytotoxic mol-
ecules are negative, the diagnosis becomes EBV+ 
peripheral T-cell lymphoma [6]. Four clinicopatho-
logic entities should be distinguished from NK/T-cell 
lymphomas. Plasmacytoid dendritic neoplasms, previ-
ously erroneously referred to as blastoid NK-cell lym-
phomas, are cutaneous CD56+ neoplasms. They are, 
however, negative for CD3, cytotoxic molecules, and 
EBV [7]. NK-cell lymphomatoid gastropathy/NK-cell 
enteropathy is a rare, apparently non-neoplastic prolif-
eration of NK-cells in the stomach, and small and large 
bowels [10, 11]. They are EBV-negative and self-limit-
ing. Chronic lymphoproliferative disorder of NK-cells 
is uncommon and of uncertain reactive or neoplastic 
nature. They are EBV-negative. Exceptional cases of 
EBV-negative aggressive leukaemia/lymphoma of puta-
tive NK-cell derivation have been reported [12]. With 
very few cases described, it is uncertain whether they 
are related to NK/T-cell lymphomas.

Fig. 1  Clinical subtypes of NK/T-cell lymphomas. a Nasal NK/T-cell lymphoma with superior invasion into the right orbit, leading to extensive 
swelling and scabbing (arrow). b Same case with right orbital invasion (black arrow). Inferior invasion resulted in extensive necrosis and almost 
complete destruction of the hard palate (white arrows). The ensuing perforation of the hard palate would lead to a communication between the 
nasal and oral cavities, giving rise to the classical “lethal midline granuloma”. c Same patient about two weeks after commencement of the first cycle 
of the SMILE regimen. There was rapid and complete resolution of the right orbital swelling and scabbing. d Another case of upper aerodigestive 
tract NK/T-cell lymphoma. There was extensive involvement of the subglottis (arrow), which was markedly hypermetabolic on positron emission 
tomography computed tomography (PET/CT). Note that the larynx was reduced to a mere slit, causing nearly fatal airway obstruction that 
necessitated emergency tracheostomy. e A case of apparent non-nasal NK/T-cell lymphoma with extensive skin involvement, which on PET/CT 
scan was shown as numerous hypermetabolic cutaneous deposits (arrows). Examination of the nasopharynx did not show any obvious lesion. 
However, blind biopsies showed nasopharyngeal involvement, rendering this case indistinguishable from nasal NK/T-cell lymphoma with extensive 
cutaneous metastases. f Cutaneous lesions of the same case, with arrows indicating deposits corresponding to those shown by arrows on the PET/
CT (e). g After the first cycle of an asparaginase-containing regimen, showing complete healing of the skin lesions (arrows)
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Molecular alterations and implications 
on treatment
Molecular alterations in NK/T-cell lymphoma may 
have potential implications on therapeutic approaches 
(Table  1). Chromosome 6q21–25 deletion is a recur-
rent aberration, resulting in loss of putative tumour sup-
pressor genes [7, 13, 14]. Gene expression profiling and 
genomic investigations also identified losses and gains of 
chromosomal regions, resulting in putative dysregula-
tions of genes related to multiple cellular processes, sig-
nal transduction, and immune functions (Table  1) [15, 
16]. Moreover, aberrations of non-coding RNAs leading 
to gene deregulation were observed, which might result 
in epigenetic alterations [17]; downregulation of tumour 
suppressors [18], and aberrant p-STAT3 expression [19]. 
Next-generation sequencing further defined recurrent 
mutations in RNA helicases, tumour suppressors, JAK-
STAT pathway genes, epigenetic modifiers, and other 
oncogenes [16, 20, 21]. These alterations might provide 
clues for the search of driver events or mutations amend-
able to therapeutic intervention.

Genome-wide association studies in predominantly 
Asian patients identified three susceptibility loci, HLA-
DPB1, IL18RAP, and HLA-DRB1, with genetic differ-
ences leading to amino-acid changes potentially affecting 
immune responses to EBV infection, thus contributing to 
the pathogenesis of and increasing the susceptibility to 
NK/T-cell lymphoma [22, 23]. These findings suggest that 
targeting EBV might be a treatment strategy [24].

Epigenetic derangements are another key feature in 
NK/T-cell lymphomas. Hypermethylation of promoter 
regions of genes involved in tumour suppression, apop-
tosis, inflammation, and metabolism was consistently 
shown [25, 26]. Therefore, epigenetic modifiers might be 
therapeutically useful [27].

A multi-omics approach has shown therapeutic leads 
[28]. Transcriptomics-based approaches could be used 

to divide NK/T-cell lymphomas into three subtypes, viz., 
TSIM, MB, and HEA [16]. The TSIM subtype (about 
55% of cases) was defined by mutations of TP53 and 
genes in the JAK-STAT pathway, amplifications of the 
9p24.1/JAK2, 17q21.2/STAT3/5B/5A and 9p24.1/PD-
L1/2 loci, and 6q21 deletion. Lymphoma cells had a pre-
dominant NK-cell gene expression pattern, with JAK/
STAT pathway activation, programmed cell death protein 
ligand 1/2 (PD-L1/2) overexpression, and genomic insta-
bility. The MB subtype (about 18% of cases) was defined 
by MGA gene mutation and loss of heterozygosity (LOH) 
of the 1p22.1/BRDT locus. Lymphoma cells were inter-
mediate between NK-cells and T-cells in gene expres-
sion. Mutations in MGA led to MYC overexpression 
and combined with BRDT LOH resulted in activation 
of the MAPK, NOTCH, and WNT pathways. The HEA 
subtype (about 27% of cases) was defined by mutations 
in HDAC9, EP300, and ARID1A. Lymphoma cells had a 
predominant T-cell gene expression profile, overexpres-
sion of the histone chaperone DAXX, and activation of 
the NF-κB and TCR signalling pathways. With RNA-seq 
and immunohistochemical studies, the TSIM, MB, and 
HEA subtypes were typified by overexpression of PD-L1, 
MYC, and DAXX, respectively. The potential therapeutic 
implications might be immune checkpoint inhibitors for 
TSIM cases, MYC inhibitors for MB cases, and epige-
netic modifiers for HEA cases.

A recent combined nanostring and immunohistochem-
ical analysis, using FoxP3, PD-L1, and CD68 expression, 
divided patients into four immune microenvironment 
subtypes, viz., immune tolerance, immune evasion-A, 
immune evasion-B, and immune silenced [29]. Prelimi-
nary results showed that responses to blockade of the 
immune checkpoint protein programmed cell death pro-
tein 1 (PD1) might be related to these immune subtypes 
(1/1 for the immune tolerance group, 3/5 in the immune 
evasion groups, and 0/5 for the immune-silenced group).

Table 1  Molecular alterations and their potential implications on therapeutic targeting

*Potential strategies that may or may not yet be supported by experimental or clinical data

Functional pathways Genes involved (references) Potential targeting*

Tumour suppression PRDM1, FOXO3, HACE1 (7), CAV1, CAV2, DLC1 (15) Specific gene targeting

Oncogenesis NOTCH3, KRAS, BRAF, PRKD1, MAP3K5, PTPRK (16, 20, 21); DDX3X (16, 21) Specific gene targeting

Multi-function pathway activation PRKCQ, TNFRSF21, CUL1, FSD1, SGK1 (15, 16) NF-κB, WNT signalling

AKT3, IL6R, CCL2 (15, 16); JAK3, STAT3, STAT5B (16, 20, 21) JAK/STAT signalling

Derangement of tissue proliferation CCND3 (15); S100A16, LAMB1, LAMC1, COL1A2, CTSB (15, 16) Cell cycle

MET, S100A13 (15) Angiogenesis

Epigenetic dysregulation TP73, RARB, P15, P16, PRDM1, ATG5, AIM1, BCL2L11, DAPK1, TET2, PTPN6, SOCS6, 
PTPRK, ASNS (25, 26); KMT2D, KMT2C, BCOR, EP300, HDAC9, ARID1A, ASXL3 (16, 
20,21); EZH2 (17)

Epigenetic modifiers

Immune escape PD-L1, PD-L2 (15, 16) Immune checkpoints
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Pathogenetic mechanisms and implications 
on treatment
In NK/T-cell lymphomas, dysregulation of glutamine 
metabolism constitutes a metabolic vulnerability [30]. 
Metabolomic profiling showed that these lymphoma cells 
often displayed a profile of low asparagine synthetase 
activity, reflected by increase in serum levels of alanine, 
aspartic acid, glutamine, and succinic acid [30]. A low 
level of asparagine synthetase rendered lymphoma cells 
susceptible to asparaginase treatment and might be a 
biologic marker of treatment response and prognosis 
[31]. Integrative analysis of targeted serum metabolomic 
analysis and paired tumour RNA-seq data identified 
excitatory amino acid EAAT3 (encoded by SLC1A1) as 
an extracellular glutamine transporter, which increased 
cellular glutamine uptake and enhanced glutathione met-
abolic flux, thereby inducing glutamine addiction. Fur-
thermore, SLC1A1 overexpression also downregulated 
PD-L1. Targeting SLC1A1-mediated glutamine addiction 
with asparaginase would therefore be therapeutically rel-
evant [32].

EBV exists in a latency II state in NK/T-cell lym-
phoma [4, 5], with expression of the viral oncoprotein 
LMP1. Various mechanisms including STAT3/STAT5 
mutations lead to activation of the JAK/STAT pathway 
[5, 7]. Both LMP1 and JAK/STAT activation act on the 
enhancer and promoter of the PD-L1 gene, leading to its 
overexpression. By interacting with the immune check-
point inhibitor PD1 on cytotoxic cells, PD-L1 expres-
sion on lymphoma cells impairs immunosurveillance, 
constituting an immune escape mechanism. This process 
appeared further enhanced by structural rearrangements 
disrupting the 3’-UTR of PD-L1 [33]. Inhibition of the 
PD1/PD-L1 axis is thus an attractive treatment direction.

Assessment of newly diagnosed patients
Bone marrow aspirate may show haemophagocytosis, 
which on its own is not indicative of marrow involve-
ment. Cytologically, lymphoma cells possess abundant 
cytoplasm with azurophilic granules. On trephine biopsy, 
EBER ISH is the most reliable way of defining lymphoma-
tous infiltration [7].

NK/T-cell lymphoma is 18-fluorodeoxyglucose-avid 
[34, 35], so that positron emission tomography com-
puted tomography (PET/CT) should be considered the 
most accurate and standard modality for radiologic stag-
ing. A clinically non-nasal case shown on PET/CT to 
have occult nasal involvement should be re-classified as 
a disseminated nasal one. Accordingly, studies of “non-
nasal” NK/T-cell lymphomas not employing PET/CT as 
the imaging modality should no longer be considered 
reliable.

As NK/T lymphoma cells undergo apoptosis, EBV 
DNA fragments are released into the circulation [36]. 
Quantification of circulating EBV DNA provides a 
molecular measure of tumour load [37]. Whole blood 
is unsuitable and should not be used, because of unpre-
dictable errors introduced by circulating memory B-cells 
that may be EBV-infected [36, 38]. Plasma EBV DNA is 
instead accurate and should be employed as a surrogate 
marker of lymphoma load. Presentation plasma EBV 
DNA measures lymphoma load and is of prognostic 
significance [37]. During treatment, plasma EBV DNA 
reflects lymphoma response and may also be of prognos-
tic significance [39, 40].

Prognostication of NK/T‑cell lymphomas
The International Prognostic Index (IPI) remained use-
ful for NK/T-cell lymphomas treated with conventional 
anthracycline-containing regimens [41]. A similar prog-
nostic model, the Korean-IPI, was also developed for 
patients treated with anthracycline-containing regimens 
[42]. These prognostic models, although apparently still 
retaining significance for non-anthracycline-containing 
regimens, have since been superseded. Two prognos-
tic models, CA staging [43] and NRI scoring [44], based 
partly on negative scoring for lymphoma local invasion 
and the non-nasal subtype, have been proposed. The 
problems of these models are the unclear and subjective 
definition of lymphoma local invasion, and the lack of 
the use of PET/CT in patient evaluation, thereby making 
classification of non-nasal cases insecure. More recently, 
a score based on polymorphism of seven single nucleo-
tides was described to be prognostic [45]. A clear biologic 
basis of how single nucleotide polymorphisms impact on 
lymphoma response and prognosis is not apparent, and 
the test is not readily available, so that the model is of 
limited value in routine practice.

A more practical prognostic model developed for 
patients treated with non-anthracycline-containing regi-
mens is the prognostic index for NK/T-cell lymphomas 
(PINK) (negative scoring parameters: age > 60  years, 
stage III/IV disease, distant lymph node involvement, 
non-nasal subtype), and its variant PINK-E (additional 
negative scoring parameter: detectable presentation 
EBV DNA) [46]. PINK-E appears particularly useful, as it 
incorporates a biologic parameter, EBV DNA, which has 
been shown to be prognostic important [36–40].

Prognostic models based on presentation parameters 
rely predominantly on initial lymphoma load and loca-
tion. Response to treatment is not assessed, so that such 
models cannot inform treatment dynamically. Instead, 
two parameters that evolve during treatment, circulat-
ing plasma  EBV DNA, and PET/CT, may be more use-
ful. Interim plasma EBV DNA [39] and PET/CT [47] 
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after two to three cycles of treatment had been shown to 
predict the ultimate outcome. At interim, patients with 
undetectable plasma EBV DNA and PET/CT of Deau-
ville score ≤ 3 had outcome significantly superior to 
those with detectable EBV DNA or PET/CT of Deauville 
score> 3 [39, 47]. Similarly, end-of-treatment  detectable 
circulating EBV DNA and PET/CT scan with a Deau-
ville score of > 3 had also been shown to portend infe-
rior long-term prognosis [40], suggesting that patients 
with such results would require additional treatment to 
improve outcome.

In practice, PINK / PINK-E is the preferred prognos-
tic model at initial diagnosis. Based on risk stratifica-
tion, protocol/trial-driven triage of patients to different 
asparaginase-containing regimens can be adopted. Dur-
ing treatment and particularly at interim after two to 
three cycles of therapy, assessment of plasma EBV DNA 
and PET/CT offers a dynamic means of prognostication. 
For satisfactory interim results, there are currently no 
data to support abbreviation of pre-planned treatment, 
so a conventional six-cycle strategy should be continued. 
However, for unsatisfactory interim results, protocol/
trial-driven alteration or intensification of treatment is 
pertinent. Finally, at the end-of-treatment, if undetect-
able plasma EBV DNA and PET/CT scan with Deauville 
score of ≤ 3 cannot be achieved, the prognosis is poor 
and salvage treatment should be considered.

Principles of treatment
NK-cells express high levels of P-glycoprotein, leading to 
a multidrug resistance (MDR) phenotype [48]. Anthra-
cycline-containing (CHOP, cyclophosphamide, adriamy-
cin, vincristine, prednisolone; or CHOP-like) regimens, 
designed for conventional high-grade B-cell lymphomas, 
are MDR-dependent and ineffective [2, 7]. Hence, various 
non-anthracycline-containing regimens have been devel-
oped for NK/T-cell lymphomas [2]. A central component 
of these regimens is asparaginase, which induces apop-
tosis of NK-cells in vitro [49]. Asparaginase also showed 
single-agent activity in relapsed/refractory NK/T-cell 
lymphoma [2, 7]. Practically every effective regimen cur-
rently used in NK/T-cell lymphoma contains asparagi-
nase or its pegylated form (Table 2).

Management of stage I/II nasal NK/T‑cell 
lymphomas
Involved field radiotherapy and chemotherapy are the 
currently recommended treatment modalities for stage 
I/II nasal NK/T-cell lymphomas (Fig.  2) [50]. No pro-
spective randomized trials have been conducted to com-
pare how these two modalities should be sequenced 

or combined. Hence, centres often adopt protocols 
according to their expertise or the availability of timely 
radiotherapy.

Radiotherapy
NK/T-cell lymphomas are radiosensitive. In stage I/II 
disease, the use of radiotherapy had led to better results 
and survival [51, 52]. Adequate doses of radiother-
apy coupled with modern delivery techniques further 
improved outcomes. Radiotherapy doses of below 50 Gy 
resulted in more locoregional relapses [8, 44, 53]. The use 
of intensity-modulated radiotherapy (IMRT) decreased 
the radiation exposure to normal surrounding tissue and 
provided good tumour target coverage [54]. In a retro-
spective analysis of stage I/II nasal diseases, IMRT with 
or without chemotherapy, compared with 3-dimensional 
conformal radiotherapy, resulted in significantly better 
5-year progression-free survivals (PFS; 68.9% vs. 58.2%) 
and overall survivals (OS; 75.9% vs. 67.6%) [55]. However, 
radiotherapy alone for stage I/II NK/T-cell lymphoma is 
associated with high systemic relapse rates. Hence, radio-
therapy as a single modality should not be adopted. The 
only situation where radiotherapy might be used alone is 
in elderly patients with poor performance and significant 
comorbidities that preclude chemotherapy [50].

Concurrent chemoradiotherapy
Concurrent chemoradiotherapy has been proposed for 
stage I/II diseases, predicated on the notion that radio-
sensitivity can be enhanced with concurrent chemo-
therapy [56]. Three regimens, DeVIC (dexamethasone, 
etoposide, ifosfamide, and carboplatin), VIPD (etoposide, 
ifosfamide, cisplatin, and dexamethasone), and the VIDL 
(etoposide, ifosfamide, dexamethasone, and L-asparagi-
nase) had been used concurrently with radiotherapy in 
stage I/II diseases (Tables 2 and 3). For DeVIC + 50 Gy 
radiotherapy, the overall response rates (ORRs) were 
78–89% with complete remission (CR) rates of 75–82% 
[57, 58]. The 5-year PFS and OS were 61–67% and 
72–73%, respectively [57, 58]. For VIPD + 40 Gy radio-
therapy, the ORR and CR were 83.3% and 80% and the 
3-year PFS and OS were 65% and 86% [59]. The results of 
VIDL + 40 Gy radiotherapy were comparable, with ORR 
and CR of 90% and 87%, and 5-year PFS and OS of 60% 
and 73% [60] (Table 3).

Sequential chemotherapy and radiotherapy
Sequential chemotherapy and radiotherapy involve the 
initial use of chemotherapy, followed by either interim 
or end-of-treatment radiotherapy. In this approach, it 
is critical to administer effective chemotherapy. Use 
of the ineffective anthracycline-containing regimen 
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Table 2  Major regimens used in NK/T-cell lymphomas, listed in alphabetical order according to acronyms

Regimens Drugs and schedule References

AspaMetDex E. coli L-asparaginase: 6000 U/m2, IM, days 2, 4, 6, 8 [73]

Methotrexate: 3000 mg/m2, IV, day 1

Dexamethasone: 40 mg, oral, days 1–4

DDGP Dexamethasone: 15 mg/m2, IV, days 1–5 [76]

Cisplatin: 20 mg/m2, IV, days 1–4

Gemcitabine: 800 mg/m2, IV, days 1, 8

Pegaspargase: 2500 IU/m2, IM, day 1

DeVIC (2/3) Dexamethasone: 40 mg, IV, days 1–3 [57]

Etoposide: 67 mg/m2, IV, days 1–3

Ifosfamide: 1000 mg/m2, IV, days 1–3

Carboplatin: 200 mg/m2, IV, day 1

DICE-L-asp Dexamethasone: 20 mg/m2, days 1–4 [69]

Ifosfamide: 1200 mg/m2, IV, days 1–3

Cisplatin: 25 mg/m2, IV, days 1–4

Etoposide: 60 mg/m2, days 1–4

L-asparaginase: 6000 U/m2, days 6–11

GELAD Gemcitabine: 1000 mg/m2, IV, day 1 [70]

Etoposide: 60 mg/m2, IV, days 1–3

Pegaspargase: 2000 U/m2, day 5

Dexamethasone: 40 mg, days 1–4

GELOX Gemcitabine: 1000 mg/m2, IV, days 1, 8 [66]

E. coli L-asparaginase: 6000 U/m2, IM, days 1–7

Oxaliplatin: 130 mg/m2, IV, day 1

LVP L-asparaginase: 6000 IU/m2, IV, days 1–5 [63]

Vincristine: 1.4 mg/m2, IV, day 1

Prednisolone: 100 mg, oral, days 1–5

MEDA Methotrexate: 3000 mg/m2, IV, day 1 [74]

Etoposide: 100 mg/m2, IV, days 2–4

Dexamethasone: 40 mg, IV, days 2–4

Pegaspargase: 2500 U/m2, day 4

MESA Methotrexate: 1000 mg/m2, IV, day 1 [30]

Etoposide: 100 mg/m2, days 2–4

Dexamethasone: 40 mg, IV, days 2–4

Pegaspargase: 2500 U/m2, IM, day 4

P-GEMOX Pegaspargase: 2500 IU/m2, IM, day 1 [67]

Gemcitabine: 1000 mg/m2, IV, days 1, 8

Oxaliplatin: 130 mg/m2, IV, day 1

SMILE Dexamethasone: 40 mg, IV or oral, days 2–4 [62]

Methotrexate: 2000 mg/m2, IV, day 1

Ifosfamide: 1500 mg/m2, IV, days 2–4

E. coli L-asparaginase: 6000 U/m2, IV, days 8, 10, 12, 14, 16, 18, 20

Etoposide: 100 mg/m2, IV, days 2–4

VIDL Etoposide: 100 mg/m2, IV, days 1–3 [60]

Ifosfamide: 1200 mg/m2, IV, days 1–3

Dexamethasone: 40 mg, IV, days 1–3

L-asparaginase: 4000 IU/m2, IM, days 8, 10, 12, 14, 16, 18, 20

VIPD Etoposide: 100 mg/m2, IV, days 1–3 [59]

Ifosfamide: 1200 mg/m2, IV, days 1–3

Cisplatin: 33 mg/m2, IV, days 1–3

Dexamethasone: 40 mg, IV or oral, days 1–4

IV: intravenous, IM: intramuscular; doses given are daily dosages
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CHOP followed by radiotherapy led to poor outcome, 
with 5-year PFS and OS of merely 54% and 65% [61]. 
In contrast, the use of asparaginase-containing regi-
mens (Table  3) followed by radiotherapy led to much 
superior results. Excellent ORRs (90–100%) and CRs 
(74–91%) were observed for asparaginase-containing 
regimens including SMILE (dexamethasone, metho-
trexate, ifosfamide, L-asparaginase, and etoposide) [62], 

LVP (L-asparaginase, vincristine, prednisolone) [63, 
64], GELOX (gemcitabine, L-asparaginase, and oxalipl-
atin) [65, 66], P-GEMOX (pegaspargase, gemcitabine, 
and oxaliplatin) [67, 68], DICE-L-asp (dexamethasone, 
ifosfamide, cisplatin, etoposide, L-asparaginase) [69], 
MESA (methotrexate, etoposide, dexamethasone, and 
pegaspargase) [30], and GELAD (gemcitabine, etoposide, 
peg-asparaginase, dexamethasone) (Table  2) [70], which 

Fig. 2  Treatment algorithm of NK/T-cell lymphoma. A denotes that for non-nasal cases of all stages, and aggressive leukaemia/lymphoma, 
treatment should be the same as stage III/IV nasal lymphomas. Dotted lines indicate possible options. For abbreviations please refer to the main text

Table 3  Outcome of patients with NK/T-cell lymphomas treated with asparaginase-containing regimens

ORR: Overall response rate; CR: complete remission; PFS: progression-free survival; OS: overall survival; RT: radiotherapy; VIDL: etoposide, ifosfamide, dexamethasone, 
L-asparaginase; LVP: L-asparaginase, vincristine, prednisolone; GELOX: gemcitabine, L-asparaginase, oxaliplatin; P-GEMOX: pegaspargase, gemcitabine, oxaliplatin; 
DICE-L-asp: dexamethasone, ifosfamide, cisplatin, etoposide, L-asparaginase; MESA: methotrexate, etoposide, dexamethasone, pegaspargase; SMILE: dexamethasone, 
methotrexate, ifosfamide, L-asparaginase, etoposide; DDGP: dexamethasone, gemcitabine, cisplatin, pegaspargase; AspaMetDex: L-asparaginase, methotrexate, 
dexamethasone; MEDA: methotrexate, etoposide, dexamethasone and pegylated asparaginase; GELAD: gemcitabine, etoposide, pegasparaginase, dexamethasone

Regimens Status Stage ORR CR (%) PFS OS References

VIDL + RT Newly diagnosed I/II 90% 87 5 year: 60% 5 year: 73% [61]

LVP + RT Newly diagnosed I/II 89% 81 5 year: 64% 5 year: 64% [64]

GELOX + RT Newly diagnosed I/II 96% 74 5 year: 74% 5 year: 85% [67]

P-GEMOX [+ RT for stage I/II] Newly diagnosed I/II 94% 80 2 year: 77% 2 year: 83% [68]

Newly diagnosed I/II 94% 64 3 year: 66% 3 year: 81% [69]

Relapsed/refractory 81% 52 3 year: 24% 3 year: 58% [76]

DICE-L-asp Newly diagnosed I/II 100% 91 5 year: 82% 5 year: 89% [70]

MESA New diagnosed I/II 92% 89 2 year: 89% 2 year: 92% [30]

SMILE [+ RT for stage I/II] Newly diagnosed I/II 90% 69 Not reported [73]

III/IV Not reported 54 4 year: 60% 5 year: 47%

Relapsed/refractory 77% 66 4 year: 68% 5 year: 52%

DDGP Newly diagnosed III/IV 95% 71 1 year: 86% 1 year: 90% [77]

AspaMetDex Relapsed/refractory 78% 61 2 year: 40% 2 year: 40% [74]

MEDA Relapsed/refractory 77% 61 1 year: 62% 1 year: 69% [75]

GELAD Newly diagnosed I/II 94% 92 2 year: 90% 2 year: 94% [71]
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were followed by interim or end-of-treatment radiother-
apy. Survivals were very good, with 5-year PFS ranging 
from 64 to 83% (Table  2). In a retrospective analysis of 
303 patients with stage I/II nasal NK/T-cell lymphoma, 
sequential chemotherapy and radiotherapy gave CR, PFS, 
and OS that were comparable with those of concurrent 
chemoradiotherapy with or without subsequent consoli-
dation chemotherapy [71]. Hence, provided that effective 
chemotherapy is used, the  timing of radiotherapy does 
not seem critical.

Practical approach to stage I/II nasal NK/T‑cell 
lymphomas
The standard-of-care is asparaginase-containing regi-
mens combined with radiotherapy. Sequential chemo-
therapy and radiotherapy are adopted in most centres, 
as shown by the abundance of studies employing this 
strategy. Arranging chemotherapy is logistically easier 
for newly-diagnosed patients who may need immedi-
ate treatment. Furthermore, with control of lymphoma 
after initial chemotherapy, patients often have better 
performance when radiotherapy is subsequently given, 
thus tolerating it better. Concurrent chemoradiotherapy 
is hardly used, owing to logistic complexity of arranging 
timely radiotherapy for newly diagnosed patients, and its 
serious mucosal and systemic toxicity when chemother-
apy is also given, making it poorly tolerated, especially in 
elderly patients.

During treatment, plasma EBV DNA should be seri-
ally monitored. The goal is to have undetectable plasma 
EBV DNA after two to three cycles of chemotherapy 
[39]. An interim PET/CT should also be performed, and 
a Deauville score of ≤ 3 should be achieved [47]. Failure 
to achieve these interim goals suggests that alteration or 
modification of treatment might be needed. On com-
pletion of treatment, the goals are undetectable plasma 
EBV DNA and PET/CT with Deauville score of ≤ 3; both 
requisites for durable remission [37, 39, 40]. Failure to 
achieve these end-of-treatment goals indicates that addi-
tional treatment is needed to improve outcome. Plasma 
EBV DNA should be monitored during follow-up. With 
undetectable EBV DNA, surveillance PET/CT is not 
necessary.

Management of stage III/IV nasal NK/T‑cell 
lymphomas
Asparaginase-containing chemotherapeutic regimens 
are the standard-of-care in these patients (Fig.  2) [2, 4]. 
Anthracycline-containing regimens (CHOP or CHOP-
like) should not be used. The regimen SMILE [62, 72] 
is most popular with the best cumulative experience. 
In newly-diagnosed stage III/IV patients treated with 
SMILE, CR was achieved in 40–54% of cases, with a 

5-year OS of 47% [72]. Other asparaginase-contain-
ing regimens, including AspaMetDex (L-asparaginase, 
methotrexate, and dexamethasone) [73], MEDA (metho-
trexate, etoposide, dexamethasone, and pegylated aspara-
ginase) [30, 74], and P-GEMOX [75] had also been used 
in newly-diagnosed stage III/IV patients (Table 2). These 
regimens gave variable but largely comparable results. 
However, most of these studies reported only short-term 
data, with long-term outcome unclear. None of these reg-
imens have been compared, so that their relative effica-
cies are undefined. The regimen DDGP (dexamethasone, 
gemcitabine, cisplatin, and pegylated asparaginase) had 
been compared prospectively and retrospectively with 
SMILE. Results purportedly showed that DDGP led to 
better CR and survivals [76, 77]. However, these stud-
ies were seriously flawed, because the outcomes of the 
SMILE cohorts were exceptionally poor, which accounted 
for the apparent but probably erroneous superiority of 
the DDGP regimen. Hence, SMILE remains the current 
standard for stage III/IV NK/T-cell lymphomas [72, 78]. 
The high efficacy of asparaginase-containing regimens 
notwithstanding, the survival curves of these patients 
plateau at about 40%, suggests that additional treatment 
is needed to improve outcome.

Haematopoietic stem cell transplantation (HSCT)
Frontline autologous HSCT is generally not recom-
mended for nasal NK/T-cell lymphoma, because of its 
doubtful additional benefit on survivals. In a retrospec-
tive analysis of frontline autologous HSCT in NK/T-cell 
lymphomas, there was an improvement in CR rate after 
HSCT to 90% for stage I/II patients and 65.5% for stage 
III/IV patients. The 3-year PFS and OS were 65% and 
68% for stage I/II patients and 40% and 52% for stage III/
IV patients [79]. In another phase II study of stage III/IV 
patients, treatment with VIDL was followed by autolo-
gous HSCT. For patients who proceeded to autologous 
HSCT, only 47% of cases remained in remission after a 
short median follow-up of 31  months [80]. Although 
there was no direct comparison, these results did not 
appear to be different from those obtained with asparagi-
nase-containing regimens alone, suggesting that autolo-
gous HSCT in these settings did not improve outcome.

Allogeneic HSCT offers a potential cure, based on a 
putative graft-versus-lymphoma effect. However, no ran-
domized trial has been conducted to examine the role of 
allogeneic HSCT in NK/T-cell lymphomas. An early ret-
rospective analysis of allogeneic HSCT in NK/T-cell lym-
phomas, treated with heterogeneous prior regimens and 
allografted with variable HSC sources, showed 2-year 
survivals of merely 30–40% [81]. However, later stud-
ies also in highly selected patients with advanced-stage 
or relapsed/refractory diseases showed a 5-year OS of 



Page 9 of 13Tse et al. Journal of Hematology & Oncology           (2022) 15:74 	

more than 50% [82, 83]. The high treatment-related mor-
tality shown in these studies remains a barrier for allo-
geneic HSCT to be recommended for all patients with 
advanced-stage and relapsed/refractory diseases.

Management of non‑nasal NK/T‑cell lymphomas 
and aggressive NK‑cell leukaemia/lymphoma
Most non-nasal cases previously reported had not 
been staged with PET/CT. Hence, it remains uncertain 
whether these non-nasal cases might actually be dissemi-
nated nasal cases, which could account for their apparent 
inferior prognosis. The two most common primary sites 
are the skin and gastrointestinal tract. Cutaneous NK/T-
cell lymphomas are rarely localized on presentation, usu-
ally with regional nodal or distant organ involvement 
[84]. Prognosis appeared poor, with a 5-year OS reported 
to be merely 25% [84]. Gastrointestinal NK/T-cell lym-
phomas are mostly advanced with B-symptoms on pres-
entation [85]. Treatment is often delayed because of 
surgical complications including bowel obstruction and 
perforation. The median OS was dismal at < 8  months 
[85]. Unless patients with non-nasal lymphomas truly 
have localized disease on PET/CT, which is highly 
uncommon, they ought to receive the same treatment as 
for stage III/IV nasal lymphoma.

Aggressive NK/T-cell leukaemia/lymphoma is 
extremely aggressive, with survival measured merely 
in weeks before the advent of effective treatment [5, 7]. 
These patients should be given vigorous supportive treat-
ment and started on asparaginase-containing regimens 
as soon as feasible. Allogeneic HSCT is needed for any 
hope of survival.

Practical approach to stage III/IV‑nasal 
and non‑nasal NK/T‑cell lymphomas, 
and aggressive NK‑cell leukaemia/lymphoma
The standard-of-care is asparaginase-containing regi-
mens (Fig.  2). Therapeutic goals remain undetectable 
plasma EBV DNA and PET/CT of Deauville score ≤ 3 at 
interim and end-of-treatment. Central nervous system 
(CNS) involvement is exceptionally rare in stage I/II nasal 
NK/T-cell lymphomas, but may occasionally be seen in 
stage III/IV-nasal and non-nasal NK/T-cell lymphomas, 
and aggressive NK/-T cell leukaemia/lymphomas [86]. 
Regimens containing intermediate-dose methotrexate 
(SMILE or SMILE-like) significantly decreased the risk of 
CNS involvement [86]. Hence, patients with high PINK/
PINK-E scores or disseminated non-nasal lymphomas, 
which are risk factors of CNS involvement [86], should 
receive SMILE or SMILE-like regimens.

Because of unsatisfactory survivals, patients with stage 
III/IV-nasal disease and non-nasal diseases of any stage 

and aggressive NK-cell leukaemia/lymphomas should 
be evaluated for additional treatment even if molecu-
lar remission (undetectable EBV DNA) or radiologic 
remission (PET/CT of Deauville score ≤ 3)  is achieved. 
Autologous HSCT does not offer any additional benefit. 
Allogeneic HSCT should be considered, although results 
remain anecdotal and data on HSC source and the optimal 
conditioning regimens are scarce. This is clearly an area 
where more research and prospective studies are required.

Management of relapsed/refractory NK/T‑cell 
lymphomas
Patients relapsing from or refractory to anthracycline-
containing regimens can still be effectively salvaged by 
asparaginase-containing regimens [5, 7]. However, the 
outcome of relapsed/refractory patients in the era of 
non-anthracycline containing regimens is dismal, with a 
reported median PFS of 4.1 months and OS of 6.4 months 
[87]. Chemotherapy-based treatment is mostly ineffec-
tive, so these patients should be considered candidates 
for clinical trials with novel therapies (Fig. 2).

Immune checkpoint blockade
The first clinical evidence that immune checkpoint block-
ade might be effective was obtained in seven patients 
with relapsed/refractory NK/T-cell lymphoma failing 
asparaginase-based regimens and allogeneic HSCT [88]. 
Treatment with the anti-PD1 antibody pembrolizumab 
resulted in an ORR of 100%, with five patients achieving 
CR after a median of seven cycles of treatment [88]. In 
another study, four of seven patients with relapsed/refrac-
tory disease responded to pembrolizumab treatment 
[89]. Among the two cases of CR, one patient remained 
in remission after eighteen cycles of treatment. However, 
there did not appear to be a correlation between PD-L1 
expression on lymphoma cells and response to treatment 
[33, 88, 89]. Similar to pembrolizumab, the anti-PD1 anti-
body nivolumab was also reported to be effective at low 
doses in relapsed/refractory NK/T-cell lymphoma [90], 
with all three treated patients showing response, one of 
whom remaining in continuous CR after nine cycles of 
treatment. Sintilimab, another anti-PD1 antibody, was 
evaluated in 28 patients with relapsed/refractory NK/T-
cell lymphoma [91]. The ORR was 67.9% and the 2-year 
OS was 78.6%. The use of avelumab, an anti-PD-L1 anti-
body, had been studied in a prospective phase II study.93 
The ORR was 38% with a CR rate of 24%. Five patients 
had a durable response after a median of eighteen cycles 
of treatment. PD-L1 expression on lymphoma cells cor-
related with treatment response [92].

In summary, immune blockade of the PD1/PD-L1 axis 
represents a safe and effective treatment for relapsed/
refractory NK/T-cell lymphoma. However, factors 
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predictive of response are still largely undefined. Hence, 
immune checkpoint inhibition in NK/T-cell lymphoma 
should continue to be investigated in clinical trials. 
Finally, future studies of its combination with chemother-
apy or other novel treatment are warranted.

Other immunotherapies and cellular therapy
NK/T-cell lymphoma cells express CD30 and CD38, both 
of which had been explored as therapeutic targets. The 
anti-CD30 antibody conjugate brentuximab vedotin (BV) 
had been reported to be efficacious in two patients with 
relapsed/refractory NK/T-cell lymphomas [93, 94]. How-
ever, formal studies of BV in NK/T-cell lymphomas have 
not been conducted. Anecdotal evidence suggested that 
the anti-CD38 antibody daratumumab might be effective 
for relapsed NK/T-cell lymphoma [95]. In a formal phase 
2 study in relapsed/refractory patients, however, results 
of daratumumab were disappointing, showing an ORR of 
merely 25% with no CR [96].

Another immunotherapeutic strategy is adoptive cel-
lular therapy using autologous EBV-specific cytotoxic 
T-cells (CTL). In a phase 2 study of relapsed NK/T-cell 
lymphomas, autologous EBV-specific CTL was success-
fully generated in 32/47 cases, with fifteen patients sub-
sequently administered the product [97]. The ORR was 
50% (CR: 30%), with a median PFS of 12.3 months. The 
logistic complexity, high production failure rate (32%), 
and long duration to product availability (about 25 days) 
limit the clinical usefulness of this approach.

Novel drugs
Chidamide is an orally active inhibitor of histone dea-
cetylases 1, 2, 3, and 10 (HDACi) [27]. In three studies 
involving 115 cases of relapsed/refractory NK/T-cell lym-
phomas [98–100], chidamide treatment led to an ORR 
of 38% (CR: 16%). Alisertib, an aurora kinase A inhibitor, 
was used in five cases of relapsed/refractory NK/T-cell 
lymphomas as part of two studies [101, 102], with only 
one case (20%) showing a partial response. Other drugs 
approved in T-cell lymphomas, including pralatrexate 
and romidepsin [103], had been tested in too few cases 
of NK/T-cell lymphomas for their efficacies to be defined.

Conclusions and perspectives
The past decade has seen significant improvement in 
the treatment of stage I/II NK/T-cell lymphomas, with 
the majority of patients expecting a cure with asparagi-
nase-based regimens in combination with radiotherapy. 
However, the management of stage III/IV, and relapsed 
and refractory NK/T-cell lymphomas remains challeng-
ing. In addition to genomic analysis, in-depth studies 
on EBV-associated oncogenesis and anti-tumour immu-
nity at single-cell resolution may offer novel multi-prong 

approaches of targeting the lymphoma cells and their 
microenvironment. Because NK/T-cell lymphomas are 
relative uncommon even in regions where they are more 
prevalent, multicentre clinical trials should also be estab-
lished to guide future mechanism-based treatment in the 
era of precision medicine.
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