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Abstract 

Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adapta-
tion of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central orga-
nelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling 
pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of 
tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcom-
ing drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation 
processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory 
machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria 
have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in 
tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical applica-
tion of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting 
agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent 
literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate 
connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria 
for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochon-
drial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for 
cancer therapy.
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Background
Chemotherapy and targeted therapy are mainstream 
cancer treatments, but their efficiency is limited by fre-
quent drug resistance and tumor relapse [1–3]. Gener-
ally, cancer drug resistance can result from two types of 
mechanism: intrinsic or acquired causes [4–8]. Intrin-
sic resistance is due to preexisting resistance-mediat-
ing factors prior to any treatment administered, while 
acquired drug resistance is caused by adaptive responses 
that confer cancer cell survival in unfavorable environ-
ments during drug treatment [9–12]. These adaptive 
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response mechanisms include reduced uptake of drugs or 
increased drug efflux, ineffective induction of cell death, 
and compensatory activation of pro-survival signaling 
pathways [13–15]. Moreover, it is increasingly recognized 
that drug resistance can generally arise from a minor 
resistant subpopulation of cancer cells due to the high 
incidence of tumor heterogeneity. Recent studies have 
demonstrated that cancer stem cells (CSCs) are prone to 
maintain a quiescent state to evade the drug cytotoxicity 
which contributes to the development of a whole resist-
ance phenotype [16–19]

Cancer cells often reprogram their metabolic pathways 
to provide energetic and biosynthetic flexibility to survive 
in hostile conditions when exposed to cancer treatments 
[20–26]. Metabolic reprogramming is considered as one 
of the major hallmarks of cancer [27] and has been an 
area of accelerated research over the last century on the 
basis of aerobic glycolysis theory proposed by Otto von 
Warburg, which describes the preference for glycolysis by 
tumors in the presence of oxygen [28–37]. While numer-
ous studies have well documented the crucial role of 
metabolic adaptations in supporting cancer progression 
under endogenous stress such as hypoxia, cancer cells 
also develop metabolic flexibility to survive in response 
to exogenous stress including drug administration [28, 
38–40]. Chemoresistance caused by glucose metabolic 
plasticity, for example, is generally mediated by several 
key glycolytic factors, such as Hexokinase 2 (HK2), glu-
cose transporter 1 (GLUT1), as well as pyruvate kinase 
isozymes M2 (PKM2) [41–44]. The augmentation of 
glycolysis results in enhanced secretion of lactate and 
production of glycolytic intermediates, which activate 
branching pathways (e.g., pentose phosphate pathway 
(PPP)) and the stress response machinery to support 
nucleotide synthesis and redox homeostasis, leading 
to escape from apoptosis and reduction in drug entry 
[45, 46]. Correspondingly, targeting the dynamic adapt-
ability of metabolism has obtained considerable effect in 
improving the efficiency of cancer therapy [47–50].

Mitochondria are the major organelles that provide 
bioenergetic and biosynthetic changes, which accom-
pany tumor progression by taking up substrates from the 
cytoplasm to drive the electron transport chain (ETC) 
and respiration, the tricarboxylic acid cycle (TCA cycle), 
fatty acid oxidation (FAO), and subsequent macromol-
ecule synthesis (Fig. 1) [51–54]. Additionally, mitochon-
dria can rapidly sense and adapt to stress stimulation to 
ensure cell survival. Advanced studies on cancer metabo-
lism have expanded our understanding of mitochondrial 
metabolic alterations to support anabolic requirements 
of cancer cells, which depend largely on the strictly inter-
twined plasticity of mitochondria (mitochondrial dynam-
ics), including fusion/fission, trafficking/transfer, and 

inter-organelle communication/retrograde signaling [55]. 
While participating in the maintenance of cellular home-
ostasis during tumor progression, these mitochondrial 
adaptive processes are also pivotal for handling drug-
induced stress, which contributes to alterations in mito-
chondrial metabolism and subsequent drug resistance 
[56–59]. For example, mitochondrial fission provides 
an advantage for cisplatin-resistant cells compared with 
their nonresistant counterpart under hypoxic conditions 
in ovarian cancer [60, 61]. In melanoma, the increased 
oxidative phosphorylation (OXPHOS) in resistant sub-
clones is supported by peroxisome proliferator-activated 
receptorγcoactivator-1 (PGC-1α) and is required for 
buffering oxidative stress [46]. Indeed, mitochondria 
have received increasing attention as a therapeutic tar-
get for cancer therapy, and several agents targeting mito-
chondrial metabolism are under investigation [62–64]. 
However, the dynamic alterations and inaccessible char-
acteristics of mitochondria make it a priority to explore 
novel mitochondria-targeting agents and strategies.

Here, we address the most recent findings regard-
ing mitochondrial dynamics to indicate their func-
tions in cancer drug resistance. An overview of existing 
mitochondrial agents will be presented, and emerg-
ing strategies for effective tumor elimination by tar-
geting mitochondria, including drug repurposing and 
mitochondrial-targeted drug delivery systems, will be 
summarized.

Mitochondrial structure and functions
Mitochondria are one of the most evolutionary con-
served intracellular organelles that consist of the outer 
mitochondrial membrane (OMM) and a highly folded 
inner mitochondrial membrane (IMM) [65]. These two 
membranes are separated by the mitochondrial inter-
membrane space (IMS) and differ from each other in 
lipid composition and permeability. Importantly, the 
IMM invaginates into the mitochondrial matrix to form 
cristae, the crucial structure for mitochondrial function 
[66]. To maintain these structures, mitochondria undergo 
multiple complex processes (including fission and fusion) 
to dynamically control the function of mitochondria 
under various stimuli [67].

The primary function of mitochondria is demonstrated 
as energy supply. During the process of energy produc-
tion, mitochondria integrate several metabolic path-
ways, including TCA cycle, FAO, amino acid oxidation, 
OXPHOS, etc., to provide not only most of the cellular 
ATP but also intermediate metabolite, supporting mul-
tiple physiological functions of the organism [68]. In 
recent decades, numerous studies have demonstrated 
that mitochondria also function as a signaling organelle 
to participate in many physiological processes, such as 
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Ca2+ homeostasis, redox homeostasis, apoptosis regu-
lation, and synthesis of heme and iron–sulfur clusters 
[69]. Indeed, mitochondria regulate Ca2+ homeostasis 
by exporting Ca2+ absorbed from intracellular store or 
extracellular uptake, which release Ca2+ back to the cyto-
sol for regulation of calcium-dependent signaling [70]. 
In addition, the by-products of electron transfer dur-
ing mitochondrial respiration result in the generation 
of reactive oxygen species (ROS), in which complexes I 
and III play the central role [71]. These physiological 
ROS together with the reducing equivalents (NADPH, 
etc.) generated by mitochondrial metabolism maintain 
the redox homeostasis for normal biological functions 
[72]. Moreover, mitochondria are tightly associated with 
apoptosis induction, as the release of cytochrome c, the 
key event of intrinsic apoptotic pathway, is mediated by 
the mitochondrial outer membrane permeabilization 
(MOMP) [73]. Therefore, the above complicated func-
tions of mitochondria require the sophisticated regula-
tion of mitochondrial dynamics for maintaining normal 
physiological functions of the organism.

Mitochondrial defects caused by various stimuli may 
lead to various pathologies, including neurodegenerative 
diseases, aging, and especially cancer. A large number 
of studies have suggested that mitochondria dysfunc-
tion may promote cancer onset and progression mainly 
through the following crucial mechanisms. First, as 
mitochondria are the major source of intracellular ROS, 
adequate levels of reactive species not only enable the 
accumulation of oncogenic defects of genes but also 
favor the activation of several oncogenic signaling path-
ways, which result in aberrant cell proliferation [74]. In 
addition, metabolic pathways in mitochondria may lead 
to the abnormal accumulation of specific metabolites, 
such as α-ketoglutarate (α-KG), pyruvate, fumarate, and 
succinate, which display significant oncogenic role dur-
ing cancer initiation and progression [75–78]. Moreover, 
alterations or functional defects in MOMP are beneficial 
for survival of tumor cells when facing harsh conditions 
(such as hypoxic stress, metabolic stress, and therapeutic 
stress), thereby resisting regulated cell death [79]. During 
the dissemination and colonization, mitochondria endow 

Fig. 1  Mitochondria are energetic and biosynthetic signaling hubs. Mitochondria take up substrates from the cytoplasm to provide bioenergetic 
and biosynthetic flexibility. The TCA cycle coordinates glycolysis and glutaminolysis to provide blocks necessary for macromolecule (nucleotides, 
lipids, and amino acids) synthesis. This process produces ATP, NADPH, as well as the electron donors in OXPHOS (NADH and FADH2). The ETC 
complexes produce the majority of cellular ATP and oxidize NADH and FADH2 to NAD+ and FAD, respectively, to allow the oxidative TCA cycle to 
continuously function, producing metabolites that support macromolecule synthesis. DHODH couples de novo pyrimidine synthesis to donate 
electrons to mitochondrial ubiquinone (CoQ) during the conversion of dihydroorotate to orotate. Mitochondrial dynamics facilitate maximum 
survival advantages of cancer cells in response to stress by maintaining mitochondrial metabolism, ion homeostasis such as Ca2+ signaling, and 
redox balance
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metastatic cancer cells with phenotypic and metabolic 
plasticity for survival in intravascular transit and distant 
sites [80]. Taken together, the complex structures confer 
the diverse functions of mitochondria, whose dysfunc-
tion may regulate several aspects of cancer onset and 
progression, indicating a promising therapeutic target.

Mitochondrial stress adaptation and drug 
resistance
Mitochondrial metabolic plasticity contributes to resist-
ance in most types of anticancer therapy, as emphasized 
above [81, 82]. It is well orchestrated as a prerequisite 
of maintenance of OXPHOS, balance of ROS for sign-
aling or defense, Ca2+ homeostasis, and proper induc-
tion of the apoptotic cascade. Mitochondrial dynamics 
modulate their shape, number, quality, and distribution 
in response to treatment and allow the maintenance of 
functional mitochondria (Fig.  2) [83]. Mitochondrial 
biogenesis and turnover, fusion and fission are universal 
mitochondrial stress-adaptive processes and have been 

well demonstrated to be involved in cancer drug resist-
ance. Recent advances have expanded the paradigm of 
mitochondrial dynamics into mitochondrial trafficking 
and transfer, mitochondrial interplay with other orga-
nelles, and mitochondrial retrograde signaling [55, 84, 
85]. These processes provide mitochondria plasticity for 
tumor cells, enabling tumor cells to survive under stress 
conditions, including radiotherapy and chemotherapy. 
In addition, the membrane system is essential for mito-
chondrial integrity to make the mitochondrial network 
more efficient in providing energy and required macro-
molecules. In this section, we systematically review the 
engagement of mitochondrial dynamics in cancer drug 
resistance.

Mitochondrial biogenesis and turnover in drug resistance
Mitochondrial biogenesis and turnover are two oppos-
ing processes that work in concert to regulate mito-
chondrial mass, function, and quality regulating the 
biogenesis of new mitochondria and the removal of 

Fig. 2  Mitochondrial stress adaptation and drug resistance. Mitochondrial dynamics are processes related to mitochondrial stress adaptation. 
These processes maintain proper mitochondrial numbers, structure, and position to ensure their function and could foster cancer drug resistance. 
(A) Fusion and fission allow mitochondria to constantly form networks or fragments according to cellular metabolic requirements. Mitophagy 
has been shown to coordinate with fission, facilitating the elimination of excessive or defective mitochondria. (B) While mitochondrial biogenesis 
and functions are largely regulated by nuclear coding factors, recent advances have revealed that mitochondrial dysfunction activates retrograde 
(mitochondria-to-nucleus) signaling to modify nuclear gene expression and subsequent cell behavior. This mitochondrial retrograde signaling 
functions as an adaptive mechanism for tumor cells to sense and mitigate mitochondrial stress. (C) Reshaping, localization, and motility of 
mitochondria along the microtubules facilitate mitochondria tethering with the ER or other organelles. (D) Recently described nanotunnel 
formation promotes component exchange and transfer of intercellular mitochondria, which usually increase OXPHOS output and ATP production 
of recipient cells and confer them with a survival advantage
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damaged mitochondria in a time-dependent manner. 
Mitochondrial biogenesis is regulated by the coordinated 
transcription of mitochondrial nuclear genes, in which 
PGC-1α plays a central regulatory role [86]. Reduced cel-
lular bioenergetic output usually triggers mitochondrial 
biogenesis by activating AMPK to furnish OXPHOS and 
ATP production. In addition, oncogenes such as K-Ras 
and C-Myc are also involved in regulating mitochondrial 
biogenesis and increasing intracellular biosynthesis and 
respiration, thereby promoting tumorigenesis [87]. In 
particular, c-Myc controls the transcription of approxi-
mately 400 mitochondrial-related genes, thus regulat-
ing mitochondrial biogenesis [88]. These transcription 
networks provide metabolic flexibility for cancer cells 
to facilitate their adaptation to a hostile microenviron-
ment and ultimately reduce the effectiveness of tumor 
treatment.

The most well-studied regulator involved in tumor drug 
resistance is PGC-1α, which facilitates tumor cell survival 
and metastasis under environmental stress by mediat-
ing mitochondrial biogenesis and OXPHOS [89, 90, 92]. 
Previous studies found that mutations in B-Raf or N-Ras 
in melanoma confer chemoresistance to MEK inhibitors 
by switching the metabolic mode to OXPHOS through 
upregulating PGC-1α or TFAM (transcription factor A, 
mitochondrial) to meet their bioenergy requirements [91, 
93]. Similarly, upregulation of mitochondrial biogenesis 
and OXPHOS could augment tolerance to stimuli such 
as radiotherapy and ultraviolet radiation [94]. These stud-
ies demonstrate the critical role of adaptive mitochon-
drial biogenesis in drug-resistant capacity and highlight 
the potential of targeting mitochondrial OXPHOS for 
improving drug efficacy.

The maintenance of mitochondrial quality is also 
ensured by mitophagy, a programmed degradative pro-
cess for eliminating excessive or defective mitochondria. 
Generally, the “eat me” signal on damaged mitochondria 
directly triggers mitophagy machinery by membrane 
depolarization and a cascade of phosphorylation and 
ubiquitination events to remove cytotoxic cellular com-
ponents and maintain energy balance in the cell. It shares 
a common core mechanism with macro-autophagy but 
depends on specific mitophagy receptors, including the 
classical PTEN-induced putative kinase 1 (PINK1)-Par-
kin pathway [95, 96], and several other receptors, includ-
ing Bcl-2/adenovirus E1B 19  kDa interacting protein 
3 (BNIP3/NIX), FUN14 domain-containing protein 1 
(FUNDC1), and Bcl-2-like protein 13 (BCL2L13). While 
these receptors have been well demonstrated to elicit 
mitophagy and facilitate tumor progression [97–99], 
they were proven to confer resistance of cancer cells to 
a variety of commonly used chemotherapy drugs, such 
as 5-fluorouracil (5-fu), cisplatin, and doxorubicin (Dox), 

by triggering mitophagy [64, 100, 101]. For example, 
the highly activated ATAD3A-PINK1/Parkin signaling 
pathway under hypoxic conditions confers tolerance of 
liver cancer cells to sorafenib [102]. In esophageal squa-
mous cell carcinoma (ESCC) patients, PINK1-mediated 
mitophagy promotes tumor cell survival under neoad-
juvant therapy [103]. Interestingly, PINK1 could recruit 
ARIH1, rather than Parkin, to trigger mitophagy and 
ultimately lead to drug resistance in breast and lung can-
cer cells [104]. Several other emerging receptors, such 
as FUNDC1 and Galectin-1, have been reported to be 
upregulated to promote resistance to cisplatin and ion-
izing radiation by eliciting mitophagy [105]. In addition, 
the upregulation of these receptors relies on a series of 
stress-adaptive transcriptional programs mediated by 
p53, NF-κB, and STAT1/2 [106]. It would be of interest 
to further explore the regulatory role of these networks 
in regulating mitophagy and their potential role in drug 
resistance.

Mitochondrial fusion and fission in drug resistance
Mitochondrial fusion and fission allow mitochondria to 
constantly form networks or fragments according to cel-
lular metabolic requirements. In general, fusion is com-
monly triggered by huge energy requirements, mediated 
by dynamin-related GTPases, optic atrophy 1 (OPA1) for 
IMM and mitofusin (MFN) 1 and 2 for OMM, resulting 
in a hyperfused mitochondrial network with increased 
mtDNA integrity, mitochondrial respiration, ATP pro-
duction, and mitochondrial membrane potential (MMP) 
[107, 108]. Mitochondrial fission is mainly mediated 
by dynein-related protein 1 (DRP1) and fission protein 
homologous protein 1 (FIS1) and has been shown to 
coordinate with mitophagy or apoptosis, facilitating the 
elimination of damaged mitochondria, the redistribution 
of mtDNA, and the mobility of mitochondria [109–113]. 
These two opposing processes are tightly organized in 
response to stressors, thus engaging in tumor progression 
in a context-dependent manner [114–116]. For instance, 
the increase in mitochondrial fission caused by hypoxia 
has been shown to enhance the invasion of breast cancer 
[117].

Recent advances in mitochondrial medicine highlight 
the engagement of mitochondrial fusion and fission in 
mediating metabolic adaptation to chemotherapeutic 
agents in tumor cells. The relevance of mitochondrial 
fusion in chemoresistance is primarily evidenced by the 
upregulation of OPA1 and MFN1/2 expression, as well as 
interconnected mitochondrial networks in drug-resistant 
cancer cells. For instance, upregulated OPA1 confers 
resistance to cytochrome c release upon prolonged vene-
toclax treatment in acute myeloid leukemia (AML) cells 
[118]. Consistently, upregulated MFN2 and increased 



Page 6 of 42Jin et al. Journal of Hematology & Oncology           (2022) 15:97 

OXPHOS have been found in cancer cells that survive 
chemotherapy [119, 120]. Several other factors have been 
reported to promote cancer drug resistance by trigger-
ing mitochondrial fusion. For example, circulating leptin 
protein activates induced myeloid leukemia cell differen-
tiation protein (MCL1, a member of the anti-apoptotic 
protein BCL2 family) to induce mitochondrial fusion, 
thereby promoting tumor cells to survive during gemcit-
abine treatment [121].

Increasing evidence also shows the pivotal role of mito-
chondrial fission in chemoresistance [60, 122]. One of the 
best examples is that phosphorylation of DRP1 induces 
mitochondrial fragmentation to promote metabolic 
adaptation, thus protecting cancer cells from chemo-
therapy agents [123–125]. Phosphorylation or activation 
of several upstream kinases, such as AMPK, cyclin B1/
Cdk1, ERK1, and DRP1, is involved in mitochondrial 
fission-mediated chemoresistance [61, 126]. Since mito-
chondrial fusion and fission represent two opposing sys-
tems, their balance and role in cellular fate are carefully 
orchestrated by specific cellular metabolic requirements. 
Therefore, more insights into the regulatory patterns 
of mitochondrial fusion and fission and their effect in 
chemotherapy are necessary to develop therapies offering 
improved clinical outcomes for cancer patients.

Inter‑organelle contact sites, mitochondrial trafficking, 
and transfer in drug resistance
Mitochondria dynamically form contacts with vari-
ous intracellular organelles to maintain cell homeostasis 
by fine-tuning Ca2+ transfer, phospholipid biosynthe-
sis, ROS signaling, mitochondrial quality control, and 
mtDNA synthesis [127–133]. Such cellular membrane 
interactions are extensive and play the essential role in 
cell adaptation to metabolic stress [134].

The mitochondrial-associated endoplasmic reticulum 
(ER) membrane (MAM) is the most well-studied mem-
branous system coordinating with a series of proteins and 
factors to maintain proper mitochondrial Ca2+ uptake 
which correlates with resistance to chemotherapy [135]. 
Mitochondrial Ca2+ uniporter complex (MCUC) subu-
nits (MCU, MICU1, MICU2, EMRE, and MCUb) coop-
erate to maintain mitochondrial Ca2+ homeostasis, and 
their relevance to drug resistance is condition depend-
ent [136–139]. For example, downregulation of MCU 
was demonstrated to confer resistance by restricting the 
transport of Ca2+ to the mitochondria in HeLa cells [140]. 
However, the interaction of MCU with receptor-inter-
acting protein kinase 1 (RIPK1) can increase mitochon-
drial Ca2+ uptake, resulting in increased proliferation 
of colorectal cancer cells [141]. Additionally, MCUR1-
mediated mitochondrial Ca2+ signaling was reported 
to facilitate cell survival of hepatocellular carcinoma 

(HCC) upon pro-apoptotic stimuli [137]. Several other 
recognized mitochondrial proteins, such as MFN2 and 
voltage-dependent anion-selective channel proteins 
(VDACs), were identified as important MAM proteins 
that might be involved in tethering MAMs and facilitat-
ing mitochondrial fission, mitophagy, and mitochondrial 
positioning [142, 143]. Moreover, there is mitochondrial 
contact with other organelles, such as peroxisomes, and 
lipid droplets, in response to metabolic stress. For exam-
ple, “lipid droplet mitochondria” can help mitochondria 
provide energy by burning fatty acids (FAs) to support 
the TCA cycle [144]. Therefore, we conclude that explor-
ing mitochondria-associated tethering systems could 
expand the understanding of mitochondrial dynamics 
and provide new targets for tumor intervention.

The proper localization of organelles is often crucial 
to their activity and function [145]. Numerous studies 
have shown that the movement and subcellular location 
of mitochondria can affect tumor cell polarity, morphol-
ogy, and mobility capacity [146–150]. Mitochondrial 
stress responses drive strategic mitochondrial redistri-
bution to fulfill bioenergetic needs, Ca2+ homeostasis, 
ROS buffering, and signal transduction, thus promoting 
the adaptation of tumor cells to the harsh tumor micro-
environment [150–156]. A typical example is that of 
mitochondria migrating to the invasive front of meta-
static tumor cells [157]. For example, the NF-κB-inducing 
kinase (NIK)-DRP1 axis could mediate the fission and 
subsequent directionally positioning of mitochondria to 
the cell periphery to promote the migration of a variety 
of tumors [151, 158]. In addition, the trafficking of mito-
chondria along the cytoskeleton could protect cells from 
detrimental ROS production [155, 159]. Notably, mito-
chondrial trafficking occurs to endow tumor cells for sur-
vival and metastasis upon drug abuse [160]. For instance, 
activated Akt promotes mitochondria positioning along 
the cytoskeleton to provide an effective “regional” energy 
source, thus fueling resistance and even adaptive cell 
invasion in response to PI3K inhibitors [148]. Intensive 
studies on this “spatiotemporal” model of mitochondria 
may deepen our understanding of the subcellular accu-
mulation of mitochondria as an adaptative process and 
may provide a viable strategy to increase anticancer effi-
cacy in the clinic.

Recent studies have shown that mitochondrial dynam-
ics are accompanied by intercellular mitochondrial trans-
fer [161–163]. This transfer process is achieved through 
several mechanisms, including gap junctions, extracel-
lular vesicles (EVs), and tunneling nanotubes (TNTs) 
[164–169]. TNTs, the transient cytoplasmic extensions, 
are the major cellular structure that mediate intercellular 
mitochondrial transfer [170]. The mitochondrial transfer 
process usually increases the OXPHOS output and ATP 
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level of recipient cells. As a consequence, recipient can-
cer cells exhibit a survival advantage and resistance to 
stress [171–173]. Moschoi et al. observed that AML cells 
acquire intact mitochondria from marrow stromal cells 
(MSCs) to maintain their own mitochondrial function 
and survive during cytarabine treatment [174]. Several 
other tumors can also despoil mitochondria from MSCs 
and obtain resistance to chemotherapeutics [172]. In 
addition, it has been proposed that mitochondria trans-
fer from bone marrow stromal cells (BMSCs) to multi-
ple myeloma (MM) cells, which can also contribute to 
chemoresistance [175, 176]. Consistently, in breast can-
cer, mitochondrial transfer promotes resistance to doxo-
rubicin [177], and mtDNA in exosomes derived from 
hormonal therapy-resistant breast cancer cells leads to 
endocrine therapy resistance. Intercellular transfer of 
mitochondria expands the influence of mitochondria on 
tumor metabolism, suggesting that targeting mitochon-
drial transfer could represent a more reasonable and 
effective antitumor strategy.

Mitochondrial retrograde signaling in drug resistance
Mitochondrial dynamic changes are positively regulated 
by nuclear coding factors, while recent advances under-
line that retrograde signaling activated by mitochondrial 
dysfunction can modify nuclear gene expression and 
subsequent cell behavior [59, 178]. In fact, it serves as an 
adaptive mechanism for tumor cells to sense and mitigate 
mitochondrial stress, thus participating in tumor sur-
vival, metastasis, and drug resistance.

Retrograde reactions
The signals from mitochondrial dysfunction, especially 
mutation/deletion in mtDNA, are usually relayed to the 
nucleus by TCA cycle intermediates, ATP, Ca2+ or ROS, 
which activate specific kinases to initiate transcriptional 
regulation of nuclear genes or posttranslational modi-
fication of key proteins (e.g., histone acetylation) [179–
181]. The most well-studied example is the activation of 
AMPK triggered by a decrease in ATP levels, which elic-
its PGC-1α-mediated transcription of genes responsible 
for energy metabolism, mitochondrial synthesis, and the 
quality control system [182, 183].

As mentioned above, mitochondria are essential for 
maintaining intracellular Ca2+ levels. Disruption of 
MMP caused by deletion of the electron transport chain 
complex or drug insult led to leakage of Ca2+ into the 
cytoplasm. Intracellular free Ca2+, on the one hand, 
activates multiple oncogenic signaling pathways, includ-
ing RAC-alpha serine/threonine-protein kinase (AKT) 
and phosphatidylinositol 3-kinase (PI3K), to upregulate 
the expression of glucose transporters, such as GLUT1 
and GLUT4, thereby promoting the metabolic switch to 

glycolysis and the survival of cancer cells [184–186]. On 
the other hand, Ca2+ signaling activates NF-κB and T cell 
nuclear factor (NFATC) signaling to facilitate the tran-
scription of Ca2+ transport and storage-related proteins 
[187, 188].

ROS can directly manipulate cellular redox homeo-
stasis and act as second messengers to regulate cellular 
physiological and pathological processes [189–191]. 
For example, ROS elicited by mtDNA depletion could 
activate the NRF2 signaling pathway and the multidrug 
resistance proteins MRP1 and MRP2 to help tumor cells 
fight against ROS and survive under cisplatin, doxoru-
bicin, and SN-38 treatment [192]. In addition, ROS mod-
ulate the expression of PGC-1α to promote OXPHOS, 
thus conferring cisplatin resistance in ovarian cancer 
cells [193]. Together, these studies have linked mtDNA 
mutations/deletion with changes in sensitivity of cancer 
cells to chemotherapy, thus providing a new perspective 
on modulating drug resistance.

Mitochondrial nuclear feedback and mitochondrial 
stress‑relieving response
Mitochondria have evolved protein quality control sys-
tems to maintain mitochondrial integrity by ensuring 
proper folding, assembly, and circulation of mitochon-
drial proteins in response to exogenous or endogenous 
stressors. This process tightly relies on feedback regula-
tory loops, including the mitochondrial unfolded pro-
tein stress response (UPRmt) [194], proteolytic stress 
responses [195], and the heat shock response of mito-
chondrial chaperones [196]. These mechanisms are 
deregulated due to altered signaling to confer cancer cell 
survival, which ultimately contribute to tumor progres-
sion and drug resistance. This could be due to several 
proposed mechanisms, including continuous activation 
of NF-κB and molecular chaperone systems and muta-
tions in the catalytic sites that contribute to resistance to 
proteasome inhibitors. For instance, a recent study has 
suggested that the mitochondrial oxidoreductase ferre-
doxin 1 (FDX1) maintains mitochondrial metabolism to 
promote the adaptation of tumor cells to the proteasome 
inhibitor elesclomol [197]. More investigations revealing 
the mechanisms employed in the quality control system 
of mitochondrial protein might offer unique strategies for 
improving therapeutic efficacy in cancer treatment.

Mitochondrial‑derived peptides
Recently, mitochondria-derived peptides (MDPs, short 
open reading frames (sORFs) of mitochondrial genome) 
have been identified and implicated in stress response, 
metabolic regulation, and other biological processes. 
In response to cellular stress, these peptides can even 
directly manipulate nuclear gene expression [198], which 
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expands the paradigm of mitochondrial nuclear com-
munication. Several MDPs have been identified, includ-
ing Humanin [199], humanin-like peptides (SHLP) 1–6 
[200], and MOTS-c [201–203]. Among them, humanin 
was reported to protect cells from oxidative stress and 
mitochondrial dysfunction [204]. SHLP2 and SHLP3 
exert similar cytoprotective effects by maintaining mito-
chondrial function and combating excessive ROS lev-
els [202, 205]. In particular, MOTS-c was reported to 
translocate to the nucleus under metabolic stress such 
as glucose deprivation and oxidative stress [206]. In the 
nucleus, MOTS-c regulates the transcription of a broad 
range of genes, including those with antioxidant response 
elements (AREs) and other anti-inflammatory-associated 
genes, to initiate the stress adaptation program. A con-
siderable number of studies have now proven that MDPs 
are intrinsically linked to tumor progression, and tar-
geting MDPs holds potential to improve the efficacy of 
chemotherapeutics [207, 208].

Mitochondria‑mediated CSC properties in drug resistance
It is well established that CSCs contribute substantially 
to the refractory features of cancer. Under pharmacologi-
cal treatment, mitochondria function as a central hub to 
maintain the survival and self-renewal capacity of CSCs, 
resulting in drug resistance and tumor recurrence [209]. 
For example, it has been reported that oncogenic Myc 
cooperated with MCL1 to maintain chemoresistance of 
CSCs in triple-negative breast cancer (TNBC). Further 
studies found that Myc and MCL1 upregulated the levels 
of mitochondrial OXPHOS and promoted ROS genera-
tion, which contributed to the accumulation of HIF-1α 
and the subsequent maintenance of CSC properties 
[210]. Moreover, PGC-1α, a critical regulator of mito-
chondrial biogenesis, has been demonstrated to enhance 
stem cell-like characteristics and chemoresistance to 
cisplatin in ovarian cancer [211]. In addition, increased 
levels of mitochondrial mass were found in a subtype of 
chemo-resistant breast cancer cells enriching in several 
known CSC markers, implying the potential of target-
ing mito-high CSC population for cancer therapy [212]. 
Therefore, investigation of mitochondrial function in 
regulating CSCs holds the promise to benefit the devel-
opment of novel CSC-targeted strategies for reversing 
cancer drug resistance.

In summary, a large body of evidence has indicated the 
important role of mitochondrial dynamics in the adap-
tative mechanism of cancer cells in response to a chal-
lenging environment, which is expected to expand the 
understanding of cancer drug resistance phenomena 
[91, 213–216]. Further investigations deciphering spe-
cific mitochondrial-related mechanisms implicated in 
the resistance could hopefully benefit the identification 

of possible biomarkers for the early prediction of cancer 
drug resistance and hold promise to target mitochondria 
for overcoming cancer drug resistance.

Targeting mitochondria to overcome cancer drug 
resistance: the current status and challenges
The mitochondrial ETC fuels cellular energy demands 
by utilizing intermediates from various metabolic path-
ways, including the TCA cycle and FAO, and couples 
the generation of macromolecules such as amino acids 
and nucleotides [217–219]. Thus, dynamic regulation 
of mitochondria involves robust metabolic and redox 
alterations, as well as changes in ion (e.g., Fe2+, Ca2+) 
homeostasis. Increasing knowledge that these criti-
cal processes are linked to tumor transformation makes 
mitochondria an attractive therapeutic target. In this sec-
tion, we will summarize current mitochondrial therapeu-
tic targets and their proposed inhibitors (Fig. 3, Table 1), 
with a particular emphasis on the role of small-molecule 
inhibitors in targeting mitochondria to overcome cancer 
chemoresistance.

Targeting mitochondrial ETC
The mitochondrial ETC complexes I–V (hereafter CI-V) 
bypass electrons to generate energy and are the major 
source of mitochondrial ROS [250, 251]. Disruption of 
the ETC inevitably triggers apoptosis and perturbs the 
cellular redox balance and therefore provides a possible 
strategy for eliminating cancer cells [252].

Complex I
Mitochondrial complex I (CI), the largest complex of the 
ETC, transfers TCA cycle-derived electrons from NADH 
from the UbQ and maintains the proton gradient on the 
MIM. Several inhibitors including piericidin, tamoxifen, 
metformin, and ME-344 that directly target the respira-
tory complex I have gained momentum as potential anti-
tumor therapeutics. Metformin, an antidiabetic drug 
has now been repurposed as an anticancer drug and 
was observed to inhibit CI. Many preclinical and clinical 
studies have demonstrated its excellent antitumor effi-
cacy in managing resistance caused by chemotherapeu-
tics, including cisplatin, Dox, and 5-FU (NCT00897884, 
NCT02437656; Table 2) [253–256]. In addition, a recent 
phase II clinical trial observed that combinational use 
of metformin with standard epidermal growth factor 
receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy 
significantly improved both progression-free survival and 
overall survival in patients with advanced lung adeno-
carcinoma (NCT03071705; Table  2) [257]. Consistently, 
metformin-sensitized lymphoma to isocitrate dehydro-
genase (IDH) mutant inhibitors and increased the sen-
sitivity of lymphoma to AZD3965, a monocarboxylate 
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transporter (MCT1) inhibitor, by disturbing mitochon-
drial complex I and bioenergetics, thus providing a sci-
entific rationale for combinatory mitochondrial-targeted 
therapies to overcome drug resistance in human lym-
phoma [53, 258].

Complex II
Complex II (CII, succinate dehydrogenase), the smallest 
respiratory complexes, is a membrane-bound compo-
nent of the TCA cycle that permits the oxidation of suc-
cinate to fumarate. Compounds that induce substantial 
ROS generation from CII are the emerging anticancer 
drugs. For example, alpha-tocopheryl succinate (α-TOS), 
a compound targeting UbQ-binding sites in CII, has been 
demonstrated to disturb CII for eliciting mitochondrial 
permeabilization and apoptosis, thus showing signifi-
cant potential in overcoming drug resistance in various 
tumors [226, 259, 260]. In particular, based on the knowl-
edge that α-TOS targets UbQ-binding sites, a more spe-
cific mitochondrial-targeted analogue, MitoVES, was 

designed for efficiently suppressing tumors by disturbing 
mitochondria [261, 262].

Complex III
CIII, similar to CI, functions by pumping protons across 
the MIM and contributing to the proton gradient. It 
has been also identified as target for anticancer drugs. 
Antimycin A is the most classic CIII inhibitor to trigger 
apoptosis for effectively eliminating cancer cells [263, 
264]. Resveratrol, a plant-derived polyphenol, exhibited 
considerable antitumor efficacy by efficiently inhibiting 
ETC complexes, especially CIII to induce apoptosis and 
disturb multiple cellular processes in primary and resist-
ant cancer cells [265–267]. Importantly, the anticancer 
potential of resveratrol is being investigated in clinical 
trials for the treatment of colorectal, liver, and breast can-
cer (NCT0025633, NCT00433576, and NCT03482401; 
Table 2).

Fig. 3  Schematic showing representative mitochondrial therapeutic targets and their proposed inhibitors. The mitochondrial ETC, as the central 
system of mitochondrial energy production and OXPHOS, has been the most frequently used mitochondrial target. Multiple mitochondrial ETC 
inhibitors, including metformin and IACS-010759, are being investigated for cancer treatment. In addition, inhibitors targeting different steps of the 
mitochondrial TCA cycle have shown promise in phase I and II clinical trials. Several other TCA cycle-coupled biomacromolecule synthesis pathways, 
such as the nucleotide synthesis pathway and the one-carbon (1C) metabolic pathway, are also potential therapeutic targets for reversing drug 
resistance
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Complex IV
CIV ensures the final step of electron transport in ETC 
to maintain the proton gradient and mitochondrial mem-
brane potential. Several compounds have been observed 
to modulate the mRNA or protein expression of CIV sub-
units and thereby induce apoptosis in tumor cells. Fen-
retinide (also named as N-(4-hydroxyphenyl) retinamide, 
4-HPR) and its analogue are perhaps the most well-doc-
umented category to downregulate CIV by destabilizing 
the mRNA transcript [268], thereby inducing ROS-medi-
ated apoptosis to combat tumors in both preclinical and 
clinical studies (NCT00004154, NCT00009971, and 
NCT00077402; Table 2) [269, 270]. In particular, Fenreti-
nide has been reported to eliminate ABT-737-resistant 
cell lines via ROS generation and MCL1 reduction and 
thus has synergetic effect with ABT-737 to enhance mito-
chondrial apoptotic cascade in acute lymphoblastic leu-
kemia (ALL) [271].

Complex V
CV, the ATP synthase, directly catalyzes ATP production 
using the proton gradient maintained by complexes I–
IV, thus supplying the cell with essential energy. Besides 
oligomycin and its derivatives, several newly identified 
CV inhibitors, including 3,30-diindolylmethane (DIM), 
Bz-423, were proposed to fight tumors and even those 

with drug resistance [230, 272]. Notably, there are com-
pounds that could inhibit different complexes of ECT. 
For example, resveratrol is also reported to bind to CV 
and induce Bcl-2-mediated apoptosis [273]. In addition, 
Gboxin, an OXPHOS inhibitor, is observed to interact 
with several respiratory chain proteins spanning CI, CII, 
CIV, and CV, thereby suppressing tumor growth [274]. 
Although it remains to be known whether these ETC 
inhibitors will be effective in humans, emerging studies 
provide excellent prospects for their application in cancer 
therapy and drug resistance eradication.

Mitochondrial redox balance
ROS are intrinsically involved in tumor progression by 
modulating cell survival, secondary signaling networks, 
and genetic instability/mutations [275]. Mitochondria 
function as a major contributor to endogenous ROS due 
to the large electron flow in the ETC and constant metab-
olism alterations involved in numerous enzyme-cata-
lyzed reactions. Mitochondrial redox balance is typically 
mediated by cellular antioxidants, such as glutathione 
(GSH), glutathione peroxidases (GPx1 and GPx4), and 
glutathione reductase [276–282]. Emerging observations 
suggest that heightened levels of ROS contribute to drug 
resistance. For instance, gefitinib resistance was demon-
strated to be associated with mitochondrial dysfunction 

Table 1  Summary of mitochondrial targets for cancer therapy

Category (Mitochondria signaling pathway) Targets Inhibitors and Refs

Mitochondrial ETC and OXPHOS Complex I Piericidin [220]; rotenone [221]; deguelin [222]; 
tamoxifen [123, 223]; metformin [224]; ME-344 [225]

Complex II α-TOS [226]; MitoVES [227]

Complex III Resveratrol [228];

Complex IV Fenretinide [229];

Complex V BZ-423 [230]

Targeting the mitochondrial metabolic pathway Heme synthesis Cyclopamine tartrate (CycT) [231]; HasA [232]

1C metabolism (SHMT1 and SHMT2) AGF291, AGF320, and AGF347 [233, 234]; lometrexol 
[235]

DHODH leflunomide [236, 237]

Nucleotide biosynthesis IACS-010759 [238]

TCA cycle (α-ketoglutarate dehydrogenase 
(α-KGDH) and pyruvate dehydrogenase 
(PDH)

CPI-613 [239]

Glutaminase (GLS) CB-839 [240], bis-2-(5-phenylacetamido-1,2,4-thiadia-
zol-2-yl) ethyl sulfide (BPTES) [241]

Glutamate-pyruvate transaminase 2 (GPT2) Aminooxyacetate (AOA) [54]

Redox balance NADH:ubiquinone oxidoreductase SMIP004-7 [242];

Ca2+ homeostasis VDACs and ANT lonidamine[243], steroid analogs [244]

Na+/Ca2+ exchanger CGP-37157 [245]

Bcl-2 Gossypol [246]

S100A4 Niclosamide [247]

Mitochondrial membrane proteins Hexokinase II 3-bromopyruvate [248]; 2-Deoxyglucose (2-DG) [249]
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Table 2  Clinical trials of identified mitochondrial inhibitors

Inhibitor Target Cancer type ClinicalTrials.
gov Identifier

Status

Metformin CI Breast cancer NCT04559308 Recruiting

Breast cancer NCT00897884 Completed

Rectal cancer NCT02437656 Completed

etc.

VLX600 ETC Refractory cancer NCT02222363 Terminated

Fenretinide CIV Advanced or metastatic hormone refractory prostate 
cancer

NCT00077402 Completed

Lung cancer NCT00009971 Completed

Bladder cancer NCT00004154 Completed

etc.

Resveratrol CIII Colon cancer NCT00256334 Completed

Liver cancer NCT00433576 Completed

Breast cancer NCT03482401 Completed

etc.

Tigecycline Mitochondrial ribosomal machinery Acute myeloid leukemia NCT01332786 Completed

Gamitrinib Mitochondrial chaperone proteins, 
such as TRAP-1 and HSP-90

Lymphoma, advanced solid tumor NCT04827810 Recruiting

CPI-613 TCA cycle, PDH Biliary tract cancer NCT04203160 Recruiting

Advanced hematologic malignancies NCT01034475 Completed

Recurrent small cell lung cancer NCT01931787 Completed

etc.

Dichloroacetate PDK Head and neck cancer NCT01163487 Completed

Squamous cell carcinoma of the head and neck NCT01386632 Completed

etc.

IACS-010759 CI, TCA cycle Advanced malignant solid neoplasm;
Anatomic stage IIIA breast cancer

NCT03291938 Completed

Recurrent acute myeloid leukemia NCT02882321 Active, not recruiting

etc.

Leflunomide DHODH Breast neoplasms NCT03709446 Recruiting

Prostate cancer NCT00004071 Completed

Brain and central nervous system tumors NCT00003775 Completed

etc.

ONC201 OXPHOS Endometrial cancer recurrent NCT03485729 Recruiting

Triple-negative breast cancer; endometrial cancer; 
hormone receptor positive, HER2 negative breast cancer

NCT03394027 Completed

Recurrent neuroendocrine tumor; metastatic neuroen-
docrine tumor

NCT03034200 Active, not recruiting

etc.

Tamoxifen ETC Breast cancer NCT00286117 Completed

Estrogen receptor positive breast cancer NCT02988986 Completed

Bladder cancer NCT02197897 Completed

ME-344 ETC Breast cancer; human epidermal growth factor 2 nega-
tive carcinoma of breast; early-stage breast carcinoma

NCT02806817 Completed

etc.

Gossypol Bcl-2 family proteins Extensive stage small cell lung cancer;
Recurrent small cell lung cancer

NC
T00666666

Completed

etc.

Lometrexol SHMT2 Lung cancer; NCT00033722 Unknown

Unspecified adult solid tumor, protocol specific NCT00024310 Unknown
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in lung cancer cells [283]. Conventional chemotherapies, 
such as 5-FU and cisplatin, are designed to kill cancer 
cells via ROS-dependent mechanisms. In that context, 
enhanced ROS levels could maximize antitumor efficacy. 
For example, SMIP004-7 targets NADH:ubiquinone oxi-
doreductase to improve the immunotherapeutic effect of 
PD-1 in triple-negative breast cancer [242]. Destroying 
the redox balance is perhaps the essence for modulating 
mitochondrial ROS to benefit cancer therapy. In view of 
this, redox status during treatment and the basal mito-
chondrial ROS range may provide important clues for 
guiding rational intervention strategies. Selective target-
ing of ROS-specific organelles, as well as dynamic ROS 
delivery, might be beneficial for preventing drug resist-
ance and effectively eliminating cancer cells.

Targeting the mitochondrial metabolic pathway
Nucleotide biosynthesis
Targeting mitochondrial ETC-linked metabolic path-
ways, such as nucleotide metabolism, also contributes to 
improved antitumor efficacy. One-carbon (1C) metabo-
lism coordinates with serine synthesis to provide glycine 
and tetrahydrofolate methyl donors, namely methyl-
ene-THF (5,10-CH-THF) and formyl-THF (10-CHO-
THF), for nucleotide synthesis. As essential enzymes in 
1C metabolism, cytosolic SHMT1 and mitochondrial 
SHMT2 have attracted much attention. Several inhibi-
tors, including AGF291, AGF320, and AGF347, have 
been developed to target these enzymes, and their anti-
tumor efficacy has been established for lung, colon, and 
pancreatic cancer cells [233, 234, 284]. Intriguingly, folate 
inhibitors such as lometrexol have also been found to 
reduce SHMT1 and SHMT2 activity [235]. Several clini-
cal trials are undergoing to investigate the use of lome-
trexol in advanced solid tumor (NCT00033722 and 
NCT00024310; Table 2).

In addition, efforts have been made to inhibit nucleo-
tide metabolic enzymes, such as the intramitochondrial 
key pyrimidine synthesis-related enzyme, dihydroorotate 
dehydrogenase (DHODH). Leflunomide exhibited antitu-
mor activity in prostate cancer mouse model by inhibit-
ing DHODH [236]. Additionally, a phase I clinical study 
showed leflunomide had considerable activity toward 
myeloma with manageable side effects (NCT02509052; 
Table  2). Furthermore, IACS-010759, a mitochondrial 
CI inhibitor, was developed to induce apoptosis in brain 
cancer and AML, likely caused by energy depletion 
and reduced aspartate production that led to impaired 
nucleotide biosynthesis [238]. Combinational use of 
IACS-010759 with lactate dehydrogenase (LDH) inhibi-
tor could overcome oxidative rewiring and show a syn-
ergistic therapeutic effect [49]. Key enzymes involving in 
nucleotide metabolism could also play a “part-time role” 

in other mitochondrial processes (e.g., SHMT2 partici-
pating in mitochondrial translation) [285–287]. The anti-
tumor effects of nucleotide metabolism inhibitors could 
be manifold. As such, further efforts are urgently needed 
to screen for candidates targeting nucleotide metabolism 
for cancer management.

TCA cycle
The mitochondrial TCA cycle integrates multiple fuel 
sources to synthesize nucleotide, amino acid, lipid, and 
heme. Several TCA cycle inhibitors have been under 
investigation and predicted to be efficacious. Among 
them, CPI-613, a lipoate analog that targets two enzyme 
complexes of the TCA cycle (α-ketoglutarate dehydro-
genase (α-KGDH) and pyruvate dehydrogenase (PDH)) 
[288], exerts anticancer activity in pancreatic cancer 
and AML [289]. Notably, CPI-613 could sensitize AML 
cells to cytarabine and mitoxantrone, representing a 
promising approach for relapsed or refractory AML 
[239]. To date, clinical trials of CPI-613 for the treat-
ment of advanced or recurrent tumor are ongoing, or 
have already been completed with satisfactory results 
(NCT04203160, NCT01034475, and NCT01931787; 
Table 2). Interestingly, a recent study reported that vita-
min C modulates the activity of PDH and regulates the 
TCA cycle via interfering with PDK1-mediated phospho-
rylation of PDH in KRAS mutant colon cancer, suggest-
ing a potential application for clinical management of 
chemoresistance to anti-EGFR therapy [290].

Glutaminolysis
Glutamine (Gln) can be converted to glutamate by glu-
taminase (GLS) and further metabolized to α-KG via 
glutamate dehydrogenase 1 (GLUD1), glutamate oxaloac-
etate transaminase 2 (GOT2) or glutamate-pyruvate 
transaminase 2 (GPT2), thus providing a major carbon 
source to replenish the TCA cycle [291–295]. Many 
classes of compounds that target mitochondrial Gln 
metabolism are being investigated for cancer treatment. 
GLS inhibitors have shown promising anticancer effect 
in preclinical models of cancer. For example, bis-2-(5-
phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide 
(BPTES), a GLS inhibitor, has been demonstrated to slow 
the growth of various types of tumors [296, 297].

Importantly, BPTES was observed to efficiently sensi-
tize pancreatic cancer to 5-(tetradecyloxy)-2-furoic acid 
(TOFA, an acetyl-CoA carboxylase inhibitor) and ß-Lap 
(an NADPH:quinone oxidoreductase (NQO1) inhibitor) 
via enhancing cancer cell apoptosis [241, 298, 299]. In 
particular, CB-839 (telaglenastat), another GLS inhibitor, 
has moved on to clinical trials and exhibits promise as 
potential drug for renal cell carcinoma (NCT03428217; 
Table  2), hematological malignancies (NCT03428217 
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and NCT02071888; Table 2), non-small cell lung cancer 
(NSCLC) (NCT02071862; Table 2), and even those drug-
resistant tumors (NCT03944902 and NCT03798678; 
Table 2). Recently, GPT2 has been demonstrated to pro-
mote cell survival by supporting the TCA cycle after GLS 
inhibition [54]. In that context, inhibition of GPT2 using 
aminooxyacetate (AOA), a transaminase inhibitor, could 
thus sensitize cancer cells to BPTES.

Targeting Ca2+ homeostasis
Mitochondria have evolved Ca2+ influx and efflux sys-
tems to maintain cellular Ca2+ homeostasis. Proper 
mitochondrial Ca2+ ensures respiration efficacy and ATP 
production, while Ca2+ overload can induce mitochon-
dria-mediated apoptosis [300–303]. Therefore, mito-
chondrial Ca2+ signaling pathways engage multifaceted 
roles in regulating cell fate and are beneficial for tumo-
rigenesis. Studies are under way to identify the proteins 
involved in mitochondrial Ca2+ signaling pathways as 
alternative targets for cancer therapy, and to evaluate the 
potential for increasing the sensitivity toward chemo-
therapeutic treatment. Compounds that modulate mito-
chondrial porins such as VDACs and ANT, including 
lonidamine, arsenites, and steroid analogs, have been 
documented to disturb the mitochondrial Ca2+ balance 
and elicit mitochondrial apoptosis, thus showing potent 
antitumor efficacy as well as drug resistance overcom-
ing activity [243, 244, 304]. In addition, a mitochondrial 
Na+/Ca2+ exchanger inhibitor, CGP-37157, resulted in 
a persistent mitochondrial Ca2+ rise and may serve as 
a promising agent to overcome TRAIL (tumor necro-
sis factor-related apoptosis-inducing ligand) resistance 
[245, 303]. In ovarian cancer cells, the overexpression of 
Bcl-2 attenuated cisplatin cytotoxicity by downregulating 
ER-mitochondrial Ca2+ signal transduction. Thus, tar-
geting Bcl-2-mediated Ca2+ signal might be a potential 
approach to overcome drug resistance in ovarian cancer 
[305].

Current challenges in targeting mitochondria
The mitochondrion is perhaps the most challenging tar-
get for cancer therapy [306, 307]. The constant altera-
tions in mitochondrial structure and position contribute 
greatly to the failure of targeted agents, the bias in drug 
toxicity, and drug dosage prediction [308]. For example, 
the doses of metformin that could reduce the prolif-
eration of cancer cells in laboratory models (in vitro cell 
lines and in  vivo mouse models) were 10- to 1,000-fold 
higher than those that are deemed safe clinically [309]. 
This makes it urgent to assess the efficacy and safety 
of higher doses of metformin to determine its clinical 
potential. Second, many mitochondrial inhibitors are 
delivered into the mitochondria depending on the MMP. 

As such, imported drugs could inhibit ETC complexes 
and diminish the MMP, leading to decreased total agent 
importation [310, 311]. In addition, targeting the ETC is 
likely to be fraught with severe side effects. Some ETC 
inhibitors are considered neurotoxic, such as rotenone 
[312, 313], and some, such as cyanide, are even lethally 
toxic [314, 315]. In particular, IACS-010759, a CI inhibi-
tor being advanced to clinical trials (NCT03291938 and 
NCT02882321; Table  2) [238, 316], has been associated 
with neuropathy and visual changes [49]. Moreover, 
metabolic plasticity promotes cancer cells to shift their 
metabolic features upon targeting specific metabolic 
vulnerabilities [317]. Furthermore, the selection of meta-
bolic targets for therapeutic intervention has often been 
done in cell culture systems, where the metabolism of 
initial tumor-derived cells may be significantly affected 
by culture conditions [318]. These systems also do not 
recapitulate tumor heterogeneity and complex inter-
tumor and tumor–host interactions [47].

Strategies for overcoming mitochondria‑targeting 
bottlenecks to combat drug resistance
As mentioned above, limitations in drug sources and 
drug targeting challenge the application of targeting 
mitochondria for improving therapeutic efficiency in 
cancer treatment. Therefore, researchers are seeking new 
strategies to achieve a competitive advantage in target-
ing mitochondria for cancer therapy. Redevelopment 
and reuse of old drugs (repurposing/repositioning) rep-
resent such an opportunity to replenish the inventory of 
mitochondrial-targeted antitumor drugs [224]. Besides, 
the use of targeted nanomedicines offers innovative 
therapeutic strategies to overcome multiple barriers and 
selectively transport drug molecules to the mitochondria 
[319, 320]. Additionally, mitochondrial transplantation is 
an emerging approach that exerts antitumor potential by 
restoring mitochondrial function [321].

Drug repurposing for overcoming mitochondria‑targeting 
bottlenecks
Drug repositioning is a strategy to identify medications 
that were initially used for the treatment of other noncan-
cer illnesses for tumor therapy, based on an accumulated 
understanding of their mechanisms of action [322–324]. 
The advantages of this approach include, but are not lim-
ited to, the already established pharmacokinetic, phar-
macodynamic, and toxicity profiles, their rapid progress 
into clinical trials, the significantly lower associated 
development cost as well as a relatively less risky business 
plan [325–327]. In recent years, technological innovation 
combined with the development of big data repositories 
and the analytical methods, as well as the emergence of 
a variety of innovative computational methods and in 
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silico approaches, have greatly promoted the process of 
drug repurposing [328–331]. In this section, we present 
various promising repurposed non-oncology drugs that 
disrupt specific mitochondrial components and their 
functions for preclinical or clinical management of can-
cer drug resistance (Table 3).

Repositioning antidiabetic drugs
Metformin, an approved antidiabetic drug which has 
been used in cancer therapy, is one of the most success-
ful repurposed drugs [332–335]. Several signaling path-
ways, including insulin/IGF1, NF-κB, AMPK/mTOR/
PI3K, Ras/Raf/Erk, Wnt, Notch, and TGF-β signaling, 
have been identified to be involved in its antitumor effect 
[336–344]. Besides, metformin has been well demon-
strated to target mitochondria and induce cytotoxic 
effects [345–348]. Numerous preclinical studies and clin-
ical trials are investigating the therapeutic potential of 
metformin in many types of tumors [349–351]. Consist-
ent with this, metformin was proven to enhance the anti-
cancer effect of radio- or chemotherapies. For instance, 
Lee et  al. observed that metformin could overcome 
resistance to cisplatin by downregulating RAD51 expres-
sion, representing a novel strategy in TNBC management 
[255]. In addition, in NSCLC, metformin acts synergisti-
cally with sorafenib to inhibit cell proliferation by activat-
ing AMPK, which holds significant potential to be tested 
in prospective clinical trials [352].

Other biguanides also exhibit enhanced antipro-
liferative or radio-sensitizing effects in cancer cells. 
For instance, HL156A, a metformin analog, markedly 
decreased MMP and induced ROS levels to activate cas-
pase-3- and caspase-9-mediated apoptosis, thus sup-
pressing tumor growth [353]. This study suggests the 
potential value of HL156A as a candidate for the treat-
ment of oral cancer. Phenformin, a potent mitochon-
drial ETC inhibitor, also displayed remarkable anticancer 
activity against several tumors [354]. In colorectal cancer, 
phenformin could overcome hypoxic radio resistance 
through inhibition of mitochondrial respiration [355]. In 
breast cancer, phenformin synergistically decreased res-
piration and ATP production with oxamate, an inhibitor 
of lactate dehydrogenase, to inhibit tumor growth [356]. 
Furthermore, phenformin and oxamate displayed syner-
gistic anticancer effects through simultaneously inhibit-
ing mitochondrial complex I and cytosol LDH in this 
study.

Moreover, several other antidiabetic drugs have also 
been successively repurposed for cancer therapy and 
drug resistance management. Exendin-4 (Exe-4), a GLP-1 
receptor agonist, was reported to elevate mitochondrial 
ROS and trigger subsequent apoptosis, which attenuated 
hyperglycemia-induced chemoresistance and sensitized 

human endometrial cancer cells to cisplatin treatment 
[357]. Canagliflozin, another antidiabetic drug, was iden-
tified to inhibit the proliferation of lung and prostate 
cancer cells, alone or in combination with ionizing radia-
tion or chemotherapy using docetaxel by inhibiting mito-
chondrial CI supported respiration [358]. In addition, 
piperazine also targeted mitochondria to inhibit oxygen 
consumption, thus exhibiting an additive effect on inhib-
iting cell proliferation in combination with the glycolysis 
inhibitor 2-deoxyglucose (2-DG) [359].

Overall, repurposing antidiabetic drugs provides a 
plethora of candidates to suppress the growth of many 
types of tumors by targeting mitochondria. These drugs 
could not only increase the efficacy of standard therapies, 
but also reduce their side effects by potentially modulat-
ing metabolic plasticity.

Repositioning antimicrobial agents
Antimicrobial therapeutics, including antibiotics, anthel-
minthic and antifungal drugs, have been repurposed 
against tumors (e.g., breast, liver, colorectal and lung 
cancers, glioblastoma, multiple myeloma, and leukemia). 
A particularly important mechanism underlying their 
anticancer effects is interfering with mitochondrial func-
tion [360]. Examples of antibiotics that suppress cancer 
by altering mitochondria include the chloramphenicol 
family and tetracycline [361]. For instance, tigecycline 
preferentially inhibits the translation of mtDNA-encoded 
proteins to restrain the mitochondrial respiratory chain, 
causing mitochondrial dysfunction and increased oxida-
tive stress, thus providing a therapeutic strategy for over-
coming chemoresistance in human renal cell carcinoma 
and ovarian cancer [362, 363]. The antibiotic drug levo-
floxacin has also been repurposed to inhibit proliferation 
and trigger apoptosis of lung cancer cells by inducing 
mitochondrial dysfunction and oxidative damage [364].

In addition, several anthelminthic compounds were 
observed to interfere with mitochondria and combat 
with tumors. For instance, niclosamide could induce 
mitochondrial dysfunction and activate Bax and cas-
pase-3, which attenuates migratory and invasive behav-
iors and promote apoptosis in thyroid cancer and 
chondrosarcoma tumors [365, 366]. Another anthelmin-
tic drug, ivermectin, was suggested to inhibit angiogen-
esis, growth, and survival by decreasing mitochondrial 
respiration, membrane potential, and ATP levels [367]. 
The well-documented antimalarial agent artemisinin 
and its derivatives also possess potent anticancer activ-
ity through mitochondria-related pathways, manifesting 
as significantly reduced MMP, increased intracellular 
ROS and Ca2+ levels, and upregulated apoptosis-asso-
ciated proteins [368, 369]. In particular, artesunate was 
reported to induce PINK1-dependent mitophagy to alter 
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Table 3  List of repurposed mitochondria-targeted drugs

Original application Repurposed drug Effects on mitochondria Effects on cancer Cancer type

Antidiabetes Metformin ↓Complex I activity,
↓Respiration,
↓ATP production

↓Cell growth, ↑cell death, 
overcome chemoresistance

Breast cancer, colorectal 
cancer, lung cancer, ovarian 
cancer, etc.

HL156A ↓MMP, ↑ROS, ↑caspase-3 
and caspase-9

↑Apoptosis, antiprolifera-
tive,
Radio sensitizing

Oral cancer

Phenformin ↓Complex I, ↓respiration,
↓ATP production

Antiproliferative, radio sensi-
tizing, overcome chemore-
sistance

Colorectal cancer, breast 
cancer

Exendin-4 (Exe-4) Mitochondrial dysfunction,
↑ROS,

Overcome chemoresistance Endometrial cancer

Canagliflozin ↓Complex I, ↓respiration Antiproliferative,
Radio sensitizing, overcome 
chemoresistance

Prostate cancer, lung cancer, 
etc.

Pioglitazione ↓Oxygen consumption Antiproliferative, overcome 
chemoresistance

Prostate cancer

Antibiotics Tigecycline ↓mtDNA-encoded proteins,
↓Respiration

Overcome chemoresistance Renal carcinoma, ovarian 
cancer

Levofloxacin Mitochondrial dysfunction, 
oxidative damage

Inhibit proliferation, induce 
apoptosis

Lung cancer

Anthelminthic Niclosamide Mitochondrial dysfunc-
tion, activated Bax and 
caspases-3

↑Apoptosis,
↓Migration,
↓Invasion

Thyroid cancer, chondrosar-
coma tumor

Ivermectin ↓Mitochondrial respiration,
↓Membrane potential, ↓ATP 
levels

Inhibit angiogenesis, 
↓growth and survival

Glioblastoma

Antimalarial agents Artemisinin ↓MMP, ↑ROS, ↑Ca2+ Cell cycle arrest,
↑Apoptosis,
Anti-angiogenesis

Colorectal cancer, breast 
cancer

Artesunate Mitophagy,
↓GSH, ↑ROS

↑Cell death Cervical cancer

Antifungal agents Itraconazole VDAC1 inhibition, mitochon-
drial metabolism disruption

Inhibit angiogenesis,
↓Growth and survival

Breast cancer, liver cancer

Ketoconazole Mitophagy Antiproliferative, overcome 
chemoresistance

HCC

Econazole Ca2+ channel inhibition, 
cytochrome c leakage

↑Cell death,
Anti-tumorigenesis

Leukemia, colorectal cancer

Antihypertension Prazosin ↓MMP, Reduced tumor mass Prostate

Quercetin ↓MMP, Antitumor,
Radio sensitizing

Lung cancer, gastric cancer

Lercanidipine Mitochondrial Ca2+ 
overload, mitochondrial 
vacuolation

↑Apoptosis, chemosensi-
tization

Breast cancer

Telmisartan Mitochondrial fission, ROS 
accumulation

↑Apoptosis, chemosensi-
tization

Melanoma

Antidepressants Imipramine Stressed mitochondria 
restoration

Hijack aggressive character 
of cancer

Glioblastoma

Amitriptyline Stressed mitochondria 
restoration

Hijack aggressive character 
of cancer

Glioma

Chlorimipramine ↓Complex III activity, ↓MMP, 
mitochondrial swelling and 
vacuolation

Antitumor Glioma

Fluoxetine Mitochondrial dysfunction Antiproliferative, overcome 
chemoresistance

Colorectal cancer, breast,
Ovarian cancer

Depression Mitochondrial dysfunction ↑Apoptosis, Bladder cancer

Antiepileptic drug Valproic acid ↓Respiration, ↓ATP produc-
tion, ↑ROS

Antiproliferative,
Pro-apoptotic, chemosen-
sitization

Thoracic cancer, lung cancer, 
colorectal cancer
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the cellular redox status in HeLa cells [370]. In addition, 
atovaquone, another antimalarial agent, can inhibit mito-
chondrial complex III, thereby increasing the efficacy of 
radiotherapy [371].

Antifungal agents also play an important role in 
drug repositioning strategies for the treatment of vari-
ous tumors [372–374]. Itraconazole is among the most 
well-studied broad spectrum antifungal agents for can-
cer treatment [374–378]. It has been reported that 
itraconazole can interact with mitochondrial protein 
VDAC1 and modulate the AMPK/mTOR signaling axis 
[379, 380]. Another study has demonstrated that itra-
conazole elicited apoptosis by altering MMP, reducing 
Bcl-2 expression and elevating caspase-3 activity [381]. 
Our group previously found that ketoconazole, a P450 
inhibitor traditionally used for antifungal treatment 
[382], elicited PINK1/Parkin-mediated mitophagy and 
apoptosis, thereby suppressing HCC growth alone or 
synergistically with sorafenib [383]. In addition, Econa-
zole (Eco), a potent agent used for tackling superficial 
mycosis, is now well recognized as an antagonist for 
store-operated Ca2+ channels to induce cell death of 
leukemia [384–386]. Expectedly, it has now been shown 

to trigger mitochondrial-mediated apoptosis and cause 
cytochrome c leakage and apoptosis-inducing factor 
(AIF) translocation [387].

In conclusion, repurposing of broadly antimicrobial 
compounds emerges as an important strategy to provide 
complementary and alternative first-line drugs for effec-
tively targeting mitochondria in cancer cells. We believe 
that repositioning antimicrobial agents will be an impor-
tant topic in realizing the reversion of cancer drug resist-
ance by eliciting mitochondria-dependent apoptosis.

Repositioning anti‑cardiovascular disease drugs
Anti-cardiovascular disease drugs are another class of 
compounds that have attracted interest for their anti-
cancer efficacy. An example is prazosin, an orally active 
postsynaptic selective alpha 1-adrenoreceptor antagonist 
used in treating hypertension, congestive heart failure 
(CHF), and even posttraumatic stress disorder (PTSD). 
It has been recognized to possess anticancer activity in 
some types of cancer by modulating the PI3K/Akt/mTOR 
signaling pathway [388]. Further, prazosin was demon-
strated to intensify docetaxel-induced toxicity in prostate 
cancer cells [389]. In addition, another study demon-
strated that prazosin triggers mitochondria-mediated 

Table 3  (continued)

Original application Repurposed drug Effects on mitochondria Effects on cancer Cancer type

Treatment for pain Aspirin Activated Bax and cas-
pases-3, cytochrome c 
leakage

↑Apoptosis Cervical cancer

Treatment for rheumatism Indomethacin Impairs mitochondrial 
dynamics

↑Apoptosis, chemosensi-
tization

Lung cancer, gastric cancer, 
etc.

Auranofin Inhibits mitochondrial TrxR Antiproliferative Lung cancer, ovarian carci-
nomas

Treatment for stomachache, 
abdominal pain, rheuma-
tism

Angelica polymorpha 
maxim root extract

↓MMP, activated Bax and 
caspases-3

↑Apoptosis Neuroblastoma

Treatment for rheumatism,
Liver cirrhosis

Euphorbia formosana 
Hayata (EF)

Mitochondria dysfunction Tumor suppression Leukemic cells

Treatment for thalassemia,
Friedreich’s ataxia kidney 
disease

Deferiprone Suppress mitochondrial 
metabolism,
↓Respiration,
↑ROS

Antiproliferative,
Reduce migration

Prostate,
Breast cancer, etc.

Iron chelator VLX600 ↓Respiration,
↓ATP production

Antitumor, chemosensitiza-
tion

Ovarian cancer, colorectal 
cancer, etc.

Copper overload disorder Tetrathiomolybdate ↓Respiration,
↓ATP production

Inhibit angiogenesis, 
antitumor

Papillary thyroid cancer

Alcohol-aversion drug Disulfiram Mitochondrial fission,
↓MMP

Antitumor, chemosensitiza-
tion

Melanoma, colorectal cancer

Copper-chelating agent Elesclomol Interacts with ETC,
↑ROS

↑Apoptosis Colorectal cancer, leukemia, 
etc.

Palliative effects Cannabinoids Mitochondrial damage,
↑ROS

Reduce proliferation, induce 
apoptosis and autophagy,
Inhibit invasion and angio-
genesis,
Improve chemosensitivity

Oral cancer,
Lung cancer, etc.
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caspase executing apoptotic pathways in PC-3 cells, 
thus significantly reducing tumor mass in PC-3-derived 
cancer xenografts [390]. Quercetin, a bioflavonoid with 
multiple activities including antihypertensive, and anti-
inflammatory, has been repurposed for cancer treatment 
[391–393]. Accumulating studies have been devoted to 
exploring the molecular basis underlying the antitumor 
efficacy of quercetin. The decrease in MMP and subse-
quent apoptosis represent potential mechanisms [394–
396]. Another antihypertensive drug, lercanidipine, was 
shown to induce apoptosis accompanied by severe vacu-
olation derived from the ER and mitochondria, thereby 
enhancing the cytotoxicity of various proteasome inhibi-
tors, including bortezomib, carfilzomib, and ixazomib, in 
many solid tumor cells [397]. Furthermore, a widely used 
and safe antihypertensive drug, telmisartan, was sug-
gested to alter cell bioenergetics by triggering mitochon-
drial fission and ROS accumulation, thereby sensitizing 
melanoma cells to treatment with vemurafenib [398].

Taken together, anti-cardiovascular disease drugs hold 
great potential to be endowed with novel characteristics 
to tackle tumors in a mitochondria-dependent way.

Repositioning antidepressant drugs 
and anti‑neurodegenerative drugs
It has been increasingly recognized that antidepressant 
drugs exert anti-neoplastic properties, in addition to their 
well-documented ability to modulate neurotransmis-
sion [399–402]. Tricyclic antidepressants and their ana-
logs are among the most well-studied repurposed drugs 
for cancer therapy. They have exhibited excellent efficacy 
in halting cancer cell growth and metastasis [403–406]. 
Interestingly, the antitumor efficacy of imipramine and 
amitriptyline primarily relies on their metabolic modu-
lating ability in restoring the proper function of mito-
chondria, which differs from those functioning through 
disturbing mitochondria [407]. For instance, recent 
investigations showed that imipramine and amitriptyline 
restore stressed mitochondria and stimulate their func-
tion to hijack the aggressive character of cancer caused 
by mitochondrial dysfunction [408]. Chlorimipramine, 
another tricyclic antidepressant, has been shown to spe-
cifically inhibit mitochondrial CIII and cause decreased 
MMP as well as mitochondrial swelling and vacuola-
tion, thus exhibiting a selective antitumor effect [409]. 
In addition, fluoxetine has been reported to increase 
doxorubicin accumulation within multiple drug-resist-
ant (MDR) cells and inhibit drug efflux both in vivo and 
in vitro in resistant tumor models [410]. It is also able to 
induce mitochondria-mediated cell death in human epi-
thelial ovarian cancer [411, 412]. Moreover, nortriptyline 
can induce both Fas, FasL, FADD axis-mediated extrin-
sic apoptosis and mitochondria dysfunction-triggered 

intrinsic apoptosis, thus suppressing bladder tumor 
growth in vivo [413].

Agents for treating neurodegenerative disease (such 
as Alzheimer’s and Epilepsy) have also been observed to 
be efficacious in the prevention and treatment of tumors 
[414, 415]. Valproic acid (VPA), an antiepileptic drug, has 
been shown to inhibit class I HDAC and exert antipro-
liferative, pro-apoptotic, and chemo-sensitizing effects 
in human lung cancer and colorectal cancer by restrain-
ing the cell cycle and eliciting ROS generation [416, 417]. 
In addition, VPA significantly induced mitochondrial 
dysfunction, thus reducing respiration and ATP produc-
tion causing mitochondria-dependent apoptosis, which 
potentiated TRAIL-mediated cytotoxicity on cultured 
thoracic cancer and HCC cells [418, 419].

Repositioning anti‑inflammatory and antirheumatic drugs
Nonsteroidal anti-inflammatory drugs (NSAIDs) (e.g., 
indomethacin, ibuprofen, aspirin, and diclofenac) are the 
most commonly prescribed compounds for treating pain 
and inflammation [420–422]. It is widely accepted that 
NSAIDs possess anti-neoplastic effects in a wide spec-
trum of cancers [423–426]. In fact, prolonged NSAID 
administration reduces the risk of developing tumors 
[427, 428], and these non-oncology drugs are now 
applied to combination therapeutic regimens to potenti-
ate the efficacy of chemotherapy and radiotherapy [429]. 
Based on the inhibitory effect on prostaglandin-synthe-
sizing cyclooxygenases 1 and 2 (COX-1/2) and the role 
of nonsteroidal anti-inflammatory drug-induced gene 
NAG-1 in initiating the intrinsic apoptosis pathway [430], 
the mechanism of action underlying their antitumor effi-
cacy is strongly related to mitochondrial dysfunction and 
ROS production caused by inhibition of mitochondrial 
respiration [431, 432]. This is best exemplified by aspi-
rin, an FDA-approved NSAID for the treatment of pain 
and fever [433, 434]. Studies focusing on its antitumor 
mechanisms revealed that aspirin causes cytochrome c 
leakage and induces caspase-dependent apoptosis in can-
cer cells [435]. This mitochondrial damage is also prob-
ably responsible for the circumvention of resistance and 
sensitization to cisplatin by asplatin, a Pt(iv) prodrug of 
cisplatin, due to the ligation of aspirin [436]. Indometha-
cin, another NSAID initially used for treating rheumatic 
disease, has been found to induce mitochondria-medi-
ated apoptosis in doxorubicin-resistant lung cancer cells 
through an MRP1-dependent mechanism [437]. In addi-
tion, indomethacin can activate the PKCζ-p38-DRP1 
pathway to impair mitochondrial dynamics, thus induc-
ing apoptosis in gastric cancer [438].

Other groups of anti-inflammatory and/or antirheu-
matic drugs also exhibit antitumor efficacy. Auranofin, 
an inhibitor of thioredoxin reductase (TrxR) initially 
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developed for the treatment of rheumatoid arthritis, 
exhibited anticancer activity against various tumor types. 
It was approved for clinical trials in lung and ovarian car-
cinomas [439–443]. Further investigations revealed that 
auranofin targets both the cytosolic and mitochondrial 
forms of TrxR, indicating that mitochondrial alterations 
might participate in the inhibitory effect of auranofin on 
cancer [444, 445]. In addition, Euphorbia formosana Hay-
ata (EF), a Taiwanese medicinal plant for the treatment of 
rheumatism, has been repurposed for tumor suppression 
by eliciting apoptosis via the Fas and mitochondrial path-
ways in leukemic cells [446].

In summary, anti-inflammatory agents, pain-relieving 
medication, and antirheumatic drugs are now docu-
mented to be effective again diverse critical disorders 
including cancer, for which mitochondrial-related mech-
anisms are well recognized to be involved in their antitu-
mor effects.

Repositioning ion chelating agents
Ion chelating agents represent a category of effective anti-
tumor agents by targeting mitochondria, as mitochondria 
use metals (such as iron, copper, calcium, zinc) for the 
synthesis of cofactors of oxidation–reduction enzymes 
[447]. Deferiprone (DFP), an iron chelator used clinically 
in thalassemia, kidney disease, and Friedreich’s ataxia, 
has been identified to reduce the proliferation and migra-
tion of cancer cells [448, 449]. The underlying mecha-
nisms are well documented to involve the suppression 
of mitochondrial metabolism and the respiration rate, as 
well as induction of ROS production [450, 451]. VLX600, 
a recently designed iron chelator, has been characterized 
as a mitochondrial OXPHOS inhibitor which exhibited 
outstanding antitumor ability ovarian and breast and 
colorectal cancers [452–454]. Intriguingly, VLX600 was 
reported to inhibit mitochondrial respiration and aug-
ment the efficacy of imatinib in gastrointestinal stromal 
tumors [455]. It has also been suggested to sensitize 
ovarian cancer cells to platinum agents and PARPis (two 
standard-of-care therapies) [456].

Another metal with important functions in cancer 
progression is copper. Tetrathiomolybdate, a copper-
chelating drug used in the treatment of copper over-
load disorder, has also shown obvious antitumor effects. 
Besides reducing angiogenesis, it can impair mitochon-
drial respiration as well as ATP production mainly by 
inhibiting copper-dependent mitochondrial C IV activ-
ity [457, 458]. In recent decades, disulfiram, the alco-
hol-aversion drug which functions in a copper complex 
to treat alcohol abuse [459], has attracted considerable 
attention for its alone or synergetic anticancer activ-
ity [460–465]. It functions as a disulfiram-Cu2+ com-
plex (DSF-Cu+/Cu2+) to induce mitochondrial fission 

and reduce MMP, thus suppressing tumors via a redox-
related apoptosis process [466]. In addition, elesclomol 
exerts potent anticancer activity by inducing oxidative 
stress and apoptosis [467–471]. Mechanistically, elesclo-
mol forms an elesclomol-Cu (II) complex by chelating 
copper (Cu) outside of cells, which rapidly transports 
copper into the mitochondria, thus inducing mitochon-
drial ROS accumulation [472, 473]. Other types of metal 
chelators, including zinc and calcium chelating agents, 
have also been recognized as effective antitumor agents 
[474, 475].

Additionally, there are other compounds that do not 
belong to the groups discussed above which could be 
repositioned for cancer therapy via mitochondrial-
mediated mechanisms. For instance, besides the pallia-
tive effects, cannabinoids and their analogs have shown 
promise as antitumor agents to reduce proliferation, 
induce apoptosis and autophagy, inhibit invasion and 
angiogenesis, and improve chemosensitivity to antican-
cer drugs [476]. Unequivocally, cannabinoids have been 
demonstrated to disrupt mitochondria damage and trig-
ger ROS production both in human primary tumors and 
those resistant to chemotherapeutic drugs [477–479]. 
Furthermore, many commonly used chemotherapeutic 
drugs have been proven to interfere with mitochondria 
to promote anticancer effects, including, but not limited 
to, cisplatin [480, 481], doxorubicin [482, 483], sorafenib 
[484], and tamoxifen [485]. This broad variety of agents 
provide a plethora of options for tumor therapy by tar-
geting mitochondria. We believe that targeted delivery of 
these drugs to mitochondria could benefit cancer treat-
ment and overcome drug resistance.

In summary, repurposing non-oncology drugs is con-
sidered as an effective strategy to alleviate the current 
lack of mitochondria-targeting drugs. It holds the poten-
tial to develop effective agents in a short time period with 
lower development costs. However, it is not trivial to suc-
cessfully apply suitable non-oncology drugs as antican-
cer therapeutics. Assessment of their effectiveness and 
understanding the underlying mechanistic in preclinical 
models are critical.

Mitochondria‑targeted drug delivery system 
and multifunctional strategy
In recent years, organelle-specific delivery of bioac-
tive molecules has been widely utilized for cancer treat-
ment to achieve high selectivity, maximum therapeutic 
effects, minimum side effects, and minor resistance 
[486–490]. Mitochondria-targeting therapeutic strate-
gies can directly affect the mitochondrial membrane or 
matrix, mitochondrial metabolism, and the mitochon-
drial apoptosis or regulatory signaling pathways [306, 
491–494]. Researchers have developed or identified a 
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number of mitochondria-targeted drug delivery systems 
(MTDDSs), with most of them currently transporting 
chemotherapeutics into the mitochondria based on the 
high membrane potential across the inner mitochondrial 
membrane or the mitochondrial protein import machin-
ery [495–498]. The following section will provide insights 
into the application of novel mitochondria-targeting 
strategies for cancer therapy (Table 4).

Mitochondrial protein import machinery‑based targeting 
strategies
Except for a small number of mitochondria-encoded 
factors (e.g., key proteins in the ETC, rRNAs, tRNAs), 
the vast majority of proteins present in the mitochon-
dria are encoded by the nucleus and translocated from 
the cytosol [499–503]. Transporting machinery protein 
complexes (e.g., TIM/TOM complex) recognize and 
transport these proteins from the cytoplasm to the mito-
chondria, where proteins with mitochondria-targeting 
signal peptides (MTSs) are escorted from the cytosol 
to mitochondrial outer membrane [504, 505]. MTSs 
always exhibit positive charge and easily form amphiphi-
lic α-helices and thus have been successfully used for the 
selective and effective delivery of therapeutics to mito-
chondria for disease treatment, including cancer therapy 
[506]. In addition, MTSs conjugate to, and deliver, a vari-
ety of cargo molecules (e.g., proteins, nucleic acids). For 
instance, p53-BakMTS/p53-Bax were synthesized via 
fusing p53 or its DNA-binding domain (DBD) to MTSs 
from Bak or Bax by Matissek et al. This regiment is capa-
ble of targeting p53 to the mitochondria and execut-
ing mitochondria-mediated apoptosis in cancers [507]. 
Several mitochondria-targeting units take advantage of 
the IMM-embedded transporters. For example, a self-
assembled protein nanoparticle named GST-MT-3(Co2+) 
NPs was prepared by Zhu et al., via covalently conjugat-
ing paclitaxel to GST-MT-3(Co2+), to specifically target 
mitochondria. Co2+ in the NPs depolarized the MMP 
and elevated ROS, which subsequently induced apoptosis 
to execute antitumor effects. Intriguingly, this nanopar-
ticle exhibited a synergistic effect manifesting as 50-fold 
lower paclitaxel dosage which possessed a highly effec-
tive antitumor effect [508]. Similarly, a functional hybrid 
peptide (MTS-R8H3) was used to prepare a modified 
targeted liposome, DOX/CEL-MTS-R8H3 lipo, for code-
livery of doxorubicin hydrochloride (DOX) and celecoxib 
(CEL) [509]. This liposome codelivery system exhibited 
remarkable treatment efficacy on killing DOX-resistant 
MCF-7 (MCF-7/ADR) cells, providing a promising strat-
egy for overcoming drug resistance in breast cancer.

Cell‑penetrating peptide‑based mitochondria‑targeting 
strategies
Cell-penetrating peptides (CPPs) are nontoxic, short, cat-
ionic, and/or amphipathic peptides able to directly cross 
the cellular membrane [510–512]. They serve as a popular 
and efficient vector for delivering a broad variety of car-
goes, including oligonucleotides, proteins, and therapeu-
tics [513–515]. Many efforts are being made to improve 
their cell specificity for selective uptake by tumor cells, 
permitting medical applications [516–518]. Modifying 
the CPPs according to microenvironment condition is a 
widely used strategy. Particularly, mitochondria-pene-
trating peptides (MPPs) have been developed to deliver 
a variety of antitumor cargoes into mitochondria, which 
can inhibit tumor growth in vivo and in vitro [519–522]. 
For example, Dox was intercalated into the Cyt c aptamer 
contained DNA duplex and subsequently loaded in the 
dendrigraftpoly-L-lysines (DGL) and combine to cyclo-
peptide RA-V contained pH-sensitive liposomal shells, 
for preparing a MPP-modified DGLipo NPs. This system 
could successively deliver both DOX and RA-V into lyso-
some and mitochondria of cancer cells, and achieved a 
spatiotemporally controlled release of them to monitor 
cytochrome c release and apoptotic process, leading to 
enhanced therapeutic outcomes in MDR tumors [462]. 
In addition, the TAT-PEG-DOPE system (methoxy (poly-
ethylene glycol)-2000–1, 2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (mPEG-DOPE) and transactivator of 
transcription (TAT) peptide conjugated PEG-DOPE) is 
an example, in which sulfonamide will lose charge and 
detach when it suffers a decrease in pH, so that exposed 
TAT can interact and take the drug-loaded micelles to 
selectively kill tumor cells [523]. Several other novel 
CPPs for targeting cancer cell mitochondria, including 
Pal-pHK-pKV, an engineered peptide performed with 
the N-terminus of the HK-II protein [524]; pHK-PAS, 
achieved by covalently coupling N-terminal 15 aa of HKII 
(pHK) to a short, penetration-accelerating sequence 
(PAS) [525]; MTP3, another engineered peptide synthe-
sized via resin-based solid-phase peptide synthesis, are 
also serving as efficient tools to deliver exogenous thera-
peutics into mitochondria and representing promising 
strategy in cancer therapy.

Delocalized lipophilic cation (DLC)‑based 
mitochondria‑targeting strategies
It has been well demonstrated that the MMPs of tumor 
cells are usually higher than that of non-malignant cells 
[526–528]. The hydrophobic surface areas and delocal-
ized positive charge of DLCs permit them to rapidly pass 
through membrane bilayers and accumulate in cancer 
cells because of the more negative MMPs in cancer cells 
[529–532]. This offers a selective drug delivery approach 
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to deliver compounds to tumors with little toxicity to 
normal healthy cells.

While Rhodamin123 was the first DLC identified to 
markedly inhibit the growth of carcinoma cell lines and 
prolong the survival of tumor-bearing mice [533, 534], 
the triphenylphosphonium (TPP) cation is the most well-
documented DLC that has been used for mitochondria 
targeting [346, 495, 535]. TPP+ cations were conjugated 
to a wide variety of synthesized residues and incor-
porated into the liposomal lipid bilayer to make drug 
delivery systems for mitochondria targeting and tumor 
suppression [536–539]. For example, Biswas et  al. syn-
thesized a polyethylene glycol-phosphatidylethanolamine 
(PEG-PE) and TPP+ group modified liposomes (TPP-
PEG-L). TPP-PEG-L has been demonstrated to enhance 
paclitaxel-induced cytotoxicity and antitumor efficacy 
compared to plain liposomes (PL) from efficient mito-
chondria targeting [540]. In addition, a D-α-tocopheryl 
polyethylene glycol-1000 succinate-triphenylphosphine 
(TPGS1000-TPP) was incorporated onto the surface of 
paclitaxel liposomes to prepare TPGS1000-TPP conju-
gate. This regiment could selectively accumulate into the 
mitochondria and initiate caspase-9- and caspase-3-me-
diated apoptosis, thereby exhibiting significant antican-
cer efficacy in drug-resistant A549/cDDP xenograft and 
cells [541].

Dequalinium chloride (DQA) has been regarded as a 
new class of anti-carcinoma agents based on its selective 
localization and accumulation within the mitochondria 
of cancer cells [542–544]. For example, a dequalinium 
polyethylene glycol-distearoylphosphatidyl-dylethanola-
mine (DQA-PEG2000-DSPE) conjugate was synthesized 
to develop mitochondrial-targeted resveratrol liposomes 
to overcome drug resistance. This mitochondrial-tar-
geted liposome is significantly accumulated in the mito-
chondria and induces apoptosis in both nonresistant and 
resistant cancer cells by dissipating MMPs. In addition, 
cotreating this liposome with vinorelbine liposomes 
remarkably enhanced the anticancer efficacy against cis-
platin-resistant A549 cells [545]. Furthermore, functional 
nanoparticles based on DQA were developed for targeted 
delivery of classical cytotoxic anticancer drugs (such as 
doxorubicin) to tumor cells, which showed significant 
anticancer efficacy in a drug-resistant tumor model via 
triggering cytochrome c release and mitochondrial apop-
tosis [546].

Newly developed mitochondria‑targeting units‑based 
strategies
In recent years, numerous drug delivery systems, includ-
ing liposomes, micelles, “smart” polymers, and hydrogels, 
have been developed for cancer therapy [547–552]. For 
instance, to achieve accurate delivery to mitochondria 

with high specificity and low size, a native genetic system 
encoded in Salmonella pathogenicity island-1 (SPI-1) 
was used by Lim et  al. [553]. In their study, E. coli car-
rying synthetic T3SS and MTD on plasmids could elimi-
nate tumors and reduce the mortality of tumor-bearing 
animals. Furthermore, another study developed a peri-
mitochondrial enzymatic self-assembly system to deliver 
chloramphenicol (CLRP) to the mitochondria in cancer 
cells. Importantly, their results suggested that this new 
system could overcome cisplatin resistance by inhibiting 
the synthesis of mitochondrial proteins.

Modifying traditional drugs with newly developed 
mitochondria-targeting units also exhibited potential to 
reduce side effects and reverse drug resistance to some 
extent [554, 555]. For instance, Ma et  al. designed bro-
mocoumarin platinum 1 therapeutic (a coumarin-Pt 
(IV) prodrug) to simultaneously target mitochondria and 
nuclei [556]. This therapy allows simultaneous accumula-
tion of high concentrations of Pt in both the nDNA and 
mtDNA, thus triggering apoptosis to overcome cisplatin 
resistance. Moreover, p53 activation promoted Pt–DNA-
induced apoptosis in cancer cells, leading to obvious anti-
cancer activity with this prodrug. In addition, Xing and 
co-workers synthesized a mitochondria-targeting zeolitic 
imidazole framework loaded with platinum (ZIF-90@ 
DDP) to kill cancer cells by promoting effective drug 
release under specific pH and ATP levels, thus providing 
a new strategy for reversing platinum resistance in ovar-
ian cancer [557].

Multifunctional drug delivery strategies
At present, mitochondria-targeting photothermal 
therapy (PTT), photodynamic therapy (PDT), chemo-
dynamic therapy (CDT), and related combinational 
therapies have attracted global attention due to their 
advantages of a wide therapeutic range, minimal toxic-
ity, excellent safety profile, noninvasiveness, and low drug 
resistance [558–560]. PTT triggers thermal damage by 
conversing light energy into heat to kill cancer cells [561–
563]. In recent years, a variety of photothermal materi-
als, including inorganic nanomaterials (such as gold 
nanocages, gold nanorods, and other gold nanostruc-
tures), transition metal sulfide or oxide nanoparticles, 
have been developed to improve the energy conversion 
from near infrared (NIR) light [564, 565]. As such, PTT 
has shown remarkable achievements in the treatment of 
various tumors [566–569]. PDT is available for treating 
a broad variety of cancers through local ROS production 
only in the light-exposed region by utilizing photosensi-
tizer (PS), light, and oxygen [570–573]. Recently, Fe3O4@
Dex-TPP nanoparticles have been prepared by copre-
cipitation in TPP-grafted dextran (Dex-TPP) and Fe2+/
Fe3+ and then incorporated with the photosensitizers of 
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protoporphyrin IX (PpIX) and glutathione-responsive 
mPEG-ss-COOH to form a fenton reaction-assisted 
PDT, noted Fe3O4@Dex/TPP/PpIX/ss-mPEG nanopar-
ticles [574]. This nanoparticle targets mitochondria by 
photoinduced internalization, leading to ROS generation 
and the fenton reaction-produced O2, thus significantly 
improving the therapeutic efficacy on tumor. In addition, 
Zeng et al. synthesized bifunctional nanoprobe (FA-NPs-
DOX) by loading DOX to NaYF4:Yb/Tm-TiO2 inorganic 
photosensitizers for in vivo inorganic PDT [575]. In this 
study, folic acid (FA) targeting and NIR-triggered inor-
ganic PDT accelerated the release of DOX and promoted 
the inhibition rate in drug-sensitive MCF-7 and resistant 
MCF-7/ADR cells.

In addition, other therapies, including CDT [576, 
577], sonodynamic therapy (SDT), gas therapy, radia-
tion therapy (RDT), alone or in combination with other 
treatments targeting mitochondria to inhibit tumors, 
are emerging, as described in a comprehensive review 
[491]. For instance, Shi et  al. designed a mitochondria-
targeted hollow mesoporous silica nanoparticles (THM-
SNs) loaded with L-menthol (LM) to carry DOX and NIR 
dye indocyanine green (ICG), named THMSNs@LMDI 
[578]. Under NIR irradiation, this system simultaneously 
produces photodynamic and photothermal therapy effect 
via DOX release and apoptosis activation, thereby sensi-
tizing A549/MCF-7 cells to DOX. Intriguingly, a specific 
targeting of mitochondria and imaging-guided chemo-
photothermal therapy against cisplatin resistance was 
proposed by Yang and colleagues [579]. In this work, Pt 
(IV)-NPs, a nanoparticle precisely assembled by biotin-
labeled Pt (IV) prodrug derivative and cyclodextrin-func-
tionalized IR780, integrated with targeting units, imaging 
moieties into a single regiment to overcome and even 
completely eliminate cisplatin resistance A549R tumors, 
thus providing a beneficial precise therapeutic. Undoubt-
edly, combination therapies achieve synergistic effect of 
anticancer and hold more beneficial for future clinical 
translation.

In summary, the development of mitochondria-target-
ing units and combinational strategies for cancer ther-
apy has achieved precise treatment at lower drug doses 
(Table 4), offering excellent prospects for improving the 
therapeutic effect and overcoming drug resistance.

Therapeutic applications of mitochondrial transplantation
The transplantation of mitochondria from healthy cells to 
abnormal cells has emerged as a novel and attractive ther-
apeutic strategy to treat diseases caused by mitochondria 
damage or dysfunction [591–595]. While intercellular 
mitochondrial transfer functions as essential stress-adap-
tive mechanism to endow cancer cells with resistance to 
chemotherapy [175, 176], mitochondrial transplantation 

(mtTP) has been used in preclinical and clinical stud-
ies to restore mitochondrial function for cancer therapy 
and eliminate drug resistance [596–599]. For example, 
Chang et  al. transferred mitochondria into breast can-
cer cell lines [321]. The results suggested that mitochon-
dria transplantation-induced cell apoptosis inhibited cell 
growth and decreased oxidative stress, thereby increas-
ing the susceptibility of both MCF-7 and MDA-MB-231 
breast cancer cells to doxorubicin and paclitaxel. In addi-
tion, intercellular endocytosis (e.g., mitochondria inter-
nalization) was suggested to enhance the TCA cycle and 
aerobic respiration, attenuate glycolysis, and reactivate 
the mitochondrial apoptotic pathway, thereby inhibiting 
malignant proliferation and enhancing the radiosensitiv-
ity of gliomas in vitro and in vivo [600].

Overall, mtTP appears to be a very promising thera-
peutic option to fine-tune mitochondria function in 
cancer cells so that drug resistance might be overcome. 
However, research on mitochondrial transplantation 
for cancer treatment is still in its infancy. Further inves-
tigations including preclinical and clinical studies are 
required to determine if it is effective in sensitizing can-
cer cells to radio- or chemotherapy. Additionally, various 
technical and ethical issues need to be addressed before 
its actual clinical application.

Conclusions and perspectives
Mitochondria are crucial players in cancer cell survival, 
as they are the bioenergetic and biosynthetic hub that 
coordinates cellular respiration, FAO, the TCA cycle, 
ETC, Ca2+ signaling, and redox homeostasis. Cancer 
drug resistance, as an adaptive strategy employed by 
cancer cells to survive stress conditions, is inevitably 
associated with mitochondrial-related pathways [62, 82, 
601]. In fact, emerging evidence strongly indicates that 
resistant tumor cells exhibit high mitochondrial respira-
tion and OXPHOS status [602, 603]. Therefore, targeting 
mitochondria represents a promising cancer treatment 
avenue and chemoresistance overcoming strategy. In this 
review, we have elaborated on the mechanisms of mito-
chondrial dynamics in number, structure, and location 
to maintaining mitochondrial function to endow cancer 
cells with metabolic flexibility for adapting to stress con-
ditions, with an emphasis on their regulatory role in drug 
resistance. We have also summarized recent advances 
that focus on developing therapeutics that specifically 
target the mitochondria for cancer therapy. Notably, two 
representative compounds, metformin and CPI-613, 
have been taken on to phase III clinical trials (Table 2). 
Lastly, we have highlighted the repurposing of “old” 
drugs for mitochondria targeting in tumor therapy with 
the potential to effectively kill tumors. The development 
of mitochondria-targeting approaches will undisputedly 
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boost the precision of cancer treatment at lower drug 
doses (Fig. 4, Table 5).

It is worth noting that further investigations are 
urgently needed to handle several key mitochondrial-
related questions for their successful application in 
clinic cancer treatment. First, it will be pivotal to iden-
tify additional molecular mechanisms that cause the high 
OXPHOS status of cancer cells. It is also important to 
explore the roles and mechanisms of metabolic advan-
tages in maintaining this high OXPHOS activity and how 
they modulate resistance to targeted or chemotherapies, 
as mitochondria are the hub of many metabolic pathways. 
Second, the roles of mitochondrial reshaping, rebuilding, 
and recycling are largely in a context-dependent manner, 
which remain vastly unexplored. Further study focusing 
on developing rational targeted approaches to modulate 
adaptive response will definitely require the possibility 
to accurately map dynamic processes and monitor bio-
energetic and metabolic changes over a considerable 
time period [621]. Theoretically, drug repurposing and 
systematic screening approaches as well as advanced 
bioinformatics could replenish the inventory of antitu-
mor drugs and break one of the current bottlenecks of 
drug development. However, it is important to decipher 
their mechanism of action and identify patients who 
would benefit from treatment with these compounds. In 

addition, more preclinical studies and clinical trials must 
be completed before such interventions become common 
practice in cancer therapy.

Modification of traditional therapeutics with mito-
chondria-targeting units has potential for reducing 
drug resistance and adverse side effects. Many of these 
strategies have been applied as preclinical or clini-
cal antitumor therapies. However, safety evaluation 
based on biocompatibilities, release, accumulation, 
and metabolism is a prerequisite for their application. 
Indeed, limitations in the materials, such as toxicities 
and poor drug loadings, have restricted the further 
application of multifunctional nanodrugs. Future phar-
maceutical research should focus on addressing the 
aspects mentioned above while exploring new mate-
rials. Notably, these therapeutics need to overcome 
both physiological and biological barriers before local-
izing to their target sites to take effect. What happens 
in these processes will affect the release of drugs and 
affect their antitumor efficacy. Therefore, it is impor-
tant to endow the delivery system with some specific 
related functions. In addition to structural reformation, 
future research needs to investigate the mechanisms of 
exerting treatment, especially at the molecular level.

In the coming years, we predict that advances in 
omics technology, PET imaging combined with cancer 
genomics, will help a timely elucidation of metabolic 

Fig. 4  Schematic illustration of the mitochondria-targeting strategies and their anticancer effect. Integrated therapeutics include, but are not 
limited to, PTT, PDT, and CDT. Their function requires the rational design, functionalization, and application of diverse mitochondria-targeting units, 
such as organic phosphine/sulfur salts, QA salts, transition metal complexes, and MTPs. The generation of superoxide (·O2

−), singlet oxygen (1O2), 
·OH or heat results in mitochondrial damage, thus inhibiting energy supply and triggering cancer cells death
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vulnerabilities and lead to the recognition of rational 
combinations of mitochondria-targeting inhibitors 
with standard treatments, which will hopefully bring 
new and more effective strategies for cancer therapy 
and drug resistance management (Fig.  5) supporting 
precision/personalized medicine.
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