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Abstract 

Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and con-
siderations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known 
that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the 
hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have 
drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in 
inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of 
pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently 
modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or 
uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which 
facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to 
highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic 
therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain 
tumors.
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Introduction
Cell death is a fundamental physiological process to 
maintain homeostasis, while it is also an abnormal 
pathological response to harmful stimuli. Traditionally, 
the concept of cell death is based on the morphology of 
dying cells, in equal to apoptotic cell death and necrotic 
cell death for a long time, which is also known as apop-
tosis and necrosis, respectively [1]. However, decades 
later, various kinds of cell death have sprung up, such 
as autophagy [2–4], pyroptosis [5, 6], PANoptosis [7, 8], 
necroptosis [9], ferroptosis [10, 11], cuproptosis [12, 13], 
parthanatos [14, 15], and alkaliptosis [16, 17] (Fig. 1). The 

expansion on morphological and biochemical features 
has enriched the definition of cell death. Pyroptosis is 
a gasdermin-mediated programmed cell death (PCD), 
which is closely related to inflammatory reaction [18]. 
Similar to apoptosis, it is also a kind of caspase-driven 
PCD but triggered by inflammasomes [19]. Additionally, 
the process inducing cell rupture and the release of cel-
lular contents is consistent with necrosis to some extent 
[20].

Currently, pediatric cancers are still the driving 
causes of death for children and adolescents [21–23]. 
However, the underlying pathogenesis of most pedi-
atric neoplasms remains largely unelucidated [24]. 
Due to the safety requirements and considerations for 
therapies in pediatric cancers, treatment strategies and 
drugs are far too scarce [25]. According to FDA data-
base, only around 40% of children with cancer living 
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in most developing countries tend to survive five years 
after initial diagnosis. Meanwhile, only eleven drugs 
have been approved for anticancer therapy in under-
age from 1980 to 2017 [26, 27]. Therefore, there is an 
urgent need in pediatric cancers.

Tumor cells tend to progressively evade the cell 
death pathways, which exert as protective mecha-
nisms to remove damaged cells [28]. Classical forms 
of cell death, including apoptosis and necrosis, are 
important anticancer defense mechanisms in tumor 
killing, which have been extensively explored [1, 29]. 
Recently, mounting evidences have shown that pyrop-
totic inflammasomes and the relevant cytokines can 
affect tumorigenesis such as metastasis, proliferation, 
and invasion [30–32]. Related pathways and targets 
have shed light on the potential role of pyroptosis in 
cancer therapeutics among virous pediatric cancers 
like osteosarcoma [33–36], neuroblastoma [37–39], 
etc. However, uncertainties in treatment efficacy and 
the pyroptosis-mediated adverse effects reveal that the 
relationship between pyroptosis and pediatric cancers 
is not fully understood at present. Hence, we aim to 
focus on the molecular mechanisms, the virous func-
tions and potential clinical applications or challenges 
of pyroptosis in multiple pediatric malignancies. In 
addition, we summarized a number of findings in 
order to raise awareness of pediatric cancers and iden-
tify dozens of potential cancer treatment candidates as 
well.

Overview of pyroptosis
Pyroptosis and cell death
Cell death is a common phenomenon in prokaryotic 
and eukaryotic cells. With the persistent progression in 
the field, novel signal transduction modules and inven-
tive detection of the pathophysiological relevance have 
updated the classification of cell death. As the research 
hotspot, pyroptosis is a type of PCD that critically 
depends on the formation of plasma membrane pores 
by members of the gasdermin protein family. It is known 
that pyroptosis can induce inflammation with stimuli of 
toxins, chemotherapy drugs, and bacterial, and viral path-
ogens [40–43]. Termed as “pyroptosis”, it is composed of 
two parts originated from the Greek roots “pyro” and 
“ptosis”, which means “fire” and “falling”, respectively [44]. 
The most characteristic part of pyroptosis is the inflam-
matory reaction when compared with other forms of 
cell death. Generally, cleavage of gasdermin, leakage of 
interleukin (IL-1β/IL-18), bubble-like protrusions on cell 
membrane are typical cellular morphological features of 
pyroptosis, thus forming pores in the plasma membrane 
and allowing water to flow into the cells, and conse-
quently causing cell swelling and lysis [45]. This process 
is diverse from necrosis with an explosive rupture of the 
plasma membrane. In contrast to fragmented nucleus in 
apoptosis, nuclear integrity is maintained in pyroptosis 
[46, 47]. DNA fragmentation is the same characteristic of 
pyroptosis and apoptosis, but ordered in apoptosis while 
random in pyroptosis [46, 48].

Fig. 1  The timeline of various cell deaths
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The modality of cell death can be divided into two 
categories, namely the accidental cell death (ACD) 
and regulated cell death (RCD), according to the speed 
at which cell death occurs and its potential control by 
drugs or genes [1, 49]. In general, PCD is completely 
physiological forms of RCD. As a novel form of PCD, 
the morphological changes of pyroptosis are distinc-
tive from other classical forms of cell death. However, 
pyroptosis still holds some features that are consist-
ent with apoptosis or necrosis, just like a mixture of 
the two to some extent [50, 51]. Similar to pyroptosis, 
necroptosis is also a lytic and inflammatory type of 
PCD that requires the membrane damaging proteins, 
but in a caspase-independent fashion mainly medi-
ated by receptor-interacting protein 1 (RIP1), RIP3, 
and mixed lineage kinase domain-like (MLKL) [20, 52] 
(Fig. 2). Notably, due to the extensive cross talk among 
pyroptosis, apoptosis and necroptosis, the concept of 
PANoptosis is established. PANoptosis is an inflam-
matory PCD pathway with key features of pyroptosis, 
apoptosis, and/or necroptosis, although differences 
exist in key initiators, effectors, and executioners in 
each of these three PCD pathways [7, 53–55]. Ferrop-
tosis is classified as regulated necrosis that is character-
ized by iron-dependent lipid peroxidation and contains 
various biologic processes like lipid metabolism, iron 
metabolism, oxidative stress, and biosynthesis of nico-
tinamide adenine dinucleotide phosphate (NADPH), 
glutathione (GSH), and coenzyme Q10 (CoQ10) [56–
58]. More recently, excess concentration of copper is 
currently conformed to mediate a distinct form of cell 
death, which is dependent on mitochondrial respira-
tion and protein aggregation [12, 59]. Pyroptosis is an 
inflammatory form of PCD, while autophagy is a sub-
cellular process that plays an important role in main-
taining homeostasis when degradation of proteins and 
damaged organelles occur [60, 61]. Taken together, the 
comparisons of the characteristics among these differ-
ent forms of PCD are briefly summarized in Table 1.

Molecular mechanisms of pyroptosis
The formation of extracellular or intracellular stimulation 
and inflammasome is the initial process of pyroptosis [74, 
75]. Afterward, virous inflammasomes act as platforms 
for the activation of caspases, which subsequently starts 
or executes cellular programs [1, 76]. Triggered by dif-
ferent caspases, the pathways associated with pyroptosis 
can be generally divided into canonical pathway, nonca-
nonical pathway and other pathways, including caspase-
3/8-mediated pathway and granzyme-mediated pathway 
[77]. The detailed pyroptotic pathways are depicted as 
follows:

Canonical pyroptotic pathway
Canonical pyroptosis is mediated by caspase-1, with 
inflammasome assembly, gasdermin D (GSDMD) cleav-
age and interleukin release (mainly IL-1β and IL-18) [18, 
20, 78]. Pattern recognition receptors (PRRs) like Toll-
like receptors (TLRs) and nod-like receptors (NLRs) 
recognize intracellular and extracellular signals, mainly 
danger-associated molecular patterns (DAMPs) and 
pathogen-associated molecular patterns (PAMPs), then 
initiate a signaling cascade which leads to pro-inflamma-
tory cytokines release and GSDMD-mediated cell death 
[79, 80]. The canonical inflammasome can be assembled 
by inflammasome sensors like nod-like receptor protein 1 
(NLRP1), NLRP3, NLR family CARD domain-containing 
protein 4 (NLRC4), AIM2, and pyrin [77], thus detecting 
diverse microbial or intracellular danger signals and acti-
vating caspase-1 [29].

At the beginning, expressions of inflammasome com-
ponents, including NLRP3, caspase-1 and pro-IL-1β, are 
increased with an up-regulation of nuclear factor-kB (NF-
kB) [81, 82]. Then, inflammasome sensors like NLRP3 are 
activated via stimulation of various pathogenic signals 
induced by numerous PAMPs or DAMPs like lysosomal 
disruption [83], K+ efflux [84], Ca2+ flux [85], etc. The 
inflammasome sensors assemble with pro-caspase-1 and 
apoptosis-related speck-like protein (ASC) afterward, to 
form inflammasomes and activate caspase-1. Activated 
caspase-1 cleaves GSDMD into N-terminal domain of 
GSDMD (GSDMD-N), which leads to nonselective pores 
forming on cell membrane, and eventually results in cell 
swelling and lysis. It also induces the conversion of pro-
IL-18 and pro-IL-1β into mature inflammatory cytokines, 
hence further promoting the transcriptional activities of 
NF-kB and numerous factors in other inflammatory and 
stress-induced pathways [82, 86] and thereby forming a 
positive feedback loop (Fig. 3).

Noncanonical pyroptotic pathway
Noncanonical pyroptotic pathway is simpler and more 
straightforward compared with the former, which is 
triggered by the activation of caspase-4/5 in human and 
caspase-11 in mice, respectively [76, 77]. Noncanonical 
inflammasome sensors can directly detect intracellular 
bacteria and lipopolysaccharide (LPS), thus activating 
caspase-4/5/11. Later, with a process of GSDMD cleav-
age, cell membrane pores formation, and osmotic cell 
lysis, pyroptosis is forming. It is worth noting that ion 
influx and efflux play a significant role in this process. 
Cleavage of GSDMD results in efflux of K+ [18, 87], 
which can not only lead to unbalanced osmotic pres-
sure and water influx, but can also help mediate the 
assembly of NLRP3 inflammasome [86, 88, 89], thus 
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promoting pyroptosis. Intriguingly, caspase-4/5/11 
can only mediate the maturation and secretion of 
IL-1β/ IL-18 in canonical caspase-1 pathway without 
directly cleaving them [29]. Additionally, caspase-11 is 

conformed to cleave pannexin-1 followed by cellular 
adenosine triphosphate (ATP) release, purinergic P2X7 
pathway activation, and eventually lead to cytotoxicity 
or cytolysis [90], which is a significant supplement to 
noncanonical pyroptotic pathway (Fig. 3).

Fig. 2  The cross talk between pyroptosis and apoptosis or necroptosis. a–b Interplay between necroptosis and pyroptosis. MLKL is the terminal 
executioner of necroptosis, which is also a key intermedium between necroptosis and pyroptosis. RIPK1-RIPK3 association or cytosolic ZBP1 
activation results in phosphorylation of MLKL, thus forming pores on the membrane and engaging necroptosis. Plasma and K+ efflux mediated by 
MLKL can ultimately lead to cellular stress, triggering NLRP3 activation, inflammasome assembly, and caspase-1 cleavage, which is the canonical 
pyroptosis pathway. ZBP1 can directly activate NLRP3 inflammasome in response to virus infection. Additionally, when TNF binding to TNFR on the 
cell membrane, complex I is assembled and activated, further forming ripoptosome complex. Caspase-8 from ripoptosome complex can in turn 
promote the initiation of caspase-3 and -7 to execute GSDME-mediated pyroptosis. b–c Interplay between pyroptosis and apoptosis. Caspase family 
of proteases and its targeting downstream molecules connect apoptosis with pyroptosis. In extrinsic apoptosis, recruitment of FADD and caspase-8 
promotes the initiation of the death-inducing signaling complex (DISC) when death receptor is activated. Then, activated caspase-8 from DISC 
can promote the initiation of caspase-3 and -7 and execute GSDME-mediated pyroptosis. In intrinsic apoptosis, Bcl-2 family member Bid can be 
cleaved by caspase-8 and pyroptosis-inducing caspase-1 into proapoptotic tBID, together with intracellular stress, mitochondrial outer membrane 
permeabilization (MOMP) is induced, subsequently triggering cytochrome c release, apoptosome formation and caspase-9 activation, which in turn 
promotes activation of caspase-3 and -7
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Other pathways
At present, caspase-3/8-mediated pathway and gran-
zyme-mediated pathway have been reported (Fig. 4). The 
former one is triggered by caspase-3/8, which is previ-
ously considered as the exclusive process in apoptosis. 
The view was expanded with the discovery of caspase-
3-mediated gasdermin E (GSDME) cleavage in tumor 
cells induced by chemotherapeutic drugs [62], and 
caspase-8-related cleavage of GSDMD in mouse mac-
rophages during Yersinia infection [91]. Interestingly, 
tumor necrosis factor (TNF)-mediated apoptosis is con-
verted into pyroptosis with the expression of gasdermin 
C (GSDMC) mediated by programmed cell death ligand 1 
(PD-L1) in breast cancer [92]. Under hypoxia conditions, 
PD-L1 is transferred to the nucleus and with the help of 

p-Stat3, and they together upregulate the expression of 
GSDMC. Later, caspase-8 specifically cleaves GSDMC 
and eventually induces pyroptosis [92, 93]. Additionally, 
chemo-antibiotic drugs like daunorubicin, actinomycin 
D, doxorubicin (DOX), and epirubicin were found to 
increase the expression of GSDMC and nuclear PD-L1 in 
breast cancer, which further promoted caspase-3/8-me-
diated pathway and ultimately led to pyroptosis [92, 93].

Granzyme-mediated pathway further broadens the 
definition of pyroptosis, which was previously known 
to be only activated by caspases [94, 95]. Studies found 
that chimeric antigen receptor-T (CAR-T) cells could 
activate caspase-3 in target cells and release granzyme 
B (GzmB), subsequently causing GSDME-mediated 
pyroptosis, while granzyme A (GzmA) secreted from 

Fig. 3  The canonical and noncanonical pathway of pyroptosis. In the canonical pathway, PRRs like TLRs and NLRs recognize intracellular and 
extracellular signals such as DAMPs and PAMPs; then, they assemble with pro-caspase-1 and ASC to form inflammasomes and active caspase-1. 
Afterward, GSDMD and pro-IL-1β/18 are cleaved into N-GSDMD and IL-1β/18. N-GSDMD perforates the cell membrane by forming nonselective 
pores, and IL-1β and IL-18 are secreted from the pores, eventually resulting in cell swelling and lysis. In the noncanonical pathway, cytosolic LPS 
activates caspase-4/5 in human and caspase-11 in mice, respectively. Then, with a process of GSDMD cleavage, cell membrane pores formation, 
and osmotic cell lysis, pyroptosis is forming. Additionally, the activated caspase-11 can cleave pannexin-1, resulting in the release of ATP and 
P2X7-mediated pyroptotic cell death
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CD8 + T cells and NK cells could induce gasdermin B 
(GSDMB)-mediated pyroptosis [95, 96].

Pyroptosis in common pediatric cancers
Here, we discussed the recent advances concerning 
the underlying molecular mechanisms of pyroptosis 
and the potential challenges for regulating pyroptosis 
pathways through various oncologic therapies in sev-
eral common pediatric cancers, including osteosar-
coma, neuroblastoma, leukemia, lymphoma, and brain 
tumors. The detailed findings are shown in Table 2 and 
Fig. 5.

Osteosarcoma and pyroptosis
Osteosarcoma, a kind of malignant tumor derived from 
mesenchymal tissue, is highly aggressive in young popu-
lations [97, 98]. The incidence of osteosarcoma is bimodal 
with age, with an initial peak at 10–14 years of age, and a 
second peak after 60 years [99]. Primarily, osteosarcoma 
tends to occur in the metaphysis of the distal femur and 
proximal tibia [100], while metastasis is mainly detected 
in the lung [101, 102]. With an annual incidence of 
approximately 3–4 patients per million, osteosarcoma is 
a relatively common malignant tumor in pediatric can-
cers, as well as one of the leading causes of cancer-related 
death in children and adolescents [103, 104]. Owing to 

Fig. 4  Other pathways of pyroptosis. In the caspase-3/8-mediated pathway, the inhibition of TAK1 activates caspase-8, resulting in GSDMD 
cleavage and pyroptosis. With the help of p-Stat3, PD-L1 is transferred to the nucleus and upregulates the transcription of GSDMC under hypoxia 
conditions. Activated by TNF-α, caspase-8 specifically cleaves GSDMC into GSDMC-N and eventually forms pores on the cell membrane, causing 
cell swelling, lysis and death. Chemotherapeutic drugs could induce caspase-3-mediated GSDME cleavage with high GSDME expression and form 
N-GSDME termini, which caused pyroptosis of tumor cells. In the granzyme-mediated pathway, CAR-T cells activate caspase-3 in target cells and 
release GzmB, causing GSDME-mediated pyroptosis, while GzmA secreted from CD8+ T cells and NK cells induces GSDMB-mediated pyroptosis
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the combination of surgical resection and neoadjuvant 
chemotherapy, osteosarcoma is among the most curable 
malignant tumors of high-grade sarcomas and achieves a 
long-term survival rate about 70% in patients with local-
ized disease [105, 106]. However, patients still suffer from 
unsatisfactory clinical outcomes including physical dis-
ability, drug resistance and other serious adverse effects 
[107, 108], especially in patients with pulmonary metas-
tasis or local relapse. This also reflects the slow progress 
of osteosarcoma treatment paradigms, treatment satis-
faction and survival rate over the past few years. There-
fore, the identification of novel therapeutic agents and 
treatment strategies is urgently needed.

Recently, emerging researches have focused on dif-
ferent targets in the pyroptosis pathways and investi-
gated the regulatory role and molecular mechanisms of 
pyroptosis among different models, which have brought 

mounting promising candidates for the osteosarcoma 
treatment. Inspired by traditional Chinese medicine, 
Ding et al. found that dioscin (a steroidal saponin derived 
from medicinal plants) inhibited the growth of human 
osteosarcoma both in vitro and in vivo [33], demonstrat-
ing the anticancer potential of dioscin in osteosarcoma. 
Dioscin could inhibit osteosarcoma cell proliferation and 
induce G2/M-phase arrest and apoptosis in a concen-
tration-dependent manner. Compared with the control, 
shrinkage, chromatin condensation, and nuclear frag-
mentation were more frequently observed in osteosar-
coma cells exposed to dioscin. Additionally, involvement 
of caspase-3-GSDME-N axis in this process implicated 
by mechanistical analysis further suggests that dioscin 
could induce pyroptosis via cleavage of GSDME and for-
mation of GSDME pore on the cancer cell membrane 
[33]. Besides, one GSDMD-targeted statistical analysis 

Table 2  Roles of pyroptosis across various pediatric cancers

*indicates lung carcinoma, gastric adenocarcinoma, hepatocellular carcinoma, cervical cancer, and melanoma; AML: acute myeloid leukemia; CPF: chlorpyrifos; 
CRS: cytokine release syndrome; GSDMD: gasdermin D; GSDMD-N: gasdermin D N-terminal; GSDME: gasdermin E; GSDME-N: gasdermin E N-terminal; HMGB1: 
high-mobility group protein box 1; IL: interleukin; MDS: myelodysplastic syndromes; NA: not available; NLRP3: nod-like receptor protein 3; OGD: oxygen–glucose 
deprivation; PTX: paclitaxel; ROS: reactive oxygen species

Cancer types Design Experimental design Cellular process Cell viability and impact

Osteosarcoma Dioscin In vitro/in vivo G2/M-phase arrest, apoptosis, and 
GSDME-dependent pyroptosis

Inhibited cell proliferation

Clinical control and 
statistical analysis

Primary clinical samples 
and normal bone tissues

NA Poor chemotherapy response, distant 
metastasis, worse prognosis

Neuroblastoma Dasatinib In vitro Pyroptosis Low cell survival rate

CPF In vitro NLRP3-dependent pyroptosis via miR-
181/SIRT1/PGC-1α/Nrf2 pathway

Inhibited cell viability, and proliferation

BM-MSCs-Exo In vitro OGD-mediated pyroptosis, inhibited 
GSDMD shuttle from nucleus to 
cytoplasm

Reduced dead cell ratio

Leukemia Val-boroPro In vitro/in vivo Pro-caspase-1-dependent pyroptosis Reduced cell viability, and increased cell 
death ratio

MgSO4 In vitro Inhibited ASC oligomerization, NLRP3-
dependent pyroptosis

Smaller cell size, lower level of pyroptotic 
cell death

Tp92 In vitro Atypical pyroptosis via pro‐caspase‐1 
pathway, apoptosis via the RIPK1/cas-
pase‐8/caspase‐3 pathway

Increased cell death ratio

CAR-T cells incubated 
with CD19 + leuke-
mic cells

In vitro/in vivo GSDME-mediated pyroptosis Decreased cell viability, CRS controlled

Lymphoma Sesamin In vivo Apoptosis, pyroptosis, autophagy Inhibited growth and proliferation

BAFF In vitro NLRP3-dependent pyroptosis, src 
activity-dependent ROS production, 
potassium ion efflux

Decreased cell viability

OX40 stimulation In vivo Pro-caspase-1-dependent pyroptosis Decreased cell viability, and liver injury

Iridium (III) complexes In vitro* Mitochondria-mediated apoptosis, 
GSDME-mediated pyroptosis

Decreased cell viability

Brain tumors Benzimidazoles In vitro/in vivo Cell cycle arrest via P53/P21/cyclin B1, 
mitochondria-dependent apoptosis, 
NLRP3-dependent pyroptosis

Inhibited cell proliferation, migration, and 
invasion

Galangin In vitro/in vivo Apoptosis, pyroptosis and autophagy Suppressed tumor growth, reduced cell 
viability and proliferation

miRNA-214 In vitro Caspase-1-mediated pyroptosis Inhibited cell proliferation and migration
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showed the GSDMD was significantly overexpressed 
in osteosarcoma compared to non-neoplastic counter-
parts, and the elevated expression of GSDMD was obvi-
ously associated with poor chemotherapy response, 
distant metastasis, and worse prognosis of osteosarcoma 
patients [34]. It is known that pyroptosis may result in 
the cleavage of GSDMD and activation of cytokines such 
as IL-1β and IL-18 [1]. It is estimated that upregulated 
GSDMD expression might play a considerable role in the 
progression and treatment resistance of osteosarcoma, 
which was already observed in other carcinomas, includ-
ing nonsmall cell lung cancer [109], bladder cancer [110], 
and breast cancer [111].

Currently, there are few in vitro or in vivo studies con-
cerning the role of pyroptosis in osteosarcoma, but the 
related prognostic analysis may also have some impli-
cations in evaluation of both treatment and prognosis. 
Zhang et  al. identified a novel pyroptosis-related gene 
signature to predict the prognosis and indicate the fea-
tures of immune microenvironment of patients with 
osteosarcoma [36]. Six pyroptosis-associated risk genes 
were identified via univariate and LASSO regression 
analysis. Combined with other clinical characteristics, an 
independent pyroptosis-related prognostic factor named 
"PRS-score" for osteosarcoma patients was established, 
which might be an important contribution to early diag-
nosis and prognosis of immunotherapy in osteosarcoma 

[36]. Similarly, another study constructed three differen-
tially expressed pyroptosis-related long noncoding RNA 
(lncRNA) signature linked to osteosarcoma microenvi-
ronment and prognosis [35], which had critical predictive 
value for the prognosis of osteosarcoma patients and may 
be promising targets for future therapy.

Neuroblastoma and pyroptosis
Neuroblastoma, mainly affecting the normal develop-
ment of the paravertebral sympathetic ganglia and adre-
nal medulla, is the most common extracranial embryonal 
malignancy in children [112]. Different locations of the 
tumor and paraneoplastic syndromes contribute to varia-
ble manifestations of neuroblastoma, leading to dramatic 
prognosis ranging from spontaneous tumor regression to 
widespread metastasis, which is unresponsive to treat-
ment [113, 114]. Children at high risk of neuroblastoma 
metastasis or mortality receive multimodality treatment, 
but may suffer from complications like nausea and pain. 
MYCN gene amplification has been confirmed to be in 
line with high-risk cases of neuroblastoma [112]. Tre-
mendous efforts to develop MYCN inhibitors with unde-
sirable outcomes indicate that this nuclear transcription 
factor may be difficult to target therapeutically. Aiming at 
better cures and long-term quality of life for children with 
cancer, identification of novel immunotherapy agents 
and tumor targets are underway with several promising 

Fig. 5  Mechanisms of pyroptosis across several common pediatric cancers, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and 
brain tumors
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approaches like 123I-MIBG imaging followed by autolo-
gous stem cell rescue [115], lutetium 177-DOTATATE 
[116], and activating mutations in the genes of RAS-
MAPK pathway [117], etc. However, breakthrough is still 
far from reach.

Recent advances in pyroptosis research have cast a light 
in the dark. Gasdermins are typical proteins involved in 
pyroptosis, and their cleavage fragments can insert into 
the cell membrane and thus play different roles in cytol-
ysis. GSDME, participating in chemotherapy-induced 
pyroptosis in tumor cells, is promoted by anti-oncogene 
p53 [62, 118]. But continuous expression of p53 leads to 
apoptosis in normal cells after treatment with cytotoxic 
anti-tumor agents [119]. Zhang and colleagues reported 
that dasatinib could induce pyroptosis in neuroblastoma 
SH‑SY5Y cells and increase the protein levels of GSDMD 
and GSDME out of the effect of p53 [38]. It is of signifi-
cant importance in therapy efficacy of neuroblastoma. 
Pyroptosis caused by small molecule toxicants has been 
reported in several studies like athiopyran derivative with 
low murine toxicity [120], and bilirubin mediated toxicity 
in cultured rat cortical astrocytes [121], etc. Interestingly, 
one study showed that the level of pyroptosis-related 
proteins was significantly increased in a dose and time-
dependent manner in SH‑SY5Y cells when treated with 
insecticide chlorpyrifos (CPF) [39]. By upregulating miR-
181 through downregulation of the SIRT1/PGC-1α/Nrf2 
pathway, CPF promotes cell pyroptosis, inhibits cell pro-
liferation and increases susceptibility to oxidative stress-
induced toxicity. But the active ingredients and toxicity of 
CPF should be considered in therapeutic treatment.

In addition of anti-tumor effect, the role of pyroptosis 
on noncancerous tissue damage has been investigated as 
well. For example, Kang et al. reported the neuroprotec-
tive effects of bone marrow mesenchymal stromal cells-
derived exosomes (BM-MSCs-Exo) under normoxic and 
hypoxic conditions, which named N-BM-MSCs-Exo and 
H-BM-MSCs-Exo, respectively. The research was inves-
tigated on oxygen–glucose deprivation (OGD) injury in 
mouse neuroblastoma N2a cells and rat primary corti-
cal neurons [37]. Functional assays and mechanistical 
analysis showed that pyroptosis-related proteins were 
decreased in both groups, demonstrating that hypoxic 
BM-MSCs-Exo may have a more pronounced protec-
tive effect in ameliorating the progression of cerebral 
ischemia and hypoxia injury in patients.

Leukemia and pyroptosis
Leukemia is a common pediatric cancer characterized by 
abnormal excessive proliferation of hematopoietic stem 
cells in bone marrow or blood [122, 123]. It can be mainly 
divided into two categories: acute lymphocytic leukemia 

(ALL) and acute myeloid leukemia (AML), among which 
ALL is more prevalent [124, 125].

As a novel inflammasome sensor, caspase recruitment 
domain-containing protein 8 (CARD8) can bind to pro-
caspase-1 [126, 127], and it was confirmed to trigger 
pyroptosis in myeloid leukemia cells through inhibition 
of dipeptidyl peptidases (DPP) [128]. Nonselective DPP-
inhibitor val-boroPro (also called PT-100 and talabostat) 
is a common anticancer drug, which can inhibit DPP8/9, 
thus inducing pyroptosis in a NLRP1b-dependent man-
ner in myeloid cells [127]. Further studies showed that 
val-boroPro could induce pyroptosis in multiple kinds 
of AML cell lines in  vitro, and inhibit the AML pro-
gression in  vivo. Taken together, inhibition of DPP may 
be a novel therapeutic strategy for AML [127, 129]. It is 
known that calcium signaling is important in the activa-
tion of the NLRP3 inflammasome [130, 131]. As a com-
mon calcium antagonist, MgSO4 could inhibit the release 
of calcium-influx-dependent histamine [132], which 
enables its potential anti-inflammatory effect. Based on 
this, Chang et al. found that MgSO4 could downregulate 
NLRP3 inflammasome, caspase-1 and IL-1β in THP-1 
cells (human monocytic cell line derived from an acute 
monocytic leukemia patient), thus inhibiting NLRP3-
dependent pyroptosis [133]. Additionally, another study 
proved that Tp92, the only outer membrane protein of 
Treponema pallidum [134] could induce human mono-
nuclear cell death and IL-8 secretion. And interestingly, 
among the various mechanism, Tp92 may induce atypical 
pyroptosis of THP-1 cells via the pro-caspase-1 pathway 
[135]. However, it is worth noting that the production 
of IL-1β and IL-18 is absent in this process, which is 
commonly seen in canonical pathway of pyroptosis. As 
known, CAR-T cell therapy is a great success in clini-
cal applications of genetically engineered T cells modi-
fied with CARs against B cell malignancies, but cytokine 
release syndrome (CRS) significantly restricts its effec-
tiveness and extensibility [136, 137]. A study by Liu 
et al. reported that upon incubation with CD19 + leuke-
mic cells, CAR-T cells could increase the release of lac-
tic dehydrogenase (LDH), and upregulate expression 
GSDME and IL-1β, suggesting that CAR-T cells can acti-
vate GSDME-mediated pyroptosis by releasing a large 
amount of perforin and GzmB, and could ultimately 
result in CRS [94]. Further study also revealed that CRS 
occurrence significantly decreased when depleting mac-
rophages, knocking out GSDME, or inhibiting caspase-1 
in mouse models [94]. Since high expression of GSDME 
is observed in B leukemic cells, the induction of CRS 
may impede the application of pyroptosis related CAR-T 
therapy in leukemia. Therefore, studies focusing on other 
forms of PCD may be alternative promising choices for 
CAR-T therapy.
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Lymphoma and pyroptosis
Lymphoma is a common but highly treatable malignancy 
in children [138]. It can be further divided into Hodgkin 
lymphoma (HL) and non-Hodgkin lymphoma (NHL) 
[139]. Accounting for about 5% of childhood cancers, 
NHL is more likely to occur in younger children when 
compared with HL. However, NHL is still uncommon 
in children younger than 3-year-old [140]. NHL may 
develop from either abnormal B or T cells, while HL 
derives from a specific abnormal B lymphocyte lineage 
[141].

Sesamin is a plant-derived compounds with many phar-
macological effects including antiproliferative, antimeta-
static, anti-inflammatory, and proapoptotic functions [69, 
142, 143], which makes it a promising candidate for anti-
cancer treatment. It is reported that sesamin markedly 
inhibited growth and proliferation of EL4 cells by induc-
ing apoptosis, pyroptosis and autophagy to strengthen 
the anti-tumor effects on murine T cell lymphoma [144]. 
B cell-activating factor (BAFF), a member of TNF super-
family, supports B cell survival and homeostasis through 
the activation of the NF-κB pathway [145]. It is well 
known that NF-κB is a key initiating signal of NLRP3 
inflammasome [146], but the relationship between 
BAFF and NLRP3 inflammasome remains unclear. Lim 
et  al. firstly demonstrated BAFF induced the activation 
of NLRP3 inflammasomes with increased expression of 
NLRP3, IL-1β, and caspase-1, and ultimately leading to 
pyroptosis in primary B cells and B lymphoma cell lines 
[147]. Coincidentally, another TNF superfamily recep-
tor OX40 (also called CD134) was found to trigger the 
activation of caspase-1, resulting in IL-1β expression as 
well as the cleavage of the pyroptotic protein GSDMD 
in invariant nature killer T (iNKT) cells [148]. Of note, 
iNKT cells mainly reside in liver, more researches on 
other kinds of T cells may uncover the clinical implica-
tions in the development of OX40-directed therapies in 
lymphoma. Interestingly, Zhang et  al. reported a new 
ligand TFBIP (2-(4’-trifluoromethyl)-[1,1’-biphenyl]-
4-yl)-1H-imidazo[4,5-f ] [1, 10] phenanthroline) and 
its three iridium (III) complexes [70]. When trapped in 
liposomes, these complexes can trigger mitochondria-
mediated apoptosis and GSDME-mediated pyroptosis 
in a variety of cancers, including lung carcinoma, gastric 
adenocarcinoma, and melanoma. More work in progress 
identifying the effect of these complexes in lymphoma 
may help bring potential anticancer strategies about 
TFBIP in this malignancy in the future.

Brain tumors and pyroptosis
Primary tumors of central nervous system (CNS) are the 
most frequent solid tumors in children, contributing to 

about 15% to 20% of all malignancies in pediatrics [149]. 
Pediatric high-grade glioma (pHGG) is one of the rap-
idly lethal malignancies at young age [150, 151]. Among 
them, glioblastoma, also known as glioblastoma multi-
forme (GBM), is the most prevalent and aggressive [152]. 
To date, surgical resection followed by adjuvant radia-
tion therapy and chemotherapy with oral temozolomide 
(TMZ) is the most common and effective treatment for 
GBM patients [153]. However, TMZ, the only drug avail-
able for GBM, frequently induces drug resistance and 
numerous side effects [154].

A study by Ren et al. found benzimidazoles can induce 
cell cycle arrest at the G2/M phase via the p53/p21/cyc-
lin B1 pathway, and concurrently induce mitochondria-
dependent apoptosis and NLRP3-dependent pyroptosis 
in glioblastoma cells [30]. Another study revealed a nat-
ural flavonoid Galangin could also elicit a potent anti-
tumor effect on GBM by initiating apoptosis, pyroptosis 
and autophagy [67]. These novel drugs cater to the urgent 
clinical need for GBM therapeutics especially in patients 
who are resistant or less responsive to TMZ. MicroRNAs 
(miRNAs) are small endogenous noncoding RNAs with 
a variety of targets, and thus exerting diverse functions 
in tumorigenesis, progression, and metastasis [155–157]. 
In glioma, an inverse relationship between abundant cas-
pase-1 expression and low expression of miRNA-214 was 
observed [158, 159]. Following this, another research fur-
ther confirmed caspase-1 as a target gene of miRNA-214 
by luciferase reporter assay [71]. Moreover, miRNA-214 
was found to inhibit cellular proliferation and migra-
tion via caspase-1 dependent pyroptosis in glioma [71]. 
In addition to approved drugs repurposing and new 
drugs development, Lu et  al. reported a novel strategy 
to package recombinant adeno-associated virus (rAAV) 
expressing GSDMD-N. They have successfully delivered 
GSDMD-N into tumor cells and demonstrated pyropto-
sis induced by these rAAVs in preclinical cancer models 
including glioblastoma [72], which can provide enlight-
enment for the idea of anti-tumor therapy. Till now, a 
growing body of research has posted attention on GBM. 
Exploration of novel drugs, and combination of tradi-
tional methods or medicine may also facilitate progres-
sion in pediatric brain tumors.

Pyroptosis related therapy in pediatric cancers
Apoptosis resistance is a general hallmark of cancer in 
the mechanism of tumor drug resistance [160, 161]. 
Recently, treatments that target nonapoptotic cell death 
have attracted great attention [162, 163]. Therefore, the 
research in different forms of pyroptosis is of great sig-
nificance for the treatment therapy of pediatric cancers 
(Fig. 6).
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Chemotherapy drug‑induced pyroptosis
Chemotherapy is a diverse and rapidly progressing field 
[164, 165]. While most researches explicitly cast atten-
tion to adult diseases, considerable efforts are being 
made to bring these therapies into the pediatric cancers. 
Chemotherapy drugs can initiate caspase-3-mediated 
apoptosis in cancer cells, but the process will be switched 
to pyroptosis with abundant GSDME expression [62, 
166]. As proved, GSDME is lowly expressed in most can-
cer cells [167–170], so we can suppose that with reversal 
of GSDME expression level, pyroptotic therapy may exert 
an important role in cancer treatment.

Decitabine and azacitidine are classical drugs to treat 
myelodysplastic syndromes (MDS) or AML [171, 172]. 
It is reported that these drugs can increase GSDME 
expression and sensitize the cancer cells to chemo-
therapy drug by inducing GSDME-mediated pyroptosis 
[62, 63]. Additionally, dasatinib, a multi-kinase inhibi-
tor, can induce pyroptosis in GSDME‑expressing lung 
cancer and neuroblastoma, and increase the expression 
of GSDMD and GSDME in a p53‑independent manner 
[38]. Paclitaxel (PTX) and cisplatin are representative 

chemo-drugs for lung cancers by inducing apopto-
sis, and are lately found to induce GSDME-dependent 
pyroptosis as well [64]. Of note, compared with PTX, 
cisplatin induces more severe secondary pyroptosis 
with higher expression of GSDME-N in lung cancer, 
indicating cisplatin may be a better candidate for lung 
cancers in pyroptosis-related therapy [64]. Wang et al. 
and colleagues further expanded the choices of chemo-
therapy drugs to DOX, actinomycin-D, bleomycin and 
topotecan for pyroptotic treatment in lung cancer [62]. 
Besides, Yu et  al. found that lobaplatin could induce 
GSDME-dependent pyroptosis in colon cancer via reac-
tive oxygen species (ROS) elevation, c-Jun N-terminal 
kinase (JNK) activation and initiation of the mitochon-
drial apoptotic pathway [65]. As a negative regulator 
of protein synthesis, eukaryotic elongation factor-2 
kinase (eEF-2  K) is observed highly expressed in vari-
ous tumor cells and proved to exert a critical function 
in modulating autophagy and apoptosis in tumor cells 
[173, 174]. Practically, lung cancer, colon cancer, and 
melanoma are uncommon in children. Current main-
stream researches post their focus on adult diseases, 

Fig. 6  Mechanism of chemotherapy drugs and nonchemotherapy drugs in pyroptosis pathway in tumor cells. a Chemotherapy drugs mainly 
induce GSDME-mediated pyroptosis via activation of pro-caspase-3, while caspase-3 can further promote apoptosis. Formation of GSDME pore 
leads to cytolysis, cytokine release, and activation of immune cells like dendritic cells, CD8+ T cells, and NK cells. GzmA secreted from CD8+ T 
cells and NK cells induce GSDMB-mediated pyroptosis while CAR-T cells can activate caspase-3 in target cells and release GzmB, promoting 
GSDME-mediated pyroptosis. Chemo-antibiotic drugs help increase the expression of GSDMC and nuclear PD-L1, and with the help of p-Stat3, 
they together upregulate the expression of GSDMC. Later, caspase-8 specifically cleaves GSDMC and eventually induces pyroptosis. b Mechanisms 
of nonchemotherapy drugs are more complex. Drugs like dioscin, galangin, BRAFi/MEKi, etc. induce GSDME-mediated pyroptosis and release 
proinflammatory cytokines from pyroptotic or apoptotic pores, which could subsequently initiate the activation of immune systems. Meanwhile, 
other reagents like anthocyanin and sesamin mainly exert their role in pyroptosis via GSDMD pathway in tumor cells
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but in fact, relevant novel research results and methods 
may also be applicable to clinical practice.

Intriguingly, therapies that inhibit pyroptosis via gas-
dermins may also effectively modulate tumor progression 
as well. A recent study established a novel targeted nano-
medicine by packaging specific anti-GSDMB antibody 
into HER2 breast cancer cells and investigated its anti-
tumor effect both in vivo and in vitro. The results showed 
that the therapy could effectively inhibit tumor growth 
and cell migration, suppress tumor resistance, and dimin-
ish lung metastasis [175]. More studies concerning 
pyroptosis-related therapy in malignancies are demanded 
to further address this controversial issue.

Nonchemotherapy drugs‑induced pyroptosis
Chemotherapeutic drugs are commonly used to maintain 
the patients’ condition, but adverse effects like weight 
loss, listlessness, and tissue damage may always occur 
after long-term or overdose treatment [176]. Natural 
products and other therapies have turned into inviting 
alternatives in clinical practice for its low toxicity, wide 
source, and human affinity [177, 178]. As aforementioned, 
dioscin can inhibit cell proliferation in human osteo-
sarcoma both in  vitro and in  vivo via GSDME-depend-
ent pyroptosis [33]. As a member of natural flavonoids, 
galangin exerts a vital role in suppressing tumor growth 
and reducing cell viability of glioblastoma cells by trig-
gering GSDME-dependent pyroptosis [67], while antho-
cyanin promotes the cell death of oral squamous cell 
carcinoma (OSCC) via activation of GSDMD-dependent 

pyroptosis [68]. Additionally, sesamin, a widely used 
plant-derived compound with multi-anti-tumor pharma-
cological effects, can inhibit the growth and proliferation 
of murine T cell lymphoma in vivo by regulating apopto-
sis and pyroptosis [69].

Interestingly, composite or synthetic agents can also 
be effective in anti-tumor treatment via pyroptotic path-
way [179]. A new synthesized ligand TFBIP and its three 
iridium (III) complexes were found to induce GSDME-
mediated pyroptosis, thus decreasing cell viability in 
several cancers [70]. MiR-214 targeting caspase-1 or 
GSDMD-N packaged in rAAVs can both induce pyrop-
tosis in brain tumor cells [71, 72]. The reagent consisting 
of BRAF inhibitors and MEK inhibitors (BRAFi/MEKi) 
is used to treat BRAFV600E/K−mutant melanoma with FDA 
approval. Further studies found that BRAFi/MEKi can 
induce pyroptosis with cleavage of GSDME and release 
of proinflammation factors like high mobility group pro-
tein B1 (HMGB1, an inflammatory marker of pyroptosis) 
[73]. Collectively, the mechanisms of these compound-
based therapies are concluded in Table  3 for a better 
understanding.

Radiotherapy‑induced pyroptosis
Radiotherapy is a common clinical treatment for local 
malignancies, which can release tumor antigens as an 
endogenous tumor vaccination event to further induce 
tumor infiltration of CD8 + T cells, and ultimately leads 
to the shrinkage of primary tumor and distal metasta-
ses [180, 181]. Radiotherapy itself can not only trigger 

Table 3  Compounds inducing pyroptosis signal pathways in cancers

*indicates lung carcinoma, gastric adenocarcinoma, hepatocellular carcinoma, cervical cancer, and melanoma; AML: acute myeloid leukemia; BRAFi: BRAF inhibitor; 
DOX: doxorubicin; eEF-2K: eukaryotic elongation factor-2 kinase; GSDMD: gasdermin D; GSDME: gasdermin E; HMGB1: high mobility group protein box 1; JNK: c-Jun 
N-terminal kinase; MDS: myelodysplastic syndromes; MEKi: MEK inhibitor; NLRP3: nod-like receptor protein 3; OSCC: oral squamous cell carcinoma; PTX: paclitaxel; 
ROS: reactive oxygen species

Classification Compounds Cancer types Mechanisms of pyroptosis induction References

Chemotherapy drugs Decitabine/azacitidine MDS/AML Caspase-3/GSDME [62, 63]

Dasatinib Neuroblastoma/Lung cancer Caspase-3/GSDME [38]

PTX/cisplatin Lung cancer Caspase-3/GSDME [64]

DOX, Actinomycin-D, Bleomycin, 
Topotecan

Lung cancer Caspase-3/GSDME [62]

Lobaplatin Colon cancer ROS/JNK/caspase-3/GSDME [65]

DOX Melanoma eEF-2K/caspase-3/ GSDME [66]

Natural products Dioscin Osteosarcoma Caspase-3/GSDME [33]

Galangin Brain tumors GSDME [67]

Anthocyanin OSCC NLRP3/caspase-1/GSDMD [68]

Sesamin Lymphoma NLRP3/caspase-1 [69]

Reagents Iridium (III) complexes Several cancers* Caspase-3/GSDME [70]

miRNA-214 Brain tumors Caspase-1 [71]

GSDMD-N packaged in rAAVs Brain tumors GSDMD [72]

BRAFi/MEKi Melanoma GSDME/ HMGB1 [73]
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immunogenic cell death (ICD) in tumor cells, but can 
also assist chemotherapy-induced ICD with a combina-
tion of other treatment [181, 182]. The ideal radiotherapy 
should eliminate as many tumor cells as possible without 
damaging the normal tissues and inducing inflammation. 
Combination of radiotherapy with other therapies have 
been well applied in clinical trials for treatments of vari-
ous cancers, including head and neck cancer [183], ovar-
ian cancer [184], and nonsmall cell lung cancer [185]. 
Currently, few studies accurately describe the relation-
ship between pyroptosis and radiotherapy. As above-
mentioned, AIM2 is a classical inflammasome sensor 
involved in canonical pyroptosis pathway. Hu et al. found 
that AIM2 was sensitive to double-strand DNA break 
in the nucleus caused by ionizing radiation and chemo-
therapeutic agents, thus inducing inflammasome activa-
tion and subsequent pyroptosis [186]. Another study by 
Li et  al., also demonstrated high-dose X-ray irradiation 
could trigger pyroptosis that modulated by connexin 
43 (Cx43) in the human umbilical vein endothelial cells 
(HUVECs) [187], implicating a vital correlation between 
radiotherapy and pyroptosis.

However, it is noteworthy that a few studies have clearly 
shown that radiation can cause radiotherapy-related tox-
icity upon activation of pyroptosis, such as bone mar-
row inhibition and gastrointestinal tract injury [180, 186, 
188]. For instance, Liu et al. reported that radiation could 
induce NLRP3-mediated pyroptosis in primary cultured 
bone marrow-derived macrophages both in  vitro and 
in vivo [189], suggesting that targeting NLRP3 inflamma-
some may be useful strategy to decrease the bone mar-
row injury caused by radiation via pyroptosis. Besides, 
it is reported that 10-Gy abdominal irradiation led to 
oxidative stress, inflammatory reaction, and NLRP3-
mediated pyroptosis, and ultimately resulted in intestinal 
injury in mouse model [188]. Since flagellin A N/C could 
effectively inhibit radiation-induced pyroptosis, and in 
turn alleviating the intestinal injury, it is assumed that 
flagellin A N/C may be a potential candidate to protect 
patients against ionizing radiation damage [190].

The adverse effects of pyroptosis on tumor therapy
Tissue damage is undoubtedly the most common side 
effect of oncologic therapies that targeting pyropto-
sis [49, 191]. As previous studies showed, chemo-drugs 
mainly induce pyroptosis by the executioner GSDME 
via caspase-3 activation. Therapies that targeting can-
cer cells with high GSDME expression are speculated to 
show a promising therapeutic effect. However, it is worth 
noting that GSDME has been widely overexpressed in 
normal cell while most tumor cells tend to express low 
GSDME due to GSDME gene promoter methylation [62, 
166]. Thus, we may observe an interesting phenomenon 

that tumor cells with low or no expression of GSDME 
underwent apoptosis after chemotherapies, while normal 
tissues with high GSDME expression may suffer from 
severe toxicity via caspase-3-mediated pyroptosis. For 
instance, studies found that GSDME−/− mice were pro-
tected from chemotherapy-induced tissue damage and 
weight loss, while intraperitoneal injection of cisplatin 
or 5-FU caused immune cell infiltration and severe small 
intestinal injury in GSDME+/+ mice [62, 192].

Meanwhile, the tight correlation between chemother-
apy-induced tissue damage and pyroptosis also provides 
a promising strategy to reduce toxicity by inhibition of 
pyroptosis. For instance, DOX, a common antineoplastic 
agent, can cause cardiotoxicity via pyroptosis in clinical 
practice [193–195]. MCC950, an NLRP3 inflammasome 
inhibitor, could obviously suppress myocardial inflam-
mation and fibrosis by inhibiting pyroptosis of cardio-
myocyte in DOX-treated mice [193]. Similarly, tripartite 
motif containing 25 (TRIM25) with E3 ubiquitin ligase 
activities, could ubiquitinate NLRP1 in DOX-induced 
cardiomyocyte pyroptosis in vivo, thus protecting against 
myocardial damage [194]. These studies prompt us that 
co-treatment of anti-pyroptosis agents, such as MCC950 
or TRIM25, may attenuate the myocardial injury induced 
by chemotherapies in cancer patients.

CRS, characterized by excessive production of pro-
inflammatory cytokines, is another adverse effect of 
pyroptosis-related therapy [94, 196]. Studies found that 
immune cells like CD8 + T cells and NK cells release 
large amount of perforin, GzmA and GzmB which can, 
respectively, cleave GSDMB and GSDME, thus further 
promoting pyroptosis and pore-forming process [95, 
96]. As a result, cytokines like IL-1β, IL-18, ATP, LDH, 
and HMGB1 are released into the intercellular substance 
which subsequently activates immune cells like mac-
rophages, dendritic cells, and NK cells, resulting in severe 
positive feedback regulatory between immune response 
and pyroptosis. Activation of pyroptosis in macrophages 
may release IL-1, IL-6, and TNF-α into serum, thus fur-
ther exacerbating cytokine storm [197, 198]. One study 
confirmed CRS occurrence obviously decreased when 
depleting macrophages, knocking out GSDME, or inhib-
iting caspase-1 [94], which further affirmed the relation-
ship between immune response and pyroptosis (Fig. 7).

Challenges and perspectives
Pyroptosis related therapies can undoubtedly affect tum-
origenesis, metastasis, proliferation, and invasion [31, 32, 
199]. To date, most pyroptosis-related studies are focused 
on adult malignancies, in contrast to inadequate atten-
tion to other common childhood tumors including hepa-
toblastoma, Wilms tumor, and germ cell tumor. But still, 
the pharmacological effect of pyroptosis can eliminate 
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malignant tumor cells and has been emerging for treat-
ment of cancers [77, 200]. Cytotoxic therapy is still the 
mainstream of pyroptosis-related treatments in pediatric 
malignancies, though with limited efficacy and obvious 
side effects [77]. Few identified tumor-specific regula-
tory mechanisms and inconsistent results concerning the 
role of pyroptosis in tumors may indicate an extra-high 
heterogeneity and complex microenvironment in pediat-
ric cancers. Before implementation of pyroptosis-related 
therapies in clinical practice, multiple challenges remain 
to be addressed.

First, GSDME is hardly expressed in most tumor cells, 
but abundantly expressed in normal cells [62, 170, 201]. 
However, as previous studies showed, GSDME is the tar-
get of most chemotherapies. The distribution of GSDME 
may lead to poor efficacy and inevitable cytotoxicity or 
tissue damage. But gasdermin family proteins are still the 
potential biomarkers of tumor immunotherapy if we can 
upregulate gasdermin levels in tumor cells. Decitabine, a 
DNA methylation inhibitor drug which can upregulate 

GSDME expression in several cancers and increase their 
sensitivity to chemotherapy drug-induced pyroptosis, 
is undoubtedly a promising candidate [171, 172]. Addi-
tionally, the exploration of small molecule drugs and the 
study of specific targeting carriers to target pyroptosis 
also shed good insights for pediatric cancer treatments.

Second, scant attention has been paid to childhood 
malignancies in research on pyroptosis-related treat-
ments. Despite some commonalities, pediatric cancers 
are fundamentally different from their adult counterparts 
[202]. Originated from embryonal cells, most of pediat-
ric cancers are characterized by low mutational burden 
and relative lack of neoantigen expression, which wholly 
restrict their susceptibility to many chemical therapy 
drugs. This may also be the reason why there are few rel-
evant studies regarding pyroptosis in pediatric cancers.

Third, the immune response to the therapies might 
also be totally different in children and adults, indi-
cate that the results learned from the latter may not be 
that applicable to the former. Combination of different 

Fig. 7  Adverse effects of chemotherapy drugs and nonchemotherapy drugs in pyroptosis pathway. a Tissue damage: pyroptosis triggered by 
chemotherapy drugs in normal cells with high GSDME-expression contributes to their cytotoxicity mainly via GSDME-mediated pyroptosis. b 
Cytokine storm: immune cells like CD8 + T cells and NK cells release a large amount of perforin, GzmA and GzmB, thus promoting pyroptosis and 
pore-forming process. Cytokines like IL-1β, IL-18, ATP, LDH, and HMGB1 are released into the intercellular substance which subsequently activate 
immune cells, resulting in severe positive feedback regulatory between immune response and pyroptosis. Activation of pyroptosis in macrophages 
can release IL-1, IL-6, and TNF-α, thus further exacerbating cytokine storm
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therapies may mitigate the challenges. For instance, 
pembrolizumab and ipilimumab, the common check-
point inhibitors, can promote the proliferation of cyto-
toxic T-lymphocyte via programmed cell death protein 1 
(PD-1) inhibition and maintain the active state of these 
cells via cytotoxic T-lymphocyte-associated antigen 4 
(CTLA-4) inhibition, respectively [203–205]. The con-
current inhibition of PD-1/CTLA-4 signaling therapy 
has shown improved anti-tumor efficacy and acceptable 
safety profile in a phase I adult metastatic melanoma trial 
[205, 206]. Combination of different pyroptosis-related 
therapies may also worth exploration, but we should cau-
tiously take the toxicity and safety of the young age into 
account.

Conclusions
Accumulating evidences have confirmed an important 
role of pyroptosis in pediatric cancers. Although it is jus-
tifiable that severe side effects and inconsistent mecha-
nism are still challenges that need to be fully elucidated, 
the future interpretation of pyroptosis in pediatric can-
cers should be viewed with optimism. Repurposing of 
existing chemo-drugs, development of novel natural 
products, synthetic bioactive agents, and promising 
combination of reagents have brought numerous treat-
ment strategies and novel insights into various pediatric 
malignancies. With deeper understanding of these dis-
eases and tumor microenvironment, mounting therapies 
will also flourish continuously and come into develop-
ment. Herein, we describe the molecular mechanisms of 
pyroptosis, highlight and discuss the opportunities and 
challenges for regulating pyroptosis pathways through 
multiple oncologic treatments in the following malig-
nancies: osteosarcoma, neuroblastoma, leukemia, lym-
phoma, and brain tumors. It is believed that leverage the 
strengths of these therapies and overcome the adverse 
effects will hopefully help us with better understanding 
of pyroptosis in pediatric cancers and enable better care 
for the young population.
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