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Abstract 

The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, 
especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized 
by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowl-
edge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment 
(TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the 
senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which 
enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including 
myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contribut-
ing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contrib-
uting to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is 
necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summa-
rize the key biological functions mediated by cytokines and intercellular interactions and significant components of 
the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize 
recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
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Introduction
In the traditional view, tumors cause a disease that is 
closely associated with age. However, from the perspec-
tive of cellular function, senescent cells and tumor cells 
have diametrically opposite behavior. Senescent cells 

manifest a loss of function or cessation of proliferation, 
while tumors manifest hyperproliferation and increased 
metabolism rates [1]. Recently, many studies have shown 
that aging involves multiple mechanisms, which both 
prevent cancer and promote tumorigenesis [2]. There-
fore, the association between aging and tumors needs 
to be further explored. In addition, in elderly individu-
als, the cellular microenvironment is changing, which 
in turn allows tumors to survive in a unique cytokine, 
extracellular matrix (ECM), and vascular environment. 
This specific microenvironment contributes to tumor 
growth and cancer cell invasion and immune escape [3]. 
Senescence is a damage-induced cellular response to 
cancer treatment. Leonard Hayflick and colleagues first 
observed that human diploid fibroblasts undergo a finite 
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number of doublings before irreversibly arresting, the 
process named senescence [4–6]. Senescence indicates 
a conserved response to many different types of external 
and internal cellular stress, including telomere shorten-
ing and oncogenic, genotoxic, metabolic, and oxidative 
damage, and the instances of all these responses can 
increase during cancer therapy [7–9]. Senescence has 
been revealed to be a broad physiological response to tis-
sue damage that plays a pleiotropic role in aging, embry-
onic development, wound healing, tissue regeneration, 
and, importantly, responses to oncogenesis and cancer 
therapy [10–15].

The mechanisms of both cancer and aging are based 
on a time-dependent accumulation of cell damage. Pre-
vious studies have shown that many of the hallmarks 
of aging, including epigenetic alterations, intracellu-
lar interaction changes, changes in protein homeostasis 
(proteostasis), mitochondrial dysfunction and molecular 
senescence, are common to cancer [16]. In 2020, cancer 
contributed to 18% of all deaths and remained the second 
leading cause of death after heart diseases in the USA. 
However, it is the leading cause of death among women 
aged 40–79 years and men aged 60–79 years. In the USA, 
from 2017 to 2019, the probability of developing inva-
sive cancer is 34% in 70 years and older male populations 
and 27.2% in female populations. In 2019, there were 
approximately 140,690 new cancer cases diagnosed and 
103,250 cancer deaths among the “oldest old” (≥ 85  yr), 
also the cancer incidence rates peaked in the oldest men 
and women in 1990 although the rates have subsequently 
declined. Based on these statistics, a considerable num-
ber of cancer cells acquire aging phenotypes [17–19]. 
Many studies have highlighted that aging can mark-
edly affect normal cells in the tumor microenvironment 
(TME) and thus promote tumor progression and metas-
tasis. Fibroblasts and immune cells are thought to play 
necessary roles in this age-related impact [20, 21]. Tumor 
progression often requires genetic mutations in growth 
pathway genes to drive hyperproliferation, and distinct 
mutations trigger senescence biological processes. Aging 
is associated with many factors that are involved in the 
aforementioned processes, such as enhanced genomic 
damage (point mutations, deletions, and translocations), 
telomere attrition, epigenetic alternation, impaired pro-
teostasis, and deregulation of nutrient sensing [22, 23]. 
Many environmental factors, such as ultraviolet radiation 
exposure, alcohol, smoking, and pollution, contribute 
to the chronic accumulation of DNA damage and other 
events associated with cellular aging. Previous stud-
ies suggested that the cellular aging process of somatic 
selection is nonautonomous and is, in fact, defined by 
TME-imposed increases in positive selection for previ-
ously accumulated genetic and/or phenotypic diverse 

senescent tissues, which is leveraged to ensure that 
senescent models can induce cancer across tissues and 
species [24]. Many factors involved in senescent tissue 
evolution result in the final transformation to malignancy 
and hyperplastic growth in self-renewing tissues, which 
contribute to growth arrest, apoptosis, and the degrada-
tion of other cells and structural tissue components. With 
increasing age, the cancer risk and many degradative fea-
tures within tissues and cells exponentially increase [23]. 
An increasing number of studies have focused on the 
complex interrelationship between an aged local and sys-
tematic TME and its fundamental role in tumor develop-
ment and progression (Fig.  1). In addition, age-induced 
reprogramming of stromal components in an established 
TME seems to contribute to tumor metastasis and pro-
gression. Interestingly, clear impact of senescent stromal 
cells on cancer outcomes is not determined yet or even 
contradictory, which suggests that different stromal tis-
sue environments in the body may be reprogrammed 
differently during the aging process. This mechanism 
ultimately influences tumor growth and progression with 
respect to the original tissue [25–27]. In this review, we  
will  (1) discuss the interactions between tumors and an 
aged TME, identifying how TME changes during aging 
facilitate the reprogramming of stromal cell populations, 
the ECM, and immune cell infiltration to initiate cancer 
and progression; (2) then investigate how an aging TME 
regulates the potential responses of cancer cells to chem-
otherapy, radiotherapy, targeted therapy, and immuno-
therapies; and (3) summarize recent clinical progress in 
geriatric oncology and aging TME. With these foci, we 
hope to identify additional tumor therapy methods for 
this special population of aging individuals.

Intracellular changes in senescent cells
Increased levels of transcription and protein synthesis in 
senescent cells converge to promote a distinct aspect of 
senescence, the acquisition of the senescence-associated 
secretory phenotype (SASP), which promotes senescent 
cells to communicate damage signals with neighboring 
cells, including immune cells, fibroblasts, endothelial 
cells, and adjacent nontumor epithelial cells in the TME 
in a nonautonomous manner in cells [28, 29] (Table  1). 
Enhancer regions of hundreds of SASP factors are made 
accessible, transcribed by NF-κB and other factors, and 
translated in an mTOR-dependent manner, contribut-
ing to the robust secretion of inflammatory cytokines 
and chemokines and angiogenic, growth, and ECM-
degrading signals [21]. The SASP is also associated with 
the upregulation of cell surface molecules that modulate 
the interactions between senescent cells and the immune 
system [30, 31]. Notably, hallmarks of senescence are nei-
ther specific nor universal to all types of senescent cells 
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and that multiple markers are necessary to distinguish 
senescence from other biological outcomes of cancer 
therapy [7].

The dynamic nature of the SASP and its ability to mod-
ulate the surrounding tissue TME and immune responses 
in different ways is thought to be associated with many 
contrasting physiological characteristics of senescence 
(Fig. 2 and Table 2). In fact, senescence can lead to anti- 
or protumorigenic outcomes depending on the senes-
cence inducer, the duration of the senescent period, the 
SASP factors produced, and the tissue and disease con-
text [32, 33]. Biomarkers of cellular senescence have been 
thoroughly investigated in precancerous tissues in dif-
ferent solid organs in humans, including the lungs, pros-
tate, pancreas, and skin, and have been found to be lost 
during neoplastic progression [15, 34]. Therefore, it has 
been postulated that senescence may suppress tumors 
and thus block tumor development by preventing the 
proliferation of potentially malignant cells. Supporting 
this hypothesis, oncogene-induced senescence following 
aberrant RAS activation led to the arrest of premalignant 

cells and secretion of proinflammatory SASP factors that 
promoted innate and adaptive immunity cell clearance of 
incipient cancer cells and blocked tumor formation [35]. 
Similarly, therapy-induced senescence (TIS) has been 
shown to inhibit tumor growth and lead to an influx of 
cytotoxic CD8+ T cells and natural killer (NK) cells that 
promote tumor regression [36, 37]. In contrast, some 
evidence has demonstrated that the SASP after chemo-
therapy can promote tumors through the secretion of 
immune suppressive factors and attraction of immune 
suppressive cells, as well as the production of angiogenic 
and other growth factors, which enhance the invasion 
and metastasis of adjacent non-senescent tumor cells [38, 
39]. Senescence is generally presumed to be neither a per-
manent nor irreversible state and tumor cells that bypass 
senescence through the acquisition of genomic instability 
(e.g., polyploidy) likely achieve enhanced stemness and 
tumorigenic potential that contributes to drug resistance 
and tumor relapse [40–43].

During aging, cells undergo a series of intracellu-
lar changes. In the nucleus, during cell division and 

Fig. 1 The hallmarks of cancer and new additions. Besides the original hallmarks of cancer, four new hallmarks of “senescent cells,” “unlocking 
phenotypic plasticity,” “nonmutational epigenetic reprogramming,” and “polymorphic microbiomes” have been added to these parameters. The four 
new hallmarks are believed to stimulate debate, discussion and experimental elaboration, also give us multiple facets of understanding on human 
cancer. Cancer senescence can be regarded as a distinct TME feature as it leads to further research interest. TME, tumor microenvironment
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senescence, telomeres at the ends of DNA sequences are 
shortened, resulting in their reduced binding to protec-
tive protein complexes, which protect DNA from DNA 
damage response (DDR) factors. Shortened telomeres 
and DDR activation may establish connections between 
senescent cells and tumor cells [44]. Telomeres act a 
necessary role in protecting chromosome ends, pre-
venting DDR, and maintaining genomic stability. There 
are two telomere maintenance mechanisms (TMMs) 
in human cancer to keep the infinite capacity for tumor 
proliferation: one is telomerase-mediated maintenance 
(observed in 85%) and the other is alternative lengthen-
ing of telomeres (ALT) (observed in 15%). Unique char-
acteristics of ALT include very long telomeres, telomere 
length heterogeneity, abundant extrachromosomal linear 
and circular telomere DNA, increased telomere-sister 
chromatid exchange (T-SCE) events, and the formation 
of ALT-associated promyelocytic leukemia (PML) bod-
ies. It is crucial to understand the molecular mechanism 

underlying ALT and its impact on cancer prognosis as 
ALT can be therapeutic target [44, 45]. Similarly, with 
aging, genetic mutations gradually accumulate, especially 
when cells are exposed to tobacco and other chemicals, 
ultraviolet rays, ionizing radiation, or exogenous muta-
gens. Mutation ultimately increases the probability of 
cancer occurrence. This theory has been verified by can-
cer driver mutations detected in many middle-aged and 
older individuals [46]. Moreover, p16, a tumor suppres-
sor protein that regulates Rb protein phosphorylation, 
accumulates with aging in most mammals and ultimately 
participates in tumorigenesis [47]. Furthermore, another 
classic tumor suppressor, p53, has been shown to induce 
senescence by affecting the downstream factor p51 [48]. 
In addition to changes in DNA and gene expression, the 
epigenetic inheritance of senescent cells regulates tumor 
formation and progression. The rate of methylation, a 
common gene repressive modification, increases with 
age. Therefore, methylation of tumor suppressor gene 

Fig. 2 Differences between young and aged TME and senescence-induced factors. One of the critical factors involved in age-related pathologies 
is immunosenescence defined as a significant decline in overall immune function. The subpopulations of effector immune cells including T 
cells, NK cells, macrophages, and DCs exhibit a dramatic decrease in cytotoxic activity during the senescence. Age-related immunosenescence 
plays a key role in promoting tumor formation and accumulation of SASP-secreting cells; the SASP-related decreases in effector immune cell 
function can also induce tissue-specific switching toward more immunosuppressive cell populations. In the elderly, immunosuppressive MDSCs 
and Tregs are significantly increased in aged tissue and blood; besides, neutrophils and macrophages appear to switch phenotypically toward 
immunosuppressive N2 and M2 states, both of which have been shown to promote tumorigenesis of various cancer types, while more direct 
evidence on the involvement in age-related tumorigenesis is warranted. The accumulation of SASP stromal components results in inflammaging 
that disrupts acute inflammatory response toward malignant tissue, induces infiltration of immunosuppressive MDSCs and Tregs, and improves 
secretion of anti-inflammatory components such as cytokines, chemokines, and inflamma-microRNAs. Inflammaging seems to downregulate 
antitumor activity in aged tissues. NK cells, natural killer cells; DCs, dendritic cells; SASP, senescence-associated secretory phenotype; MDSCs, 
myeloid-derived suppressor cells; Tregs, regulatory T cells; ARG1, arginase 1; CRP, C-reactive protein; ECM, extracellular matrix; GM-CSF, granulocyte–
macrophage colony-stimulating factor; IFN-γ, interferon-γ; IL, interleukin; ROS, reactive oxygen species; TGF-β, transforming growth factor-β; TNF, 
tumor necrosis factor (Mainly from https:// doi. org/ 10. 1038/ s41568- 019- 0222-9 [3])

https://doi.org/10.1038/s41568-019-0222-9
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promoters, such as the VHL promoter, has been sug-
gested to contribute to angiogenesis, thereby promot-
ing tumors, and hypermethylated cells prefer to undergo 
oncogenic transformation [49, 50].

In addition to changes at the genetic level, cytoplasmic 
alterations are involved in aging and tumors. Reactive 
oxygen species (ROS) are byproducts of mitochondrial 
electron transfer in aerobic cells. High levels of ROS lead 
to cell damage and increase genomic instability to induce 
oncogenic functions [51]. Studies have shown that dur-
ing aging, dysfunctional mitochondria gradually accu-
mulate, and deleterious events, including membrane 
potential reduction and proton leakage, eventually lead 

to increased ROS levels [7]. Moreover, MAPK, PI3K, 
and STAT3 can be regulated by ROS, which promotes 
cell proliferation and survival, as has been discovered in 
breast cancer, lung cancer, pancreatic cancer, and other 
malignant tumors [52]. In addition, changes in mito-
chondria cause corresponding changes in AMP/ATP, 
AMP/ATP, and NAD+/NADH ratios, leading to cell 
cycle arrest, NF-κB activation, and other changes that are 
considered to be important to tumor formation [7]. In 
addition, the endoplasmic reticulum is an important sub-
cellular organelle in lipid synthesis and protein synthe-
sis, and the unfolded protein response (UPR) is triggered 
when excessive ROS levels cause protein misfolding. In 

Table 2 The role of SASP in tumor microenvironment

SASP senescence-associated secretory phenotype, OIS oncogene-induced senescence, HFD high-fat diet, TIS therapy-induced senescence, EMT epithelial–
mesenchymal transition, MDSC myeloid-derived suppressor cells, NKT natural killer T cell (Mainly from https:// doi. org/ 10. 1002/ 1878- 0261. 13268)

Cancer type Senescent cell Senescence inducer Major roles of SASP SASP factors

Protumorigenic SASP hepatocyte hepatocyte OIS (N-Ras) (1) myeloid cell 
recruitment; (2) MDSC 
differentiation

CCL2

hepatocyte hepatic stellate cell HFD antitumor immunity of 
CD8+ T cells impair-
ment

PGE2

lymphocyte lymphocyte TIS (doxorubicin) stemness induction not reported

mammary epithelial cell mammary epithelial cell TIS (doxorubicin) mitogenic support Eotaxin, CXCL5, Rantes

mammary epithelial cell fibroblast DNA damage (bleo-
mycin)

cancer invasion promo-
tion

MMPs

mammary epithelial cell mammary epithelial cell OIS (HER2) cancer metastasis 
promotion

not reported

melanocyte fibroblast TIS (CDK4/6 inhibitor) myeloid cell recruit-
ment

not reported

mesothelial cell mesothelial cell TIS (pemetrexed) (1) EMT induction; (2) 
chemoresistance

not reported

prostate epithelial cell prostate epithelial cell TIS (PTEN loss) myeloid cell recruit-
ment

CXCL1, CXCL2

prostate epithelial cell prostate epithelial cell TIS (PTEN loss) MDSC recruitment not reported

thyroid follicular cell thyroid follicular cell OIS (BRAF) anoikis resistance CXCL12

Antitumorigenic SASP hepatocyte hepatocyte OIS (N-Ras) immune-related senes-
cent cell clearance

IL-1α

lymphocyte lymphocyte TIS (cyclophosphamide) cellular senescence 
reinforcement

not reported

melanocyte melanocyte TIS (AURKA or CDK4/6 
inhibitor)

lymphocyte recruit-
ment

CCL5

melanocyte melanocyte TIS (Aurora inhibitor) cellular senescence 
reinforcement

not reported

osteoblast osteoblast TIS (radiotherapy) NKT cell recruitment IL-6

pancreatic ductal cell pancreatic ductal cell TIS (MEK and CDK4/6 
inhibitors)

(1) vascularization 
promotion (2) drug 
delivery improvement 
(3) endothelial cell acti-
vation (4) CD8+ T-cell 
accumulation

VEGF, CCL5, CXCL1, IL-6

hepatocyte hepatocyte OIS (N-Ras) (1) myeloid cell recruit-
ment (2) macrophage 
differentiation

CCL2

https://doi.org/10.1002/1878-0261.13268
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normal senescent cells, the UPR drives cell death, but in 
breast cancer, the UPR prevents cell death and promotes 
cancer cell immortality [53]. In addition, centrosome dys-
function may regulate aging, tumorigenesis, and tumor 
immunity [54].

In addition, the role of the cGAS-STING signaling 
pathway, constituted by cyclic GMP-AMP synthase 
(cGAS) and stimulator of interferon genes (STING), 
has been extensively studied. cGAS recognizes DNA in 
the cytoplasm and activates IFN expression and NF-κB 
through multiple cascade reactions. The effects of 
cGAS-STING on tumors are diverse. On the one hand, 
the interferon produced by short-term cGAS-STING 
activation can recruit dendritic cells and CD8+ T cells 
and promote their maturation. After tumor cells are 
killed, the tumor-associated antigens that are released 
are by surrounding DCs, which will further enhance 
the immune response, thus forming a positive feedback 
mechanism [55]. A positive correlation between cGAS 
expression and survival has been reported in human 
lung adenocarcinoma patients [56]. On the other hand, 
long-term cGAS-STING activation may promote tumo-
rigenesis. cGAS-STING can assist in the formation of the 
SASP, ultimately promoting the epithelial–mesenchymal 
transition (EMT), tumor progression, and invasion [57]. 
Another study demonstrated that activation of STING 
might disrupt calcium homeostasis in T cells, leading 
to cell death [58]. De Cecco found that senescent cells, 
loss of the nuclear lamin protein Lamin B1 and chroma-
tin fragments located in the cytoplasm can activate the 
cGAS-STING pathway. In the same study, high activity 
of long-interspersed element-1 (LINE-1) reverse-tran-
scribes mRNA into cDNA and activates cGAS-STING 
[59]. Additionally, infection with various DNA viruses, 
such as human cytomegalovirus and hepatitis B virus, 
which are common infections in elderly individuals, can 
activate the cGAS/STING pathway [60]. This process, in 
turn, modulates the tumor microenvironment in elderly 
individuals. The aforementioned evidence suggests that 
cells engage in unique mechanisms to inhibit tumor for-
mation during the early stages of aging and that when 
inactivated or mutated, these mechanisms may in turn 
promote tumor formation and progression.

The SASP can reinforce senescent growth arrest and/
or promote immune surveillance to suppress cancer [21]. 
Oncogene-induced and therapy-induced senescent cells 
secrete the inflammatory cytokine IL-1α, which is a cru-
cial SASP initiator and regulator [61]. IL-1α facilitates an 
autocrine inflammatory response through the activation 
of NF-κB, which leads to the transcription of IL-6 and 
IL-8 [61]. Subsequently, these inflammatory cytokines 
reinforce senescence-related proliferation arrest through 
the increased production of reactive oxygen species and 

a sustained DNA damage response, particularly in onco-
gene-induced senescent cells [61, 62]. In addition, IL-1α 
mediates paracrine senescence in neighboring cells to 
suppress tumor progression [63], and IL-1α, IL-6, and 
IL-8 mediate the recruitment of M1-like macrophages, T 
helper 1 cells, and NKs to the TME. Infiltrative immune 
cells drive the elimination of senescent tumor cells and 
may also eliminate non-senescent cancer cells via a 
bystander effect [35, 64]. Some immune cells, such as T 
helper 1 cells, can also trigger senescence in cancer cells 
through the secretion of inflammatory cytokines [65]. 
The SASP of senescent cancer cells is thought to initially 
suppress tumorigenesis but to be mostly detrimental in 
the long term [38, 66]. In an in vivo study, proliferation 
and tumorigenesis of both premalignant and malignant 
epithelial cells were increased when they were coin-
jected with human senescent fibroblasts into mice [67]. 
Another study showed that MMPs secreted by senescent 
human fibroblasts were critical for promoting tumo-
rigenesis [68]. Prominent SASP factors are involved in 
ECM processing and degradation, which can promote 
tumor cell proliferation and invasion [69]. Additionally, 
MMPs promote the release of many other cytokines and 
growth factors supporting tumorigenesis, such as vascu-
lar endothelial growth factor (VEGF), which promotes 
tumor-driven angiogenesis [70], and the chemokine 
CXCL1, which promotes tumor growth [71].

IL-6 and IL-8, known SASP-associated factors, medi-
ate the protumorigenic effects of senescent cells because 
they establish a chronic inflammatory TME that triggers 
tumor growth [28, 72]. In addition, IL-6 and IL-8 drive 
the transcription of genes encoding MMPs and drive the 
epithelial-to-mesenchymal transition, thereby promoting 
tumor invasiveness [73–76]. IL-6 also recruits myeloid-
derived suppressor cells (MDSCs) to the TME to mediate 
the protumorigenic effects of senescent cells, which block 
IL-1α signaling and antagonize senescence in cancer cells 
[77, 78]. In addition, MDSCs block immune surveillance 
by inhibiting CD8+ T cells and NK cells through the 
actions of IL-6 and CCL2, respectively [64, 78, 79]. How-
ever, the protumorigenic and antitumorigenic effects of 
senescent cancer cells are likely mediated by a compre-
hensive interaction between multiple SASP factors and 
the immune TME. Furthermore, the effects of SASP fac-
tors are likely impacted by tissue type, residual immune 
cells, inflammatory networks, and senescence inducers. 
Therefore, it is difficult to precisely identify whether the 
effects of senescent cancer cells are protumorigenic or 
antitumorigenic.

Several studies have demonstrated that senescence-
induced therapies are associated with complex repro-
gramming that ultimately drives stemness in both tumor 
and normal cells [40, 41]. Moreover, senescent cancer 
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cells that are not eliminated by the immune system can 
spontaneously resist proliferation arrest under certain 
circumstances and reenter the cell cycle [40, 80]. A study 
confirmed that oncogene-induced senescent cells entered 
the cell cycle, particularly by restoring telomerase activ-
ity through the derepression of the telomerase reverse 
transcriptase (TERT) gene [81]. Senescent cells show 
WNT-dependent enhanced growth and tumor-initiating 
potential to resume growth [40]. This senescence-associ-
ated stemness results in a highly aggressive nature driven 
by WNT pathway activation independent of WNT ligand 
binding via the SASP and is enriched in relapsed tumors 
[40]. Additionally, the expression of β-catenin in pitui-
tary stem cells provokes the acquisition of a senescence 
signature and the SASP and induces craniopharyngioma 
tumors in a paracrine fashion. Importantly, mice with a 
decreased senescent cell burden and an attenuated SASP 
response exhibited decreased tumorigenic potential, indi-
cating that the SASP may promote tumor induction [82]. 
Extracellular vesicles and exosomes, components of the 
SASP, have also garnered considerable interest in the field 
of senescence, and small vesicles from senescent cells can 
promote tumors [83–85]. The complex and often unpre-
dictable role of senescence-inducing therapies is derived 
from the dual role of the SASP. The effect of the SASP 
is highly dependent on context and cell type and varies 
during different stages of cancer progression [21, 38, 86]. 
Specifically, SASP-mediated immunosuppression pro-
motes tumor growth in later stages of tumor progression, 
while the SASP is a tumor suppressor in the early stages 
of tumorigenesis [64]. In addition, TP53 may be involved 
in determining whether the senescence-induced inflam-
matory response suppresses or promotes tumorigenesis 
[87]. In the long term, the SASP of senescent tumors is 
suggested to be primarily detrimental to neoplastic 
growth, therapy resistance, immunosuppression, metas-
tasis and angiogenesis [67, 78, 87, 88]. However, senes-
cent cancer cells potentially remain dormant for a long 
time, evading therapy and posing a risk for tumor relapse 
[15, 89, 90]. It has also been revealed that many genotoxic 
chemotherapies lead to debilitating side effects caused by 
senescence induced in normal tissues. Normal senescent 
cells remain present in the long term and promote local 
and systematic inflammation caused by the SASP, which 
results in or exacerbates chemotherapy side effects [88]. 
Accordingly, it may be helpful to combine senescence-
promoting therapy with senolytic therapy in the context 
of cancer. In addition to direct targeting of cancer cells 
by delivering a one-two punch and decreasing the side 
effects of chemoradiotherapies on normal tissues, seno-
lytics may eliminate incipient preneoplastic senescent 
cells or other senescent cells in the TME to suppress the 
detrimental effects of the SASP [66, 72].

Changes in cytokines and their receptors
The tumor microenvironment consists of a variety of 
cytokines that can affect tumor progression, metastasis, 
and the formation of an immunosuppressive microen-
vironment. In aging patients, changes in the crosstalk 
between cytokines and immune cells characterize a 
unique aging tumor microenvironment [91] (Fig. 3).

Formation of senescence and SASP
Cellular senescence serves as a powerful protective 
mechanism against tumorigenesis [15]. The activation 
of oncogenes such as HRASV12 triggers growth arrest, 
referred to as oncogene-induced senescence (OIS), which 
was first reported in 1997 [10, 13, 92, 93]. In 2005, the 
concept of OIS was extended to multiple carcinogen-
esis models, including lymphomas, prostate cancer, lung 
adenomas, hyperplastic pituitary gland, and melanocytic 
nevi [93–97]. Melanocytic nevi induced by BRAF muta-
tions gradually remain senescent for decades, prevent-
ing their progression into melanoma [95]. Similarly, the 
lack of tumor suppressor genes, such as PTEN, can also 
induce senescence in the primary prostate epithelium, 
referred to as PTEN loss-induced cellular senescence 
(PICS) [94]. In older adults, the composition of cytokines 
and immune cells changes because of SASP acquisition. 
The acquisition of the SASP involves multiple mecha-
nisms and regulators. Time-dependent damage accel-
erates SASP acquisition. Several studies have shown 
that + transformation of the SASP involves many signal-
ing pathways [3]. The deletion of P53 and the upregulated 
expression of RAS aggravate the paracrine activity of the 
SASP [28]. Moreover, the three-dimensional structure 
of the genome in senescent cells enhances senescence 
activation enhancer (SAE) activity through the action 
of the transcription factor CCAAT/enhancer-binding 
protein α (C/EBPα), thereby promoting the secretion 
of SASP factors [98]. DDR-dependent SASP acquisition 
is frequently accompanied by chromatin remodeling, in 
which histone deacetylase (HDAC) might be involved 
[99]. The SASP in senescent cells also damages the DNA 
of adjacent cells and induces their senescence, causing 
senescence-induced senescence [100, 101]. In addition, 
OIS is mediated by activation of the INK4A-RB pathway, 
independent of p53 activation and DNA damage signal-
ing [10, 92, 102]. Moreover, senescence can be triggered 
by other oncogenic pathways, such as the activated MYC 
pathway, which increases the levels of the ARF-encoding 
transcript at the CDKN2A locus, resulting in stabilized 
p53 [103] and hyperactivated WNT-β-catenin signaling, 
leading to the DNA damage response via the p53-p21 
pathway [104–108].

Malignant cells can be forced to enter a senescent 
state via therapy-induced senescence, and conventional 
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therapeutics such as chemotherapy or radiotherapy 
show the ability to induce senescence in cancer cells [9, 
36, 37, 109–124] (Table  3). In a chemotherapy-induced 
senescent state, apoptosis is induced when higher doses 
of drugs are applied [125–127]. Mechanistically, many 
chemotherapies cause DNA damage in cancer cells, 
which triggers senescence through ATM-CHK2 and 
ATR-CHK1 kinase-mediated activation of the intercon-
nected p53-RB pathways [128, 129]. Topoisomerase I and 
II inhibitors, such as doxorubicin, have been shown to 
dysregulate the re-ligation of DNA strands after supercoil 

unwinding, leading to large-scale DNA damage and 
increasing expression of p53 and its downstream targets 
CDKN1A and SERPINE1, thereby inducing senescence 
[130–132]. Platinum-based therapies, including cispl-
atin, carboplatin, and oxaliplatin, induce DNA dam-
age through DNA cross-linking, leading to senescence 
induction [133, 134]. Alkylating agents such as temozo-
lomide, dacarbazine, and busulfan cross-link with DNA 
by reacting with atoms in DNA, triggering a DNA dam-
age-mediated senescence response [135]. Cell cycle dys-
function caused by microtubule inhibitors (paclitaxel and 

Fig. 3 The formation of SASP in senescent cell. The formation of SASP undergoes multiple mechanism and regulator; many time-dependent 
damage will accelerate the formation of SASP. Actually, transformation of SASP involves many signaling pathways. The deletion of p53 and the 
upregulated expression of RAS aggravate the paracrine activity of SASP. Besides, the three-dimensional structure of the genome in senescent 
cells can enhance the SAE activity through the transcription factor C/EBPα/β, thereby promoting the secretion of SASP. DDR-dependent SASP 
activation accompanies by chromatin remodeling frequently, in which HDAC might be involved. SAE SASP of senescent cells also damages the 
DNA of adjacent cells and induces senescence, thereby forming senescence-induced senescence. The cytoplasm alternation is also involved in 
aging and tumors. ROS is a by-product of mitochondrial electron transfer in aerobic cells. High levels of ROS will lead to cell damage and increase 
genomic instability to exert oncogenic functions. In the process of aging, dysfunction mitochondria will gradually accumulate, and events including 
membrane potential reduction and proton leakage will occur, eventually leading to increased ROS levels. Not only that, changes in mitochondria 
will cause corresponding changes in AMP/ATP, AMP/ATP, and NAD + /NADH ratios, thereby leading to cell cycle arrest, NF-κB activation, and 
other changes that are considered important to tumor formation. Transcribed by NF-κB and other factors, and translated in an mTOR-dependent 
manner contributing to the robust secretion of SASP-related inflammatory cytokines, chemokines, angiogenic growth, and ECM-degrading 
signals. SASP, senescence-associated secretory phenotype; DDR, DNA damage response; SAE, senescence activation enhancer; C/EBPα/β, CCAAT/
enhancer-binding protein α/β; HDAC, histone deacetylase; ATP, adenosine triphosphate; AMP, adenosine monophosphate
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docetaxel) may cause extensive DNA damage and trigger 
a p53-p21 pathway-facilitated senescence response [136, 
137]. Methotrexate and gemcitabine induce genotoxic 
stress by blocking DNA synthesis, thereby inducing cel-
lular senescence [138, 139]. Radiotherapy is widely used 
for the treatment of multiple cancer types and can induce 
irreparable DNA damage response that activates ATM or 
ATR and p53-p21 pathway-mediated apoptosis and cel-
lular senescence [129, 140, 141]. Since radiotherapy is 
applied locally, the tissue surrounding a tumor shows an 
increase in senescent cell burden that results in immuno-
suppressive effects [38, 78, 142].

Upregulation of cyclin-dependent kinase (CDK) inhibi-
tor proteins such as INK4A and p21 to induce cell cycle 
arrest is a hallmark of senescent cells [143]. CDK4/6 are 
important for the progression from the G1 phase to the S 
phase of the cell cycle and are overexpressed in a number 
of human cancers. CDK4/6 mimic the function of INK4A 
and induce senescence in various cancer cells [144–151]. 
A triple CDK2/4/6 inhibitor (PF-06873600) that is still 
being investigated for the treatment of breast cancer 
has been shown to be a potential senescence inducer 
in various cancer models [152, 153]. Inhibition of DNA 
replication through small-molecule inhibition of the 
kinase CDC7, for example, by XL413 or TAK-931, leads 
to senescence induction in liver cancer cells. This senes-
cence response has been observed only in TP53-mutant 
tumors, presumably because TP53-mutant tumors retain 
the ability to be arrested in the cell cycle upon CDC7 
inhibition [124].

Numerous compounds inhibiting telomerase complex 
action have been identified as candidates for anticancer 
therapy [154], among which BIBR15 and GRN163L are 
potent telomerase inhibitors that greatly promote senes-
cence and suppress cancer cell proliferation [155–157]. 
However, the use of GRN16 for senescence-promoting 
therapy should be examined further, as it also induces 
apoptosis in pancreatic cancer cells [157]. Vorinostat, a 
histone deacetylase inhibitor, upregulates the expression 
of multiple tumor suppressor genes, such as CDKN2A 
and TP53, and induces senescence via these two major 
pathways in various cancer cell lines [158, 159]. In mouse 
models, genetic restoration of Trp53 resulted in the 
regression of sarcomas and liver carcinomas by inducing 
a senescence response, and an apoptotic response was 
observed in lymphoma regression [160–162]. Addition-
ally, senescence induction has been shown to be accom-
panied by the acquisition of the SASP and recruitment of 
immune cells into tumors, suggesting efficient clearance 
of senescent cancer cells [160]. The MDM2 inhibitors 
nutlin-3 and RG7112 interact with p53-MDM2 and show 
promising results for inducing senescence in tumors 
retaining wild-type TP53 in human cancer cell models 

[163–165]. Inactivation of PTEN shows the potential for 
use in senescence-promoting cancer therapy in vitro and 
in mice [166]. The PTEN status in vitro has been shown 
to be a crucial determinant of glioma cell fate after ion-
izing radiation exposure; PTEN-mutant cells underwent 
premature senescence, while cancer cells expressing 
PTEN underwent apoptosis [167]. In addition, the inacti-
vation of PTEN resulted in p53-mediated senescence and 
suppression of tumorigenesis in mice [94]. While these 
genes are mediators in the senescence response of can-
cer cells, they are not essential for senescence induction 
in cancer [86].

Changes in association with immune molecules and cells
The SASP can affect the tumor microenvironment in 
many ways (Fig.  4). SASP components include immu-
noregulatory factors, including IL-6, IL-8, and MCP-2; 
growth factors, including HGF and IGFBP; and exfoliated 
cell survival factors, including ICAMs and UPAR [28]. As 
an autocrine proinflammatory factor, Il-1α binds to cell 
receptors to form a positive feedback mechanism medi-
ated through the NF-κB pathway, which might main-
tain the SASP and the secretion of IL-1β, IL-6, and IL-8 
[168, 169]. A previous study showed that IL-6 functioned 
through complex mechanisms. Under oncogenic stress, 
IL-6 is an autocrine factor that inhibits cell proliferation 
via cell cycle arrest. However, when acting as a paracrine 
factor, IL-6 promotes angiogenesis, which contributes 
to tumor progression [29]. Other SASP components, 
namely, chemokines, function in the tumor microenvi-
ronment. Multiple studies have confirmed that CCL5 
inhibits the activation of Th1 cells and cytotoxic T cells 
and recruits MDSCs, T-regulatory cells (Tregs), and mes-
enchymal stem cells (MSCs), which reduce the killing 
ability of T cells and NK cells [170]. Moreover, CXCL1 
induces adjacent cell senescence and immune escape 
through paracrine signaling [171]. These secreted immu-
noregulatory factors might lead to chronic inflammation 
and contribute to the transformation of an immunosup-
pressive microenvironment by regulating immune sys-
tem cell infiltration [160].

From an overall perspective, aged individuals are often 
in a state of chronic inflammation. Obesity, changes in 
intestinal microbes, and tissue degradation exacerbate 
this chronic inflammation. Compared with those in 
young people, the serum levels of IL-1, IL-6, IL-8, and 
TNF-α in aged people are significantly increased [172]. 
This chronic inflammatory condition and the interrelated 
pathways usually exert an immunosuppressive effect and 
can increase the risk of cancer [22, 173]. Increased IL-6 
and IL-8 levels can promote the EMT and tumor cell 
invasion [174]. The specific inflammatory environment 
also leads to the accumulation of Treg cells, Th2 cells, and 
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activated B cells, increasing the secretion of IL-4, IL-6, 
IL-10, IL-33, and TGF-β, which are important growth-
promoting factors [175].

In addition to molecular changes, changes in immune 
cell receptors, especially T-cell receptors, are important 
in the elderly tumor microenvironment. In contrast to 
highly expressed suppressing molecules in mice, the lev-
els of PD-1 and TIM-3 in human T cells were not sig-
nificantly changed, but CTLA-4 and LAG-3 were slightly 
elevated during senescence [176]. During aging, the 

proportion of CD8+ T cells that do not express CD28, 
a co-stimulatory molecule, increases, and this increase 
is accompanied by the upregulation of CD57 and killer 
inhibitor receptor (KIR) [177]. The immunoreceptor 
tyrosine‐based inhibitory motif (ITIM) domain protein 
(TIGIT), which is highly expressed in elderly CD8+ T 
cells, can exert an immunosuppressive effect on CD226 
by competing with the ligand CD155 [176]. In addition, 
the expression and activity of CD38, a key molecule in 
NAD + depletion, are upregulated with advancing age. 

Fig. 4 Components and potential effects of senescent cell in tumor. NF-κB signaling is activated in senescent cancer cells and elevates multiple 
production of IL-1α, IL-6, IL-8, CCL5, and growth factors like VEGF, FGF, PDGF, HMGB1, and MMP. To be detailed, IL-6, IL-8, CCL5, CXCL1, etc., help 
to recruit MDSCs to the TME to mediate protumorigenic effect of senescent cells, which block IL-1α signaling and antagonize the establishment 
of senescence in cancer cells. Simultaneously, MDSCs block immune surveillance by inhibiting CD8+ T cells and NK cells through IL-6 and CCL2, 
respectively, while IL-6 and IL-8 can recruit NK cells and T cells to reinforce immune surveillance. The ILs will spread senescence to surrounding 
cancer cells in a paracrine fashion, which further mediates tumor growth. The prominent SASP factors are involved in ECM processing and 
degradation, which can promote tumor cell proliferation and invasion. IL-6 secreted by senescent cancer cells or released from the ECM by MMPs 
recruits MDSCs, leading to an immunosuppressive TME. Moreover, the cleaved ECM components release growth factors such as VEGF, FGF, PDGF, 
and ILs that can promote tumor growth and EMT, promoting tumor metastasis. Additionally, MMPs also promote the release of many other 
cytokines and growth factors such as VEGF supporting tumorigenesis and chemokine CXCL1 to promote tumor growth. The SASP can stimulate 
blood vessel formation and vascular remodeling that contributes to tumor metastasis. Activated TLR4 promotes tumor progression in breast, 
prostate, and colon cancers and is associated with poor prognosis, but the antitumor activity is increased in skin cancers. TLR4 also recognizes 
HMGB1 and facilitates SASP phenotype formation. NF-κB, nuclear factor-κB; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; 
PDGF, platelet-derived growth factor; MMP, matrix metalloproteinases; IL, interleukin; TME, tumor microenvironment; MDSCs, myeloid-derived 
suppressor cells; NK cell, natural killer cell; SASP, senescence-associated secretory phenotype; ECM, extracellular matrix
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Activated CD38 may play an immunomodulatory role 
and has been considered a new immune checkpoint 
[178]. In addition to the aforementioned CD molecules, 
TLRs are involved in aging. The role played by TLR4 is 
tissue-specific. Activated TLR4 promotes tumor pro-
gression in breast, prostate, and colon cancers and is 
associated with poor prognosis but shows antitumor 
activity in skin cancers [179]. TLR4 recognizes HMGB1 
and facilitates SASP acquisition [180]. Experiments 
have shown that the expression of TLR4 is elevated in 
aging mice [181]. This may indicate that TLRs are also 
involved in changes in immune cells in the aged tumor 
microenvironment.

Changes associated with cell growth
During the aging process, molecules and receptors of 
growth factors exhibit significant functions and tissue 
specificity in various ways. GDF 15, an important growth 
factor in the SASP, promotes epithelial cell proliferation, 
migration, and invasion through the MAPK and PI3K 
signaling pathways, thereby promoting tumor progres-
sion [182]. In addition, in a family of receptor protein 
tyrosine kinases, ErbB receptors directly or indirectly 
interact with classical downstream pathways such as 
MAPK, PI3K, and JAK [183]. The regulatory effects of 
ErbB on tumor cell proliferation, progression, and inva-
sion have been widely studied in colorectal, breast, and 
lung cancers [184–186]. Among the ErbB family mem-
bers, ErbB-1 (EGFR) binds to EFG, another SASP com-
ponent, and promotes cell division [187, 188]. Moreover, 
clinical trials have revealed that aging is a risk factor 
for advanced lung cancer with EGFR mutant subtypes 
[189]. In vitro studies have also shown that p53 induces 
senescence by downregulating EGFR in multiple cell 
lines [190]. This finding is consistent with the opinion 
that aging prevents the growth of cells that are at risk of 
tumor transformation and thus inhibits tumorigenesis 
[191]. In addition, FGFR inhibitors have been reported 
to inhibit breast, gastric, and clonal cancers [192–194]. 
Ota et al. showed that FGFR promotes DNA-associated 
senescence, but loss of p53 and dysregulation of c-Myc 
reversed this effect and promote tumor transforma-
tion. However, in the same study, activation of FGFR 
can downregulate the expression of c-Myc, which may 
have suppressed tumor formation [195]. Additionally, 
FGFR may also act as a negative regulator of mesenchy-
mal stem cell senescence. Reduced expression of FGFR 
has been revealed in a variety of aging tissues [196]. By 
interacting with RACK1, FGFR promotes the degrada-
tion of p53 in lung squamous cell carcinoma, ultimately 
inhibiting tumor cell senescence [197]. By binding to 
FGFR, sulfated heparin prevents premature replicative 
senescence and ultimately prohibits p53 expression. The 

indirect depletion of surface sulfated heparin leads to cel-
lular senescence in tumors. Therefore, Jung et al. specu-
lated that FGFR initiates new tumor defense mechanisms 
by regulating premature senescence [198]. The evidence 
illustrates a regulatory role and increased complexity of 
growth factors in aging and tumorigenesis.

As an upstream and downstream molecule regulated 
in vivo, GH regulates the secretion of IGF-1, which con-
stitutes the GH/IGF-1 axis. As the corresponding hor-
mone receptors, GHR and IGFR play important roles in 
cell senescence and tumor formation. Most tumor cells 
express GH, which may indicate that the autocrine func-
tion of GH on tumor cells activates GHR more than GH 
secreted by the pituitary gland, thereby driving cancer 
progression [199]. Correspondingly, in patients lack-
ing GHR (Laron syndrome), the concentration of IGF 
in the patient’s serum is significantly reduced, but these 
patients are free from aging-related disorders and rarely 
develop tumors [200]. Similarly, overexpression of IGF-
1R has been observed in various tumors, such as those 
in thyroid cancer and breast cancer [201]. Additionally, 
these receptors may all be engaged in aging. Strous found 
that GH knockout significantly extended the lifespan of 
mice and delayed immune system-related aging. In addi-
tion, they observed the downregulation of the GH/IGF-1 
axis activity in elderly individuals [199]. Similarly, it has 
been confirmed that the lifespan of mice was significantly 
prolonged after heterozygous IGF-1R knockout [202]. 
A similar conclusion suggested that in individuals older 
than 100  years, the activity of IGF-1 is reduced, which 
may be mediated by IGF-1R mutation, and these individ-
uals exhibit profound anti-inflammatory characteristics. 
These two changes both depend on p53, which reduces 
the risk of tumor development [203, 204]. The activa-
tion of IGF-1R leads to the activation of PI3K, Ras-Raf, 
JAK/STAT3, and other pathways, ultimately upregulating 
p21, which promotes cell proliferation, survival, migra-
tion, and adaptation to hypoxia and inhibits autophagy, 
apoptosis, and anoikis [205]. Therefore, we speculate that 
IGFR may be involved in the forkhead pathway in cellular 
senescence and tumor formation. The ultimate fate of a 
cell may depend on which of the two states prevails. In 
formal theory, in the early phase, aging inhibits tumor 
formation by preventing the growth of cells [191]. In this 
process, cell surface receptors activate a variety of signal 
transduction pathways and engage in crosstalk with each 
other, ultimately affecting the activity of p53 and other 
key proteins. Intracellular receptors can also sense vari-
ous changes in senescent cells and ultimately participate 
in their regulation. All of these factors might reflect con-
stant competition between aging and tumor cells.
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Impact of senescence on the TME
The effects of the ECM
The tumor microenvironment matrix constitutes 
endothelial cells, fibroblasts, pericytes, adipocytes, 
immune cells, and the ECM, which is composed of col-
lagen, fibronectin, laminin, and elastin [3]. Matrix fibro-
blasts inhibit tumor cell proliferation [206]. The different 
cross-linking and arrangements of ECM proteins change 
the physical features of the ECM, such as its stiffness 
and mechanical force [207]. Moreover, through focally 
assembling integrin adhesion complexes, cells can sense 
changes in the ECM and regulate the cell cycle and 
energy metabolism via the FAK/Src, ILK-PINCH-parvin-
kindlin, and α-actinin-zyxin-VASP signaling pathways 
[208]. This molecular and supramolecular heterogeneity 
affects the infiltration and migration of cancer cells and 
angiogenesis [207]. Moreover, the ECM contains growth 
factors, including IGFS, FGFs, TGF-β, and HGF [209]. 
These stimulating factors can induce adipocytes, mesen-
chymal stem cells, pericytes, and other cells to transform 
cancer-associated fibroblasts (CAFs). Similarly, miRNA-
21 induces CAF formation via its inhibition of the Smad7 
pathway. These CAFs induce ECM remodeling by secret-
ing matrix metalloproteinase (MMP) [210, 211]. On the 
basis of the product levels of unique collagen and other 
ECM molecule genes, such as COL10A1 and COL4A1, a 
previous study showed that CAFs can be classified into 
multiple subtypes. These multiple CAF subtypes increase 
the complexity and heterogeneity of the tumor microen-
vironment [212].

Many time-related mutations accelerate normal stro-
mal cells, which are transformed into CAFs, contribut-
ing to immune cell regulation, angiogenesis, and ECM 
remodeling. The promotion of CAF activation may be 
a result of the impaired function of p53/p21 and CLS/
RBP-Jκ, a transcription factor in dermal fibroblasts, 
which functionally and physically interacts with p53 
in the Notch signaling pathway [213]. Activated CAFs 
upregulate the expression of VCAM-1 in adjacent tumor 
cells and promote the adhesion of monocytes. Several 
studies have shown that activated M2 macrophages 
might, in turn, promote the formation of CAFs, thus 
participating in crosstalk with malignancy factors in 
pancreatic cancer and neuroblastoma [214, 215]. CAFs 
also inhibit NK cells activate receptors on the surface of 
cells and killer particles [216] and recruit normal DCs 
to form IDO-producing regulatory dendritic cells [217]. 
Moreover, CAF cells stimulate miR21/Toll-like receptors 
through lactate to promote CD4+ T-cell polarization 
from Th2 to Th1 cells and maintain Treg cells [218–220]. 
The number of CD8+ T cells is reduced by CAF-upregu-
lated immune checkpoint molecules such as PD-1, which 
facilitates tumor cell immune escape [221]. Senescent 

fibroblasts express the nonclassical MHC molecule HLA-
E, which inhibits the immune response by interacting 
with NKG2A on the surface of NK cells and CD8+ cells 
[222].

In the aging tumor microenvironment, change in the 
ECM is an important factor. As other secreted SASP 
factors, MMP-1, MMP-3, MMP-10, and other MMP 
levels are elevated in the aging matrix, which contrib-
utes to ECM remodeling [3]. Through this increased 
MMP expression, senescent cells show reduced contact 
inhibition, facilitating cancer growth. Under the action 
of MMP, the collagen in the ECM undergoes fibrosis, 
accompanied by the destruction and reorganization of 
the elastin structure, composition alteration of laminin, 
and decreased hydration capacity of hyaluronic acid, 
eventually resulting in the loss in ECM mass and mois-
ture, increased fibrosis, and tissue dysfunction [223]. A 
study demonstrated that fibronectin inhibits tumor cell 
proliferation in the tumor microenvironment but plays 
the opposite role in the normal stroma. In the aging 
ECM, the expression of fibronectin is upregulated; how-
ever, due to hypoxia, mutations, nutritional deficiency, 
viral infections, and other adverse factors, structures 
often undergo misalignment [224]. The decline in heart 
function in old age enhances the chances of ECM [225]. 
In addition, the decline in NAD+ levels in senescent cells 
leads to increased stability of HIF-1α, which induces a 
pseudohypoxic state [226]. Activation of HIF-1α can 
mediate cancer cell invasion through the action of 
fibronectin [227]. Hypoxia can also change the stiffness 
of the ECM mediated through LOX, leading to immune 
cell infiltration and tumor cell migration [228–230].

Angiogenesis
In young individuals, angiogenesis vitally contributes 
to tumor progression. Previous studies have shown that 
solid tumors need enough blood to grow. When solid 
tumors are larger than 2 mm in diameter, new blood ves-
sels must be formed to maintain the blood supply; with-
out new vasculature, the tumor undergoes necrosis due 
to hypoxia [231]. In addition, angiogenesis is related to 
tumor cell invasion, immune cell infiltration, and chronic 
systemic inflammation.

In normal tumors, angiogenesis can be initiated in 
many ways, including vasculogenesis, sprouting angio-
genesis, and vasculogenic mimicry (VM) [232]. Vascu-
logenesis refers to endothelial progenitor cells (EPCs) 
differentiating into endothelial cells and de novo for-
mation of a primary blood vessel network. Sprouting 
angiogenesis refers to the proliferation and migration of 
existing vascular endothelial cells, which generate new 
capillaries, which is the process in embryonic develop-
ment, after birth and during tumor progression [233]. 
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Moreover, in the tumor microenvironment, a variety 
of angiogenic factors, including VEGF, FGF, and PDGF, 
promote angiogenesis [234]. In contrast to the two afore-
mentioned methods, VM does not depend on endothe-
lial cells [235]. Many studies have reported that VM is 
involved in a variety of tumors [236]. In the VM process, 
tumor cells are arranged into tubes and covered by gly-
coproteins to form blood vessels [232]. There is evidence 
to suggest that VM may be the blood supply source in 
early tumor progression and that these vessels are gradu-
ally replaced via vasculogenesis and sprouting angiogen-
esis in a later stage [237]. Regardless of the mechanism, 
angiogenesis is closely related to hypoxia. Under hypoxic 
conditions, the content of HIF-1α increases. Activated 
HIF upregulates the expression of VEGF, TGF, and other 
angiogenic factors; IGF, c-Myc, and other proteins asso-
ciated with cell survival and proliferation; and GLUT1, 
GLUT3, and other proteins that change cell metabolism 
and enhance adaptability [238]. Moreover, hypoxic con-
ditions can accelerate the EMT of tumor cells and the 
secretion of MMP, which leads to an incomplete vascular 
matrix that enables cells to migrate, thereby increasing 
the aggressiveness of tumor cells [239]. Circulating tumor 
cells (CTCs) originating from a primary focal point may 
die rapidly after entering the blood due to the shear force 
of the blood flow and anoikis [240, 241]. However, CTCs 
can interact with blood platelets, macrophages, lympho-
cytes, and other cells to prolong survival and immune 
escape [242]. In addition, a study demonstrated that the 
microvasculature may be a premetastatic niche formed 
by tumor cells before they enter the circulatory system 
[243].

In the aging tumor microenvironment, the change in 
angiogenesis mechanisms is diverse. A study showed 
that SRPX expression is increased in senescent cells 
and decreased in tumor cells, and SRPX itself promotes 
angiogenesis through the FAK pathway [244]. Thus, cells 
acquire the SASP during senescence. Among SASP fac-
tors, VEGF, PDGFA/B, FGF, and other secreted angio-
genic factors and CCL5, CXCL-1, Il-6, and other secreted 
proinflammatory factors may promote vascular remod-
eling [37]. Changes in miRNA expression during cell 
senescence may promote tumor metastasis. Mir-21 can 
inhibit the regeneration of endothelial cells and pro-
mote angiogenesis in vitro and in vivo, and it is secreted 
by CAFs in exosomes [210, 245]. In addition, previ-
ous reports have noted that exosomes carrying miRNA 
can regulate the microenvironment of a metastatic site, 
thereby promoting tumor colonization [211]. In addition, 
HDAC, which functions as part of the SASP, also contrib-
utes to vascular endothelial formation. Many studies have 
shown that HDAC6, HDAC7, and HDAC9 promote angi-
ogenesis by inducing endothelial cell migration, while 

HDAC5 exerts an antiangiogenic effect in endothelial 
cells [99, 246–248].

Moreover, angiogenesis in the tumor microenviron-
ment can be affected by changes in the aged physiological 
state. Previous studies have shown that with advanc-
ing age, the number of small arteries in certain tissues 
decreases, which decreases blood flow and in turn leads 
to the downregulation of Notch in endothelial cells [249]. 
As mentioned above, MMP9 is highly expressed in the 
heart during aging, causing collagen deposition and 
cross-linking [250]. ECM deposition can cause cardiac 
insufficiency, reduce angiogenesis and further reduce the 
blood supply to the whole body [225]. These mechanisms 
together reduce blood flow into the tumor microenviron-
ment, causing hypoxic and nutrient-deficient conditions, 
which activate HIF and other signaling pathways. More-
over, studies have shown that molecules including Il-4 
and CD163 secreted by M2-polarized macrophages can 
induce pathological angiogenesis, which may increase 
the blood supply to the tumor microenvironment [251]. 
In addition, CTCs can be cloaked with platelets, reducing 
the effect of the shearing force of the blood. Platelets can 
also support CTC adhesion to the vasculature and facili-
tate CTC immune escape [242, 252, 253]. In aging bone 
marrow, macrophages promote an increase in platelet 
hematopoietic stem cells through the action of Il-1, which 
ultimately increases the number of circulating platelets 
in mice [254]. These mechanisms together maintain the 
material supply to an aged tumor microenvironment.

Stromal population
The stromal TME within tissue is made up of various 
components, including fibroblasts, endothelial cells, 
pericytes, adipocytes, the ECM, and immune cells, and 
plays a major role in TME homeostasis. Fibroblasts are 
the most common stromal component; these cells are 
required for the synthesis of collagen and for the struc-
tural integrity of connective tissue and play key roles 
in wound healing and inflammation [255]. Their pre-
dominant mode in regulating many of these processes 
is through the secretion of soluble factors, including 
cytokines, chemokines, growth factors, enzymes, and 
structural components of the ECM [23, 38]. Given the 
complexity of different tissues, the TME plays a specific 
role in the regulation of the soluble factors secreted by 
fibroblasts along with their migratory and proliferative 
characteristics. The fibroblast renewal rate, defined as 
the sum of the total number and proliferative capacity 
of fibroblasts, greatly varies among different tissues, 
with factors such as local temperature, vascularization, 
mechanical stress, and hormonal responses contribut-
ing to the renewal rate [256]. Changes in fibroblasts 
during aging are likely to be different between organ 
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sites and often involve senescence. Senescence is a 
classic example of antagonistic pleiotropy, and the 
accumulation of senescent cells is a key pathologi-
cal feature associated with aging [257–260]. Cellular 
senescence is linked to many of the cellular processes of 
aging and can be a direct result of responses to intrin-
sic or extrinsic oncogenic stimuli; notably, many forms 
of senescence are not aging-related (e.g., oncogene-, 
replication-, stress- and therapy-induced) [261–263] 
(Fig. 5).

There are still some disputes on how the accumulation 
of senescent cells occurs in elderly individuals. It should 
be hypothesized that, as we age, a reduction in immune 

function decreases the recognition and clearance of these 
growth-arrested cells, which eventually results in their 
accumulation [264]. Typically, the SASP is believed to be 
made up of approximately 75 secreted factors, includ-
ing granulocyte–macrophage colony-stimulating fac-
tor (GM-CSF), IL-6, IL-8, and IL-10 [38, 260]. However, 
many of these secreted factors were identified in studies 
using oncogene-induced senescence models and may not 
necessarily reflect true age-induced senescence. While 
the mechanisms underlying age-related SASP transfor-
mation are still under investigation, many genetically 
engineered mouse models (GEMMs) have been key in 
determining their pathological and homeostatic role. 

Fig. 5 Potential risk factors for stromal cell senescence. Senescence can be induced in stromal cells with different signals from different avenues. 
Cancer cells can release cytokines and growth factors (IL-1α, TGF-β, CXCL1) that induce stromal cell senescence directly. Cancer cells can alternate 
TME via regulating metabolism, environmental stress, physical forces, and matrix disruption to indirectly induce stromal cell senescence. Different 
types of cancer therapy (i.e., chemotherapy, radiotherapy, immunotherapy, and personalized therapy) may have the possibility to induce paracrine 
senescence of cancer cell senescence and induce stromal cell senescence via DNA damage signal. Immune cell may emit diverse immune 
inflammatory factors to promote stromal cell senescence. Microbiota in the gut or TME can also cause stromal senescence by generating toxins and 
metabolites. The common cancer risk factors including alcohol, smoking, radiation, and genetic disease are associated with DNA damage signal to 
induce stromal senescence. Furthermore, other age-associated damage signals may arouse stromal senescence. TME, tumor microenvironment; 
CAFs, cancer-associated fibroblast (Mainly from https:// doi. org/ 10. 1016/j. trecan. 2022. 09. 002)

https://doi.org/10.1016/j.trecan.2022.09.002
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p16INK4A activation seems to be one of the important 
contributors toward senescence induction in cells [265], 
yet the contributions to age-related accumulation of 
senescent cells need more description. To be consistent, 
when modeled in vivo, its contribution toward senescent 
cell accumulation is described as more of a “molecular” 
form of aging as opposed to a “chronological” form [265]. 
The GEMM demonstrates that a dramatic accumulation 
of p16INK4A-expressing cells occurs across various tissues 
throughout the aging process and characterizes the path-
ological changes associated with the age-induced SASP 
in peritoneal macrophages, illustrating the potential for 
other stromal components. Fibroblasts contribute to 
many SASP-related pathologies, and studies have shown 
that tumor-associated fibroblasts undergo chromatin 
remodeling via histone deacetylase (HDAC) modulation 
to achieve a SASP irrespective of DNA damage [99, 266]. 
Recently, it was shown that LINE-1 retrotransposable ele-
ments are derepressed at the transcriptional level to elicit 
a type I IFN response, which contributes to the mainte-
nance of a SASP [59]. These findings further support the 
conclusion that dynamic changes within an aged TME 
play a key role in reprogramming cells toward a SASP.

Other TME components
Other senescent cell populations, such as endothelial 
cells, epithelial cells, immune cells, stem cells, and even 
certain tumor cells, play clear roles in modulating the 
TME by acquiring the SASP [21, 267]. Many examples 
have shown that senescent cell populations can contextu-
ally produce protumorigenic or antitumorigenic effects; 
however, direct age-related evidence for these effects 
within these cell types remains limited. A recent study 
based on a xenograft model with human BPLER triple-
negative breast cancer cells in nude mice found that 
tumors showed delayed onset, slower growth kinetics, 
and reduced metastasis in aged mice (> 10  months old) 
than in young mice (8–10  weeks old). Furthermore, a 
subset of tumor-infiltrating hematopoietic cells in young 
mice showed upregulated CSF1 receptor (CSF1R) expres-
sion and secreted the growth factor granulin to induce 
robust tumor growth and metastasis. Importantly, bone 
marrow-derived cells from young mice and transplanted 
into aged mice were sufficient to activate the tumor-sup-
portive TME and induce tumor progression.

Cellular senescence has been confirmed to be a key 
contributor to inflammaging in many age-related malig-
nancies [268, 269]. SASP acquisition in stromal cell 
populations results in the persistently increased secre-
tion of multiple inflammatory cytokines that maintain 
low adaptive immune response levels. Other age-related 
changes to the gut microbiota, obesity, and tissue degra-
dation also appear to drive the inflammaging response 

[22]. In total, these age-related processes appear to drive 
chronic inflammation by increasing systemic levels of 
IL-1, IL-6, IL-1α, IL-1β, IL-33, GM-CSF, IFN-γ, TNF, and 
C-reactive protein (CRP). All these factors contribute to 
multiple morbidities and mortalities in elderly individu-
als [22, 270]. Similar effects have also been observed with 
increased infiltration of immunosuppressive Treg cell 
populations in chronic inflammatory mouse models, 
mimicking the chronic inflammation that often precedes 
and may lead to certain malignancies such as melanoma 
and colorectal cancer [271]. Treg cells play a key role in 
maintaining tolerance to self-antigens and suppressing 
the induction and proliferation of effector T cells (such as 
CD4+ and CD8+ T cells) via the secretion of cytokines 
and enzymes [272]. Another study induced chronic, 
tumor-promoting allergic contact dermatitis (ACD) in 6- 
to 8-week-old mice by treating them with 1-fluoro-2,4-di-
nitrobenzene (DNFB) and found that IL-33 expression 
was key in inducing the transition from acute, tumor-
suppressing inflammation to chronic inflammation [271]. 
The number of Treg cells was significantly reduced in 
DNFB-treated IL-33-knockout mice, and knocking out 
IL-33R in Treg cells significantly reduced ACD-induced 
skin carcinogenesis. Interestingly, in colitis-induced colo-
rectal cancer, the IL-33-Treg cell axis was identified as a 
key driver of carcinogenesis. However, more evidence on 
the age-related effects of the IL-33-Treg cell axis in tumo-
rigenesis is needed [270, 273, 274].

Several microRNAs (miRNAs) termed identified in 
association with many human malignancies are called 
“inflamma-miRs” [275]. Age-related increases in miR-
19b, miR-21, miR-126, and miR-146a appear to drive the 
progression of many types of cancer, and possibly other 
diseases, through inflammaging [276]. miR-21 has been 
shown to be overexpressed in many malignancies and to 
reduce the expression of the potent anti-inflammatory 
factors IL-10 and TGF-β [277], but when binding to 
Toll-like receptor 8 (TLR8), it induces the secretion of 
the inflammaging cytokines IL-6 and TNF [278]. Immu-
nosenescence is another contributor to many age-related 
pathologies, including cancer. Immunosenescence is 
defined as the age-related dysregulation of the immune 
system, whereby subpopulations of effector immune cells 
and overall immune function decline. This process is a 
result of multiple factors, including thymic atrophy [279], 
a decrease in the number of naive T cells [280], a reduc-
tion in memory T-cell function [281], and decreased rec-
ognition of diverse antigens by T cells [282, 283]. Along 
with T-cell dysfunction, NK cells, macrophages, and den-
dritic cells, all of which play early roles in tumor-immune 
recognition and suppression, appear to undergo pheno-
typic decreases in cytotoxic activity as humans age [284–
287]. The key involvement of these processes in cancer 
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progression has been identified in a squamous cell carci-
noma (SCC) model of aging [288]. In GEMM models of 
conditionally expressed mutant HRAS in keratinocytes, 
aged mice (18–22 months) developed SCC more quickly 
than young mice (2–4 months). Molecular analyses of the 
immune system of the aged mice revealed a shift toward 
a protumorigenic T helper 2 cell anti-inflammatory 
response, as well as increased expression of inhibitory 
programmed cell death ligand 1 (PD-L1) and senescence-
associated β-galactosidase on effector immune cells in 
the dermis.

Age-induced immunosenescence is largely mediated 
by effector T cells and other immune cell types required 
for antitumor immunity (Fig.  6). Changes in these cells 
have been hypothesized to induce a shift toward the acti-
vation and infiltration of more immunosuppressive cell 
populations in elderly individuals, which is important to 
their increased predisposition to cancer cell invasion and 

metastasis [289]. The number of M2 tumor-associated 
macrophages (TAMs), which are negatively associated 
with tumor immunity, is significantly higher in the spleen 
and bone marrow of aged mice (> 24–28  months old) 
[290]. Additionally, stimulation of macrophages isolated 
and cultured from aged mice in mesothelioma or lung 
carcinoma cell-derived culture supernatants increased 
the levels of the M2-derived immunosuppressive 
cytokine IL-4. Stimulation of M2 TAMs toward switch 
to an M1 proinflammatory phenotype by treating aged 
mice with a combination consisting of an IL-2 agonist 
and anti-CD40 therapy reduced immunosuppressive IL-4 
and IL-10 expression and inhibited tumor growth [291]. 
While the binary M1/M2 classification of macrophages 
has been hotly debated, a large amount of evidence sug-
gests that M2-like immunosuppressive macrophages 
promote tumor progression in an aging context [291]. 
TAMs have also been demonstrated to play key roles in 

Fig. 6 Biological function and effect of senescent immune cells. A T-cell senescence may be activated by soluble factors secreted by cancer cells, 
Tregs, and occur during the aging process. The senescence markers such as p16, SA-βGal are elevated, co-stimulatory receptors (CD27, CD28) are 
decreased and CD57 is increased. Senescent T cells may have poor immune function and reveal immune suppressive TME. B p16 and SA-βGal 
highly expressed, senescent macrophages may enhance phagocytic activity or increase macrophage polarization by transferring M2 into M1. C 
In senescent MDSCs, p16 and p21 are highly expressed and upregulate the expression of the chemokine receptor CX3CR1, which mediates the 
recruitment of MDSCs to tumor site. Tregs, regulatory T cells, MDSCs, myeloid-derived suppressor cells (Mainly from https:// doi. org/ 10. 1016/j. trecan. 
2022. 09. 002)

https://doi.org/10.1016/j.trecan.2022.09.002
https://doi.org/10.1016/j.trecan.2022.09.002
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establishing a premetastatic niche in the liver by secreting 
CXCL1 and inducing the recruitment of MDSCs, which 
are necessary for the efficient formation of colorectal 
cancer liver metastases [292]. p16Ink4a and p21Waf1/Cip1 
could suppress tumor progression by inducing cellu-
lar senescence, the deletion of p16Ink4 and p21Waf1/Cip1 
reduces CX3CR1 expression and inhibits monocytic-
MDSCs (Mo-MDSCs) accumulation in tumors express-
ing CX3CR1, hence suppresses the tumor proliferation in 
mice model. The regulation of Mo-MDSCs is a valuable 
strategy to inhibit tumor progression [293]. More direct 
evidence on the systematic effects of M2 TAMs is war-
ranted in the future.

Neutrophils undergo immunosenescence throughout 
aging, and they have been confirmed to infiltrate injured 
tissue in elderly people [294]. Studies have shown that 
neutrophils in aged patients and mice produce more anti-
inflammatory cytokines than their younger counterparts 
[295]. Neutrophils are well-characterized regulators that 
mediate tumor progression through proinflammatory 
effects in tumor models of young mice; however, sub-
populations of anti-inflammatory “N2 tumor-associated 
neutrophils (TANs)” have recently been implicated in 
many kinds of cancers [296, 297]. Studies conducted 
with young mice revealed that the number of immuno-
suppressive N2 TANs is systematically increased in aged 
patients and that they exhibit a function similar to that 
of MDSCs [298]. Nevertheless, direct age-related investi-
gations into N2 TAN involvement in the TME should be 
performed.

Many studies suggest a dramatic increase in Treg cell 
numbers and function in age-related pathologies and in 
organs such as the lymph nodes and spleen [299–302]; 
however, other reports showed no change in Treg cell 
numbers or function or their reduced contribution to 
other aged tissues and cancers [303–305], suggesting 
that Treg cells may play a context-specific role in differ-
ent TMEs and cancer environments. Furthermore, Treg 
cell recruitment also appears to be a significant factor 
in the establishment of the premetastatic niche in many 
cancer types [306]. Nevertheless, whether the age-related 
increases in the number of Treg cells that is observed sys-
tematically in certain mouse models are directly linked 
with increases in age-related metastasis remains unclear. 
MDSCs exhibit a consistent increase in human blood 
during aging [307] and in the bone marrow and lymphoid 
organs of 17- to 19-month-old mice [308, 309]. Regres-
sion within young mice harboring breast cancer corre-
lated with significant effector T-cell infiltration, whereas 
aged mice showed significantly increased numbers of 
MDSCs in the TME. Importantly, MDSCs are among 
the immune cell types most closely associated with the 
formation of the premetastatic niche in cancer [310]. 

Stromal senescence significantly increased the numbers 
of immunosuppressive MDSCs and Treg cells adjacent to 
senescent populations in healthy mice, primarily via the 
secretion of IL-6 [78]. These studies additionally suggest 
that the accumulation of senescent stromal cells is suf-
ficient to establish a tumor-permissive chronic inflam-
matory TME that allows tumors to grow and progress 
unabated by the immune system. Age-related increases 
in the numbers of systemic MDSCs and acceleration of 
other age-related processes, such as inflammaging and 
ECM modulation, may directly link MDSCs, Treg cells, 
and other immunosuppressive cell subpopulations with 
age-related cancer predisposition and premetastatic 
niche formation. Details on the roles played by immu-
nosuppressive immune cell types in these processes are 
needed. In prostate cancer, effector T cells and proin-
flammatory cytokines appear to contribute to increases 
in tumor growth. Prostate fibroblasts cultured from 
young (< 55 years old) and aged (> 65 years old) healthy 
individuals showed that the aged fibroblasts secrete a 
greater number of cytokines and interleukins, which 
promote the growth of epithelial cells and may affect the 
function of immune cells [311]. Another study on pros-
tate cancer showed that CD3+, CD4+, and CD8+ T-cell 
infiltration exerts a protumorigenic effect and is associ-
ated with tumor growth [312]. These findings suggest 
that effector versus immunosuppressive cell infiltration 
in the TME with advancing age depends on the context 
and is related to tumor growth and premetastatic niche 
formation.

Aging and potential response to therapy
The treatment for cancer in elderly patients is still chal-
lenging because age-related health conditions often 
leave clinicians in a dilemma, as it is frequently unclear 
whether potentially beneficial therapies can be safely 
administered at standard dosages and will improve the 
prognosis or whether potential side effects will likely 
affect the patient’s quality of life (QoL). Approximately 
50% of all cancers are diagnosed in patients over 65 years 
old, and this percentage may increase to 70% as life 
expectancy continues to increase, but survival data from 
clinical trials for patients above this age are relatively rare 
[313]. In fact, 40% of patients enrolled in cancer trials 
are over 65 and fewer than 10% are older than 75 years; 
therefore, more evidence is required to facilitate clinical 
management for elderly cancer patients. Recent advances 
in understanding the mechanisms of senescence, the aged 
TME, and responses to therapy will yield crucial knowl-
edge to allow more efficient targeting and less-intensive 
treatment of different cancer types in elderly patients. In 
the following section, we provide descriptions of clinical 
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therapy for patients presenting with both cellular senes-
cence and cancer.

Chemotherapy
Chemotherapy is a nonspecific, aggressive treatment 
that results in the targeting of fast-growing malignant 
cells; however, chemotherapy causes many side effects 
associated that can often be life-threatening in elderly 
individuals. A recent study showed that chemotherapy-
induced senescent fibroblasts within mice caused a con-
sistent inflammaging response, and the elimination of 
these fibroblasts significantly decreased both short-term 
and long-term side effects of chemotherapy-induced 
cytotoxicity, decreased the possibility of cancer recur-
rence and reduced the extent of cancer metastasis [88]. 
Many similar studies have suggested that chemotherapy 
may be initially beneficial; however, in many cases, it 
may later contribute to accelerated aging of the TME and 
increase residual disease in patients [314]. Chemotherapy 
can also induce off-target effects that include stem cell 
pluripotency decline and bone marrow exhaustion. Stud-
ies showed that MSCs in 16-month-old mice were much 
more sensitive to doxorubicin treatment than those in 
1-month-old and 8-month-old young mice [315]. Patients 
can undergo stem cell transplantation while receiving 
high-dose chemotherapy regimens to prevent off-target 
effects; however, stem cell transplantation may induce 
toxicity that exceeds the safety threshold in many elderly 
individuals, which limits the broad use of this strategy 
[315]. In a cohort of patients with different types of can-
cers, including myeloma, lymphoma, and leukemia and 
who underwent hematopoietic stem cell transplantation, 
the expression of p16INK4A was significantly increased in 
effector T cells. Further analysis of gene expression in 
effector T cells from these cancer patients showed clear 
signs of immunosenescence and T-cell aging [316]. The 
off-target effect associated with stem cell transplanta-
tion and chemotherapy can cause damage to the thymus 
by accelerating thymic aging [316]. Overall, there may be 
a potential clinical benefit in targeting chemotherapy-
induced acceleration of age-related tumorigenic events 
to decrease cytotoxicity and increase survival. There are 
many cases where chemotherapy in elderly patients is 
tolerated well and prolongs survival irrespective of the 
location of the cancer [317]. In any case, the key consid-
eration to determine proper chemotherapeutic regimens 
in the elderly should be whether the benefits of treatment 
outweigh the side effects. Further research is warranted 
to provide more insights into the cytotoxic effects at the 
molecular level and the degree of organ function decline 
in older patients.

Targeted therapy
Targeted therapy has been regarded as one of the stand-
ard personalized approaches to target cancer cells or 
the TME for specifically inhibiting tumor development 
or progression. However, drug resistance and adverse 
events are always major concerns for this type of treat-
ment [317, 318]. Targeted therapy often induces fewer 
off-target effects than chemotherapy or radiotherapy, 
as cancer cells targeted for therapy appear to undergo 
more intrinsic changes based on genetic mutations, epi-
genetic alterations, and genomic instability to induce 
off-target effects. A recent study illustrated that healthy 
aged dermal fibroblasts facilitated increased resistance 
to targeted BRAF therapy in allogeneic mouse models 
of melanoma by secreting SFRP2 into the TME [319]. 
Furthermore, using recombinant SFRP2 to treat young 
mice led to increased resistance in a formerly sensitive 
mouse model [319]. Studies focusing on melanoma have 
shown that B-cell infiltration in the TME results in the 
secretion of insulin-like growth factor 1 (IGF1), which 
promotes drug resistance to BRAF and MEK inhibitors 
[320]. Another recent study reported that immunosup-
pressive age-associated B-cell counts are significantly 
increased in aged mice (> 24 months old) but that the lev-
els of other B-cell subtypes were reduced [320, 321]. The 
number of MDSCs, as previously described, increases 
with age, and these cells appear to induce resistance to 
antiangiogenic therapies as well as other targeted thera-
pies used in the treatment of multiple myeloma [322], 
prostate cancer [323], liver cancer [324] and melanoma 
[325]; however, a direct link between MDSC drug resist-
ance and age has not been investigated in these models. 
Notably, combination therapy with drugs targeting treat-
ment resistance-promoting components in the stroma 
and ECM of the TME may increase the persistence of 
targeted therapy effects [326–328]. Given the complex 
mechanism by which protumorigenic effects are induced 
with age, research on the aging TME, potential premeta-
static niches, and their contributions to targeted therapy 
resistance is definitely needed.

Immunotherapy
Immunotherapy has been established to modulate the 
immune TME and thus target and eliminate tumor 
cells. The efficacy of immunotherapy is considerable; 
however, not all cancer patients receive clinical benefits 
from immunotherapy [329]. Therefore, investigators 
need to identify more-robust biomarkers for this kind 
of treatment. Marked changes in immune profiles and 
function are found in aging humans, and therapy tar-
geting the immune system within the elderly has shown 
considerable clinical implications. However, few stud-
ies have incorporated elderly individuals into trials to 
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evaluate the efficacy of immunotherapies in older can-
cer models. The most widely used immunotherapies 
that have proven clinical efficacy across a wide range 
of cancers are immune checkpoint inhibitors (ICIs) 
targeting programmed cell death 1 (PD-1), PD-L1, 
cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4) and lymphocyte activation gene-3 (LAG-3). Many 
cancer cells and other stromal components upregulate 
cell signaling through immune checkpoint pathways to 
evade antitumor immune responses. Interestingly, PD-1 
surface expression has been suggested to contribute to 
the age-dependent functional decline of effector mem-
ory T cells [330]. PD-1 levels are increased on T cells 
with age, and anti-PD-1 therapy increases T-cell func-
tion, especially in aged mouse models [331, 332]. Rapa-
mycin, an mTOR inhibitor, has been shown to reduce 
age-related increases in PD-1 levels, suggesting a role 
of these inhibitors in increasing tumor immunity in 
aged tissues [332]. A marked increase in PD-L1 expres-
sion in CD8+ effector T cells of aged mice compared 
with young mice has been observed, and anti-PD-L1 
immunotherapy reduced cell proliferation in  vitro and 
antitumor immunity in aged hosts compared with the 
effect in young mouse lymphoma models [333]. In 
another study, PD-L1 and indoleamine 2,3-dioxyge-
nase 1 (IDO1) levels were increased during aging in 
the brains of healthy human adults, while the number 
of circulating Treg cells increased and that of CD8+ T 
cells decreased during aging [334]. These findings sug-
gest that older patients with cancers such as lymphoma, 
glioblastoma and leukemia may be less responsive to 
immunotherapy.

Additionally, within the aged mouse model TME, 
CD8+ T cells displayed a tendency for exhaustion, and 
IFN-γ levels were significantly decreased; similarly, in 
aged patients with triple-negative breast cancer, IFN-γ 
gene expression levels were found to be decreased. 
Inflammation of the TME mediated by IFN-γ in aged 
tumor-bearing mice significantly increased the sensitivity 
of the mouse responses to ICIs [335]. Considerable high-
quality evidence and substantial published datasets have 
confirmed that currently available ICIs show high effi-
cacy in older adults [336–363] (Table 4); however, some 
of these findings are controversial and because of a lack 
of enrolled aged patients (maybe ≥ 65  years) in clinical 
trials, to determine whether the investigated treatments 
show clinical benefits or whether toxicity is increased in 
elderly patients, more study is needed [305, 364]. Patients 
older than 60 years are likely to respond more efficiently 
to anti-PD-1 immunotherapy, and the likelihood of elic-
iting a response to anti-PD-1 increases with age. These 
findings have been recapitulated in young and aged mela-
noma mouse models.

Moreover, research on TME immune cell subtypes 
revealed that aged mice showed significantly increased 
CD8+ T-cell-to-Treg cell ratios, indicating that they car-
ried more immunogenic tumors [305]. The depletion of 
Treg cells via anti-CD25 therapy significantly increased 
the anti-PD-1 response in young mice [305], and Treg 
cell depletion in aged melanoma mouse models was inef-
fective in inducing antitumor immunity but completely 
decreased tumor growth in young mice [308]. How-
ever, other studies have shown contradictory findings. 
For example, in one study, anti-PD-L1 treatment of B16 
melanomas exhibited substantial efficacy only in young 
mice, but combination therapy with anti-PD-L1 and anti-
CTLA4 antibodies showed partial efficacy in aged mice 
[365]. Some retrospective studies on melanoma [364] 
and non-small cell lung cancer (NSCLC) [366] in which 
either anti-PD-1 or anti-PD-L1 was administered showed 
little difference in overall survival (OS), progression-free 
survival (PFS) or toxicity between age groups. Because 
the diversity in immune cell profiles, infiltration status, 
and activity across various tumor models as well as in the 
TME at different tissue sites is large, the immunothera-
peutic response likely differs marked in young versus 
aged patients. Genetic and environmental diversity in dif-
ferent populations also limits collective analyses across 
various racial and ethnic backgrounds. Given the dis-
crepancy found when targeting one immune checkpoint 
compared with another in aged models, tailoring specific 
immunotherapeutic treatments to aged patients may be 
warranted. Importantly, some groups are focusing on 
seeking strategies for recruiting older patients with can-
cer for clinical trials [367]. These strategies, along with 
a focus on furthering the understanding of age-related 
changes at the molecular level in TMEs and premeta-
static niches, may be critical in efficiently predicting 
patient responses across a wide range of cancers. Con-
sidering these possibilities, we may also identify other 
avenues for effective cotargeting of tumor-promoting 
immune cell subpopulations.

Conclusions and further perspectives
Recent studies have suggested that the aging TME may 
exert dramatic effects on tumor progression. Normal 
age-related changes in stromal and immune popula-
tions may function together to drive the progression of 
tumor cells from an initial or slow-growing state to a 
highly aggressive and metastatic disease state. The out-
comes of these changes involve variations in secreted 
factors, changes in the biophysical architecture of the 
TME, and even changes on a macroscopic level, such as 
the breakdown in vasculature integrity [368, 369]. Several 
challenges remain that need to be resolved in the future. 
(1) There is a lack of drugs that are highly effective in 
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inducing senescence in a high proportion of cancer cells. 
In addition, drugs need to show a preferential affinity for 
cancer cells over normal cells, as inducing senescence in 
normal tissues can cause detrimental side effects [88]. 
(2) We need to establish more gold standard signatures 
and biomarkers for identifying the senescent state. No 
obvious biomarker can be measured to unambiguously 
discriminate between senescence and other growth-
arresting states [86]. There have been several multi-gene 
signatures to identify senescence in primary cells. A 
panel of cancer cells have been selected to identify the 
SENCAN classifier for cancer senescence [86]. In  vivo, 
investigators should use galacto-conjugated fluorescent 
nanoparticles to detect senescent cells. This method has 
been tested in models of chemotherapy-induced senes-
cence [370, 371]. The noninvasive imaging system could 
be ideal for measuring the efficacy of senescence induc-
tion in cancer cells. Radioactive β-gal positron emission 
computed tomography (PET) tracer seems to be feasible 
[372]; however, β-gal-based screening strategy might be 
unpowered to detect all senescent cells accurately. On 
the one hand, cells from some tissue types do not induce 
SA-β-gal activity when they turn to senescent [8], on 
the other hand, macrophages may also be able to exhibit 
increased SA-β-gal activity [373, 374], consequently, false 
positives may result from macrophages inside inflamed 
tumor tissues. Other noninvasive methods, for example, 
oxylipin biosynthesis may also help to detect clearance 
of senescent cells [375]. Furthermore, other biomarkers 
that can be potentially used in noninvasive approaches 
to detect senescent cancer cells should be similarly estab-
lished [376, 377]. Researchers need to explore whether 
these markers can be used to detect senescent cancer 
cells in different contexts, such as cells with different 
genetic backgrounds, derived from different tissue types 
or with senescence induced by different agents [378]. (3) 
The next challenge is that there is still no unique senes-
cence-based therapy due to tumor heterogeneity. Intra-
tumoral heterogeneity leads to varying drug responses 
that may limit the effectiveness of senescence induction 
within tumors. Senescent cells can spread the senescent 
phenotype through the SASP to the surrounding non-
senescent cells within tumors [101], which will sensi-
tize non-senescent cancer cells to senolytic treatments. 
Additionally, such bystander effects could be fortified 
by the local TME shaped by SASP of the senescent cells. 
Further efforts to understand senescence-based therapy 
outcomes may overcome tumor heterogeneity and guide 
the timing of personalized treatments [101, 379]. Most 
senolytic drugs were developed with the aim to reverse 
the effects of aging and were consequently tested mostly 
on primary cells. In a study, the commonly used senolytic 
(navitoclax) on a panel of senescent cancer cells showed 

that it has widely variable activity as a senolytic [86]. 
Beyond identifying absolute biomarkers for the senescent 
state, the field is also in need of a druggable and broadly 
present vulnerability of senescent cancer cells. Novel 
CRISPR-Cas9-based genetic screening platform allows 
for the performance of drop-out screens to identify new 
senolytic targets on the genome scale. If universal vulner-
abilities of senescent cancer cells exist, unbiased genetic 
screens should allow the identification. (4) There is still 
no abundant knowledge on how the SASP acquired by 
senescent cancer cells impacts the interaction between 
senescent cancer cells and immune system cells. Sev-
eral early studies have pinpointed a synergy between 
senescence-promoting therapy and checkpoint immu-
notherapy [36, 37]. It is possible that not all pro-senes-
cence therapies and not all cancer types will benefit from 
combination checkpoint immunotherapy. This possibil-
ity is supported by the substantial heterogeneity in SASP 
factors produced by different types of cells undergoing 
senescence [86]. It is important to ascertain when a SASP 
provokes an immune response that can be enhanced by 
checkpoint immunotherapy and when it does not. It is 
possible to use the so-called senomorphic drugs as the 
NF-κB-inhibiting drugs apigenin and kaempferol or the 
mTOR inhibitor rapamycin [380, 381], which can mod-
ify the SASP of senescent cells to become more respon-
sive to checkpoint therapy clearance [382]. (5) We need 
to be significantly cautious in ablating senescent normal 
cells via anti-senescence therapies in aged individuals. In 
elderly individuals, senescent cells can constitute a high 
percentage of the net number of cells in some tissues and 
this may jeopardize tissue structural integrity or affect 
vascular endothelial cells, leading to blood–tissue barrier 
disorder that potentially leads to liver and perivascular 
tissue fibrosis and health collapse [383, 384]. This issue 
highlights the need for the development of cancer-selec-
tive senolytics.

In this article, we discuss the impact of aging on the 
TME from multiple perspectives and review treatments 
as well as recent clinical trials with data on elderly indi-
viduals. The effects of aging on tumors are two-sided. 
In the early stage of tumor formation, aging is often 
associated with tumor suppression. However, once a 
tumor progresses past a certain threshold, the tumor-
suppressive mechanisms are exploited by tumors, 
which increases their malignancy. To some extent, these 
mechanisms exhibit a screening function for tumors. In 
addition, in special elderly groups, in addition to age-
associated alterations at the local cellular and molecular 
levels, changes in organs may play an important role in 
the tumor microenvironment. Therefore, for tumor pre-
vention and treatment in elderly people, in addition to 
focusing on existing treatment methods, the influence of 
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various organs and biological systems needs to be com-
prehensively considered.
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