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Abstract 

Kaposi’s sarcoma‑associated herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi’s 
sarcoma (KS) and primary effusion lymphoma (PEL), which preferentially arise in immunocompromised patients 
while lack of effective therapeutic options. Oncoproteins Myc and hypoxia‑inducible factor‑1α (HIF1α) have been 
found closely related to KSHV infection, replication and oncogenesis. However, the strategies of dual targeting 
these two oncoproteins have never been developed and tested for treatments of KSHV‑related malignancies. In the 
current study, we report that treatment of echinomycin dramatically regresses cell growth both in vitro‑cultured 
KSHV + tumor cells and in vivo KS or PEL xenograft mice models, through simultaneously inhibiting Myc and HIF1α 
expression. Echinomycin treatment also induces viral lytic gene expression whereas not increasing infectious virions 
production from KSHV + tumor cells. Our comparative transcriptomic analysis has identified a bunch of new Echino‑
mycin‑regulated, Myc‑ and HIF1α‑related genes contributed to KSHV pathogenesis, including KDM4B and Tau, which 
are required for the survival of KSHV + tumor cells with functional validation. These data together reveal that dual 
targeting Myc and HIF1α such as using Echinomycin may represent a new and promising option for treatments of 
these virus‑associated malignancies.
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To the editor:
Kaposi’s Sarcoma-associated Herpesvirus (KSHV) rep-
resents a principal causative agent of several cancers 
arising in patients with compromised immune systems, 

including Kaposi’s Sarcoma (KS) and Primary Effusion 
Lymphoma (PEL) [1]. KSHV-induced malignancies rep-
resent a serious threat to immunosuppressed patients 
due to lack of effective therapies [2]. Myc is one of the 
most potent and commonly activated oncoproteins, 
whose activation is thus considered as a hallmark of can-
cer initiation and maintenance [3]. Hypoxia-inducible 
factor-1 (HIF1) is a master regulator mediating response 
to hypoxic stress in both normal tissues and tumors [4]. 
Echinomycin is a bis-intercalator peptide and is biosyn-
thesized by a unique nonribosomal peptide synthetase 
(NRPS), and it belongs to a family of quinoxaline anti-
biotics. Interestingly, Huang et al. recently reported that 
Echinomycin simultaneously inhibited Myc and HIF1α 
through proteasomal degradation [5]. Although both 
Myc and HIF1α are found driven oncogenesis induced by 
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KSHV [6, 7], dual targeting Myc and HIF1α by one agent 
against KSHV-related malignancies have never been 
reported.

Here we found that even at very low concentrations 
Echinomycin treatment effectively inhibited the growth 
of KSHV + tumor cell lines  (CC50 only ~ 0.1–2  nM, 
Fig. 1A, B). In contrast, Echinomycin showed much less 
effective on the growth of normal cells such as HUVEC 
and peripheral blood B cells  (CC50 >  > 1000  nM). In 
addition, Echinomycin showed effective inhibition of 
the growth of a KSHV-infected lymphoma cell line, 
BJAB.219, but much less on its parental KSHV negative 
cell line, BJAB (Additional file 1: Fig. S1). Our further data 
showed a dose-dependent and time-dependent inhibition 
of cell growth by Echinomycin for both TIVE-LTC and 
BCBL-1 cell lines (Fig. 1C, D). By using soft agar assays, 
we found that Echinomycin treatment effectively inhib-
ited the anchorage independent growth of KSHV + tumor 
cells (Fig. 1E). By using a KS-like nude mice model [8], we 
found that Echinomycin treatment significantly repressed 
tumor growth in mice when compared to the vehicle-
treated group (Fig.  1F). At the end of experiments, the 
tumors isolated from Echinomycin-treated mice shrunk 
with much smaller size than those from vehicle-treated 
mice (Fig.  1G). In addition, we found that Echinomycin 
treatment dramatically suppressed PEL tumor progres-
sion in an established xenograft model [9], including 
reducing ascites formation and spleen enlargement over 
this timeframe (Fig. 1H, I).

We further found that Echinomycin treatment signifi-
cantly induced both BCBL-1 and TIVE-LTC cell apop-
tosis as well as cell cycle arrest (Additional file  1: Fig. 
S2). Echinomycin treatment affected the expression of 
several apoptosis- or cell cycle-related proteins through 
repression of Myc and HIF1α expression (Fig. 1J). Since 
Echinomycin has been found to promote Myc and HIF1α 
proteasomal degradation [5], our results confirmed that 
MG132 effectively prevented the reduction of Myc and 
HIF1α by Echinomycin from KSHV + tumor cells (Addi-
tional file 1: Fig. S3). Echinomycin treatment significantly 
increased the transcription and expression of viral lytic 

genes, such as RTA and ORF26 (Additional file 1: Fig. S4). 
However, in contrast to NaB (a classical lytic inducer) 
leading to a pronounced increase in mature virion pro-
duction, Echinomycin displayed inhibitory effects on 
virion production from BCBL-1 cells, instead (Additional 
file 1: Fig. S4).

We then compared the gene profiles between vehicle- 
and Echinomycin-treated KSHV + tumor cell lines, using 
RNA-Sequencing analyses. The volcano plots showed the 
scattering of genes which were significantly upregulated 
or downregulated (FDR < 0.05) in Echinomycin-treated 
BCBL-1 or TIVE-LTC (Fig. 2A). The intersection analysis 
identified 234 genes commonly changed in both BCBL-1 
and TIVE-LTC (Fig. 2B). The top 20 commonly upregu-
lated or downregulated genes in both BCBL-1 and TIVE-
LTC were listed in a heat map (Additional file 1: Fig. S5) 
as well as Additional file 1: Table S1. The GO_enrichment 
analysis of these commonly changed genes identified sev-
eral major functional categories they belong to such as 
extracellular structure organization, regulation of apop-
totic cells, nucleic acid metabolic process and regulation 
of humoral immune response (Additional file 1: Fig. S5).

We selected KDM4B (lysine demethylase 4B) and 
MAPT (microtubule associated protein Tau) for sub-
sequent functional validation. KDM4B is broadly 
defined as an oncoprotein that plays key roles in pro-
cesses related to tumorigenesis [10]. Tau is a protein 
that stabilizes and promotes the assembly of microtu-
bules, which has been reported to be implicated in dif-
ferent types of cancer [11, 12]. We first confirmed the 
downregulation of these two proteins by Echinomycin 
in  vitro and in  vivo (Additional file  1: Fig. S6). Next, 
we demonstrated that direct knockdown of KDM4B 
or Tau by RNAi significantly inhibited the growth and 
colonies formation of KSHV + tumor cells (Fig.  2C, D, 
F, G), as well as downregulated the expression of both 
Myc and HIF1α (Fig. 2E, H). We further confirmed that 
direct knockdown of either Myc or HIF1α was able to 
downregulate both KDM4B and Tau expression from 
KSHV + tumor cells (Additional file  1: Fig. S7). By 
using immunofluorescence assay (IFA), knockdown of 

(See figure on next page.)
Fig. 1 Echinomycin treatment inhibits the growth of KSHV + tumor cells in vitro and in vivo through repression of Myc and HIF1α. A–D Cells were 
treated with indicated concentrations of Echinomycin for a time‑course, then cell viability was examined using the WST‑1 proliferation assays 
(Roche). The 50% Cytotoxicity Concentrations  (CC50) were calculated based on the dose‑dependent “killing curves” by using GraphPad Prism v5.0. 
Error bars represent S.D. for 3 independent experiments. E The anchorage independent growth ability of TIVE‑LTC and BCBL‑1 were determined 
using the soft agar assays. F, G TIVE‑LTC were injected subcutaneously into the flanks of nude mice. When tumors reach 10–15 mm in diameter, 
mice were randomly grouped and received in situ subcutaneous injection with either vehicle or Echinomycin (200 μg/kg). The mice were observed 
and measured every 4–5 days for the size of palpable tumors. At the end of experiment, the tumors were excised from the site of injection for 
comparison. H, I NOD/SCID mice were injected i.p. with BCBL‑1 cells. 72 h later, the Echinomycin (2.5 μg/kg) or vehicle were administered i.p., and 
weights were recorded weekly. At the end of the treatment period, the spleens were collected for comparison. **p < 0.01. (J) BCBL‑1 and TIVE‑LTC 
were treated with indicated concentrations of Echinomycin for 48 h, then protein expression was measured by using Western blot



Page 3 of 6Chen et al. Journal of Hematology & Oncology           (2023) 16:48  

Tau severely impaired the structure and assembly of 
microtubules in TIVE-LTC (Fig. 2I). In addition, simi-
lar effects were observed within Echinomycin-treated 
TIVE-LTC in a dose-dependent manner (Additional 

file 1: Fig. S8). For clinical relevance, our results showed 
that the expression of KDM4B and Tau was upregu-
lated in AIDS-KS tissues from two cancer patients 
when compared to normal skin tissues (Fig. 2J).

Fig. 1 (See legend on previous page.)
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Fig. 2 (See legend on next page.)
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Taken together, our data reveal that dual targeting Myc 
and HIF1α by Echinomycin may represent a new and 
promising option for treatments of these virus-associated 
malignancies.
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