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Amino acid metabolism in immune cells: 
essential regulators of the effector functions, 
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immunotherapy
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Abstract 

Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune 
response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid con-
sumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerg-
ing studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and 
therapeutic resistance through governing the fate of various immune cells. During these processes, the concentra-
tion of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR 
and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune 
responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or 
their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regula-
tion of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino 
acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose 
novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
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Introduction
Studies over the past few decades have demonstrated that 
malignant tumors and the immune system are intimately 
connected. The composition of the tumor microenviron-
ment (TME) is complex, comprising various cell types 
such as immune cells, fibroblasts, and endothelial cells 
which exhibit intrinsic regulatory effects on tumor cells 
[1–4]. Immune cells, including myeloid and lymphoid 
cells, play critical roles in promoting inflammation and 
immunosurveillance on one hand; and inhibiting inflam-
mation and enabling immune escape on the other. Some 
immune cells, such as helper T (Th) cells are dichoto-
mized into Th1/Th2 subtypes. Th1 represents cells with 
a pro-inflammatory role, whereas Th2 cells exhibit an 
anti-inflammatory role. Similarly, macrophages are also 
dichotomized to M1/M2 subtypes. M1 subtypes promote 
a Th1 response and an anti-tumor function, and M2 sub-
types display a Th2-like response and a pro-tumor effect. 
Thus, the differentiation status of immune cells may dic-
tate their anti-tumor functions. The differentiation pro-
cess of immune cells from their progenitors is directed by 
many factors, such as selective gene expression, cytokines 
stimulation, antigen presentation, nutrient metabolism 
and so on [5–7]. Besides governing cell fate, these factors 
also directly influence immune cell function. Whereas 
many of these factors have been extensively studied, 
metabolism-mediated regulatory mechanisms are still 
poorly understood [1, 8].

Metabolic reprogramming is a hallmark of the TME 
and has recently received increased attention. Various 
nutrients including glucose, lipids, and amino acids, play 
essential roles in regulating tumorigenesis through act-
ing on both tumor cells and immune cells [9, 10]. These 
nutrients, as well as their metabolites, are sensed primar-
ily by the mTOR complex through a series of biochemical 
networks [11, 12]. Among these major nutrients, amino 
acids play a dominant role in regulating mTORC1 [13]. 
During tumorigenesis, mTORC1 signaling regulates lipid 
synthesis, protein synthesis, cell survival, proliferation, 
and angiogenesis through targeting various substrate 
such as S6K1, hypoxia inducible factor 1 subunit alpha 
(HIF1α), and 4E-BP [11]. Collectively, mTOR functions 
as a central hub of nutrient signaling and cell growth 
across species [14]. While the roles of lipid metabolism 
in tumor immunity have been recently discussed [15], the 
regulation of amino acids metabolism in tumor immunity 
has not been extensively summarized. Therefore, we pro-
vide a comprehensive analysis of the roles of amino acid 
metabolism in regulating immune cells and their dys-
function within the TME.

The story of amino acids began from experiments car-
ried out as early as 1827 when asparagine, isolated from 
asparagus juice, was hydrolyzed by Auguste-Arthur 

Plisson and Étienne Ossian, leading to the discovery of 
aspartic acid. In the subsequent 200  years, amino acids 
have been characterized as one of the fundamental units 
of life. In addition to serving as the basic building blocks 
of proteins, amino acid metabolism is also involved in 
many other cellular processes to dictate cellular func-
tions. Given the marked increase in growth kinetics of 
malignant tumors, one can speculate that amino acid 
metabolism in the TME is significantly altered. Rewir-
ing of amino acid metabolism in infiltrating immune cells 
directly impact their biological functions [16]. In this 
regard, amino acid transporters, sensors, and the rate-
limiting metabolic enzymes are key gatekeepers of the 
metabolic flow. Aberrancies or deficiencies of this flow 
may reprogram amino acid metabolism in the infiltrating 
immune cells and impair anti-tumor immunity. Thus, key 
regulators of this pathway could be regarded as potential 
therapeutic targets.

Here, we briefly introduce the physiologic functions 
of immune cells and amino acids. We summarize the 
immunomodulatory effects of amino acid metabolism 
on various immune cell lineages under homeostatic 
and inflammatory settings, as well as in the TME, with 
an emphasis on amino acid competition between the 
immune cells and tumor cells. From a clinical perspec-
tive, we also discuss potential therapeutic strategies tar-
geting amino acids metabolism pathways for improving 
cancer immune therapy.

Amino acid metabolism in lymphoid cells
T lymphocytes
T cells, or T lymphocytes, play a key role in cellu-
lar immunity and are responsible for eliminating cells 
expressing “foreign” antigens. With respect to cancer, 
once tumor cells begin to express tumor-associated anti-
gens, specific T cells may view these cells as foreign and 
target them for cell death. T cells could be classified into 
two clusters depending on their membrane markers. The 
 CD4+ cluster includes follicular helper T (Tfh) cells, T 
helper (Th) cells, and regulatory T cells (Treg); and the 
 CD8+ cluster includes cytotoxic T cells and memory T 
cells. CD8 is predominantly an α/β heterodimer, but α/α 
homodimers are also present and recognizes endogenous 
antigens presented on MHCI, whereas CD4 recognizes 
exogenous antigens presented on MHCII. However, T 
cells may not be precisely defined by their cellular func-
tions. For instance, the effector T cells (Teff) defini-
tion refers to Th cells or cytotoxic  CD4+ and  CD8+ T 
cells, which are characterized as secreting inflammatory 
cytokines and are cytotoxic to foreign cells [17].

It is noteworthy that Tregs are CD4+ CD25+ T cells 
with immune suppressive functions that are necessary 
for maintaining self-tolerance [18]. Subsequent studies 
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identified Tregs as expressing the transcriptional factor 
FOXP3 [19, 20]. Tregs play important roles in regulating 
immune surveillance and antitumor immune response 
through suppressing the activities of CD4+ helper and 
CD8+ cytotoxic T cells. Upregulation of immunosup-
pressive molecules including CTLA-4, PD-1, PD-L1 is 
essential for immune evasion during tumorigenesis. The 
relationships between Tregs and other T cells, as well as 
the roles of immune checkpoints in anti-cancer immune 
therapy, has been previously reviewed [21–23]. Prior 
studies have indicated that both  CD4+ and  CD8+ T cells 
are essential for a robust immune response and diverse 
amino acids play a critical role in regulating T cells 
(Fig. 1).

Branched‑chain amino acids (BCAAs)
The three BCAAs are leucine, isoleucine, and valine, 
all of which are essential amino acids that cannot be 
de novo synthesized in humans. Leucine was isolated 

by Joseph Louis Proust in an impure form called case-
ous oxide in cheese in 1818 [24]. Felix Ehrlich first dis-
covered isoleucine and isolated it from fibrin in 1904, 
and named it “iso-” because of its similar structure 
and function with leucine [25]. Emil Fischer, who was 
awarded the Nobel Prize in Chemistry in 1902, iso-
lated valine from casein in 1902 [26]. In addition to 
serving as a basic building block of protein synthesis, 
under physiological conditions BCAAs are also impor-
tant regulators of global cellular protein synthesis. In 
the normal tissue microenvironment, a study in cats 
found that high doses of leucine enhanced the secre-
tion of IL-10 by T cells to inhibit the immune response 
[27]. Another study found reduced survival of influenza 
virus infected mice with high BCAA diets, which might 
be attributed to an increase of the number of  CD8+ T 
cells accompanied with overexpression of cytotoxic 
cytokines resulting in tissue damage [28].

Fig. 1 Amino acid metabolism in effector T cells. Various amino acids are transported by SLC transporters into the cytoplasm. These amino acids 
activate sensor proteins in the cytoplasm such as mTOR, GCN2, and Sestrin (highlighted in green bold font), directly activate the TCR-CD3 complex, 
or are metabolized further to affect T cell development and survival. Solid lines represent effects and reactions in T cells, and dashed lines represent 
uncertain effects and reactions in T cells. The arrow line represents activation and the line with a bar at the end represents inhibition. AHR Aryl 
hydrocarbon receptor; Ala Alanine; Arg Arginine; Asn Asparagine; BCAT  Branched-chain aminotransferases; Gclc Glutamate cysteine ligase; GCN2 
General control nonderepressible 2; Gln Glutamine; GSH Glutathione; HMB β-hydroxy-β-methylbutyrate; iNOS Inducible isoform of NO synthase; Kyn 
Kynurenine; Leu Leucine; Met Methionine; MHC Major histocompatibility complex; mTORC1 Mechanistic target of rapamycin kinase complex 1; Ser 
Serine; SHMT2 Mitochondrial serine hydroxymethyltransferase; SLC Solute carrier; TCR  T cell receptor; Trp Tryptophan
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The uptake and distribution of leucine is carried out 
by L-type amino acid transporter (LAT), which directs 
amino acids across the plasma membrane in a Na+-inde-
pendent manner [29]. The structure of LAT1, encoded by 
SLC7A5, revealed the mechanism of LAT1 amino acid 
selectivity [30, 31]. In T cells, antigen signaling mediated 
through the interaction of the T cell receptor (TCR) and 
LAT1 increased leucine uptake [32], which may be a self-
protective mechanism for T cells to compete with can-
cer cells for the limited supply of amino acids within the 
TME. It is possible that coupling amino acid uptake with 
T cell signaling exists for other amino acids as well. Inter-
estingly, LAT1 itself is a bidirectional transporter that 
regulate the influx of leucine and the efflux of glutamine 
[33], whereas another transporter, ASCT2 (encoded by 
SLC1A5), allows cellular uptake of glutamine [34]. How-
ever, the functions of ASCT2 and LAT1 do not appear 
to be coupled [35]. BCAAs are catabolized by Branched-
Chain Aminotransferases (BCATs), including BCAT1 
and BCAT2, also known as cytosolic branched-chain 
aminotransferase (BCATc) and mitochondrial branched-
chain aminotransferase (BCATm), respectively. BCATs 
transfer amino groups from BCAA to α-ketoglutarate 
to produce their respective branched-chain ketoac-
ids (BCKA) and glutamate [36, 37]. β-Hydroxy-β-
methylbutyrate (HMB) is a metabolite of BCAAs, which 
favors a switch of Th1-type to Th2-type cells [38]. The 
concentration of extracellular L-arginine controls the 
expression of the T cell antigen receptor ζ chain (CD3ζ), 
to influence the antigen recognition function of T cells 
[39, 40].

Besides its effects on the TCR, another well character-
ized function of leucine is regulating the mTOR path-
way. mTOR is found in two complexes, mTORC1 and 
mTORC2, which have different sensitivities to rapa-
mycin and are composed of distinct subunits. Several 
reviews have covered the functions of mTOR on down-
stream T cell activation, differentiation, and homeostasis 
[41–43]. Expression of BCATc is induced by TCR sign-
aling in CD4+ T cells.  BCATc−/− mice have increased 
levels of leucine which enhances mTOR activity, lead-
ing to increased phosphorylation of downstream sub-
strates including S6 and 4EBP-1 [44]. Sestrin2, SAR1B, 
and GATOR2 are all the upstream regulators of mTOR. 
Both Sestrin2 and SAR1B are bonded to GATOR2 to 
inhibit mTORC1 signaling, and their interactions with 
GATOR2 can be disrupted by leucine, indicating a role 
for Sestrin2 and SAR1B as a sensor of leucine to activate 
mTOR activity [45, 46]. However, the function of these 
two sensors has some differences. For instance, Sestrin2 
may show increased sensitivity to high concentration of 
leucine, whereas SAR1B may sense lower levels of leucine 
to maintain basal mTOR activity [46]. Although Sestrin2 

and SAR1B have been studied in other cell types, they 
likely carry out important functions in T cells as well. 
While leucine controls mTOR activity to regulate T cell 
proliferation and differentiation, it does not appear to be 
required for the maintenance of naïve T cells [32].

However, mTOR activity is also essential for the 
immune suppressive Tregs. Treg-specific mTOR knock-
out mice revealed mTOR was critical for Treg differen-
tiation, activation, and migration into non-lymphoid 
tissues [47]. A role for amino acids in regulating Treg 
function and immune tolerance through mTOR was 
further demonstrated to be dependent on RagA/B and 
Rheb1/2 GTPases where arginine and leucine func-
tioned to induce and sustain mTORC1 activity in Treg 
cells [48]. Results such as these suggest that factors such 
as RagA/B and Rheb1/2 may serve as potential thera-
peutic targets. In addition to mTORC1, the cooperation 
of mTORC1 and mTORC2 also contributes to the main-
tenance of Tregs suppressive activity, but mTORC2 was 
not necessary for Tregs function [49]. Similarly, systemic 
lupus erythematosus, an autoimmune disease, exhibited 
increased activity of mTORC1 and mTORC2, but dimin-
ished Treg suppressive activity [50]. Therefore, the role of 
amino acids in activating mTOR and its role in control-
ling Tregs needs further exploration.

BCAA metabolism is hyperactive in multiple malig-
nancies including leukemia, lung cancer, bone sarcomas, 
hepatic carcinoma, pancreatic ductal adenocarcinoma, 
and colorectal cancer [51–57]. Although there is no 
direct evidence demonstrating a role of BCAA metabo-
lism in anti-tumor immunity, these observations indicate 
that activation of BCAA metabolism might be linked to 
dysfunction of tumor-infiltrating T cells.

Glutamine
Glutamine was first discovered by Schulze in 1883, with 
the synthesis of glutamine further described by Hans 
Krebs in 1935, and its importance in organismal homeo-
stasis was explored in animal experiments [58]. Subse-
quently, research on glutamine in the fate of cancer cells 
and cancer therapy has been extensive, but its role in 
tumor-associated immune cell function is just emerging 
[59].

Overexpression of SLC38A1, a glutamine transporter, 
markedly enhanced mitochondrial function in human 
 CD4+ T cells exposed to ascites derived from patients 
with ovarian cancer, a process shown to be associated 
with glucose metabolism [60]. Another glutamine trans-
porter, SLC38A2, was found to be critical for the gen-
eration and memory T cells in part through modulating 
mTORC1 activity [61]. Furthermore, the proliferation 
and function of Tregs is dependent on the expression 
of SLC7A11, which is controlled by the nuclear factor 
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erythroid 2-related factor 2 (NRF2) [62]. However, this 
study did not explore the exact substrate effects on Tregs 
regulation. Although SLC7A11 is regarded as an anti-
porter of cysteine and glutamate transporter, this study 
did not explore the exact substrate effects on Tregs regu-
lation. Moreover, SLC7A11 is highly expressed in tumor 
cells where it imports cystine for GSH biosynthesis and 
antioxidant defense. This effect is partly due to suppres-
sion of ferroptosis, another powerful tumor suppres-
sion mechanism that may eliminate precancerous cells 
exposed to metabolic stress and nutrients starvation 
[63]. Thus, these observations support the notion that 
SLC7A11 may serve as an additional mechanism specific 
in tumor or immunosuppressive cells to capture free cys-
tine in the TME to promote tumor growth and attenuate 
the function of anti-tumor immune cells. However, the 
role of SLC7A11 in anti-tumor immune cells needs fur-
ther investigated.

As the precursor of protein O-GlcNAcylation, glu-
tamine is involved in regulating T cell self-renewal 
[64]. Glutamine maintains Teff cell ATP concentrations 
through glutamine-dependent mitochondrial metabo-
lism [65]. The catabolism of glutamine promotes de novo 
synthesis of glutathione (GSH) to impact T cell differen-
tiation [66], a process that also involves mTOR activity 
[67, 68].

Despite glutamine regulating T cell activation and func-
tion, blocking glutamine metabolism does not weaken T 
cell function as anticipated, but rather enhances T cell 
antitumor activity [69]. One possible reason behind this 
observation is that tumor cells are addicted to glutamine, 
and thus glutamine starvation may have more direct con-
sequences on tumor cell survival than T cells.

Tryptophan
L-tryptophan was discovered in 1901 by Frederick Hop-
kins and Syndey Cole from the lysate of casein digested 
by insulin [70]. And it was subsequently identified as one 
of the essential amino acids in 1912 by Hopkins [71]. 
Although a small fraction of free tryptophan is used in 
protein synthesis and to produce neurotransmitters such 
as serotonin, over 95% of free tryptophan is degraded 
through the kynurenine pathway [72], which provides 
metabolites such as melatonin, quinolinic acid, kynure-
nine, tryptamine, vitamin B3, nicotinamide adenine 
dinucleotide (NAD+), and nicotinamide adenine dinu-
cleotide phosphate (NADP+).

Under physiological conditions, enzymes in the 
tryptophan-kynurenine pathway are constitutively 
expressed, thus tryptophan metabolism has widespread 
effects, from central excitatory neurotransmission to 
peripheral immune response and inflammation [73]. 
The function of tryptophan in T cells mainly serves as 

an immune inhibitory factor. In general, tryptophan is 
catabolized to kynurenine by Indoleamine 2,3-dioxy-
genase (IDO), which is then further catabolized by 
other kynureninases [72]. Besides IDO, another trypto-
phan-degrading enzyme, tryptophan-2,3-dioxygenase 
(TDO2), is expressed in the liver and catalyzes tryp-
tophan to kynurenine [74]. While tryptophan conver-
sion to kynurenine has not been shown to take place 
in T cells, this pathway functions in other cells within 
the TME including macrophages and tumor cells, thus 
tryptophan metabolism may indirectly influence T cell 
function.

In normal tissue environments, IDO activity has 
been directly associated with suppressing the immune 
response. During pregnancy, IDO prevented the fetal 
alloantigen response by inhibiting T cell-driven local 
inflammation [75], possibly due to attenuation of central 
and effector memory  CD8+ T cell generation, an effect 
that was lost once these T cells were present [76]. Dur-
ing human hematopoietic stem-cell transplantation, the 
upregulation of extracellular kynurenine effectively sup-
pressed T cell responses and promoted apoptosis of Teff 
cells [77]. Moreover, the ratio of tryptophan and kynure-
nine may be used as a predictive marker of  CD4+ T cell 
populations [78]. Besides kynurenine, other metabolites 
of tryptophan also function in suppressing immune 
function. In a rat cardiac allograft model, 3-hydroxyan-
thranilic acid markedly prolonged survival [79], which 
may serve as a model of allograft transplantation induced 
immune tolerance. Interestingly, both kynurenine and 
picolinic acid inhibited T cell proliferation, but had no 
effect on the activation of resting T cells [80]. Further-
more, while 3-hydroxykynurenine and 3-hydroxyan-
thranilic acid inhibited T cell responses, anthranilic and 
quinolinic acid had no effect [76].

System L, a heterodimer composed of a heavy chain of 
CD98 (encoded by SLC3A2) and one of two catalytic L 
chains LAT1 (encoded by SLC7A5) or LAT2 (encoded by 
SLC7A8), transports tryptophan [81]. With low trypto-
phan levels in the TME, tumor cells may use two mecha-
nisms to enhance tryptophan uptake to outcompete Teff 
cells for tryptophan. One mechanism may be for tumor 
cells to secrete toxic metabolites such as kynurenine to 
attenuate neighboring Teff cells anti-tumor function 
[82]. Another mechanism could be that system L is not 
a unique transporter for tryptophan, and another spe-
cific tryptophan transporter is induced in IDO expressed 
tumors [83]. Moreover, general control nonderepressible 
2 (GCN2) kinase could serve as an intracellular amino 
acid sensor capable of phosphorylating eukaryotic trans-
lation initiation factor 2-alpha (eIF2α) to lower global 
protein synthesis rates in response to amino acid star-
vation [84]. Tryptophan depletion leads to T cell anergy 
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and proliferation arrest, and disruption of GCN2 might 
prevent T cells from IDO-mediated inhibition [85].

Prior studies have shown that activation of GCN2 
could inhibit inflammatory Th17 and Th9 cell differentia-
tion [86, 87], potentially through GCN2-mediated activa-
tion and downregulated of key enzymes involved in fatty 
acid synthesis, which is a prerequisite of  CD4+ T cell 
proliferation and differentiation, suggesting that GCN2 
activity may weaken the immune response [88]. How-
ever, other studies have observed that GCN2 is essen-
tial for T cell function. For instance, GCN2 deficient T 
cells fail to proliferate when amino acids are limiting [89], 
and knockout of GCN2 impaired many aspects of T cell 
immunity in brain tumors [90]. In addition, both IDO 
and TDO inhibitors prevent the accumulation of immu-
nosuppressive tryptophan catabolites but do not enhance 
T cell responses via rescuing GCN2 from tryptophan 
starvation, thus GCN2 might not play an important role 
in the response to tryptophan starvation [91]. There-
fore, these varied conclusions reveal that the relation-
ship between tryptophan metabolism and T lymphocytes 
remain unclear and worthy of further investigation.

Tryptophan metabolism also leads to the production 
of GCN2-dependent Tregs [92]. Kynurenine activated 
aryl hydrocarbon receptor (AhR)-expressing T cells to 
differentiate into Tregs but not AhR-null T cells, and 
TGF-β upregulated AhR expression to potentially induce 
the generation of Tregs [93]. Kynurenine is transported 
across the plasma membrane of T cells by SLC7A5 or 
SLC7A8 and sensed by AhR in the cytoplasm [82, 94] to 
upregulate PD-1 expression in  CD8+ T cell, driving the 
generation and differentiation of Tregs [95, 96]. Inhibi-
tion of AhR was shown to suppress IDO/TDO mediated 
tumor progression, which synergizes with PD-1 blockade 
[95]. These studies indicate that the immunosuppressive 
axis, try-kyn-AhR, may participate in tumor progression 
through regulating Tregs.

Methionine
Methionine, initially named sulfurous amino acid, was 
isolated by J. H. Muller in 1923 [97]. Unfortunately, he 
made an incorrect summation formula. Three years later, 
his colleague S. Odake corrected that formula and named 
this amino acid methionine [98]. In 1928, the structure 
of methionine was solved by G. Barger and F. P. Coyne 
[99]. Methionine is another essential amino acid, and as 
with other amino acids, its primary function is in pro-
tein synthesis to satisfy T cell proliferation. Methionine 
also serves as a critical source of methyl groups in cells 
through the methionine cycle, during which methio-
nine is converted into S-adenosylmethionine (SAM) by 
methionine adenosyltransferase (MTA), to participate in 
many important biochemical processes, including float 

metabolism, redox maintenance, polyamine synthesis, 
and as the methyl donor molecule for all methylation 
reactions [100]. In addition, methionine is also crucial for 
the production of endogenous hydrogen sulfide [101] and 
plays a role in inhibiting autophagy [102]. A recent study 
discovered that methionine also provides methyl groups 
for DNA and RNA methylation, which further promote 
differentiation and proliferation of T cells [103].

The importance of methionine in T cells is not depend-
ent on differences between intracellular and extracel-
lular methionine concentration gradients, but rather T 
cells upregulate the expression of the methionine trans-
porter SLC7A5 following stimulation of with antigen. 
Based on this, SLC7A5 is recognized as the rate-limiting 
factor for the generation of methyl groups during T cell 
activation [103]. However, methionine import varies in 
tumor cells. Besides SLC7A5, the transporter SLC43A2 is 
also involved in methionine uptake in tumor cells allow 
them to outcompete T cells for limited methionine avail-
ability [104]. Following import of methionine, intracel-
lular methionine regulates cellular functions within the 
nucleus. Methionine restriction reduces histone H3K4 
methylation (H3K4me3) on promoters of key genes 
involved in Th17 cell proliferation and cytokine produc-
tion, and exposing mice to a diet deficient in methionine 
reduced the expansion of pathogenic Th17 cells, leading 
to a reduction of T cell-mediated neuroinflammation and 
disease [105, 106]. In addition, tumor cells outcompete 
T cells for methionine leading to a decrease of intracel-
lular methionine and SAM levels in CD8+ T cells reduc-
ing H3K79me2 and STAT5 gene expression to attenuate 
immune function [104]. There is also direct evidence 
revealing a relationship between methionine levels and 
anti-tumor function of T cells. In this context, elevation 
of SAM and its downstream catabolites 5-methylthioad-
enosine reprogrammed the global chromatin accessibil-
ity of  CD8+ T cells, which attenuated T cell anti-tumor 
function [107]. Moreover, the role of SLC43A2 was also 
shown to be critical for the survival of Tregs, as the 
downregulation of SLC43A2 increased the Treg apopto-
sis due to the decrease of methionine uptake [108].

Arginine
Since the discovery of arginine from lupin seedling 
extracts in 1886 by Schulze and Steiger [109], studies of 
arginine focusing on its basic functions and clinical rel-
evance have been of high interests over the past century. 
Arginine is a nonessential amino acid, but the de novo 
synthesis of arginine does not satisfy the daily demand 
of the human body. Thus, arginine is defined as a semi-
essential, or conditionally essential. Under physiological 
conditions. Arginine is mainly metabolized by arginase-1 
(Arg1) and nitric oxide synthase (NOS) in myeloid cells, 



Page 7 of 33Yang et al. Journal of Hematology & Oncology           (2023) 16:59  

generating urea and L-ornithine, and NO and L-citrul-
line, respectively [110].

Studies have found that reduction of arginine attenu-
ates T cell function and proliferation, which can be 
reversed by arginine supplementation [111–114]. Using 
a mouse model of sepsis, arginine supplementation con-
tributed to the maintenance of  CD4+ T cells in the blood 
and para-aortic lymph node, but this was abrogated by 
inhibition of NOS, indicating that production of NO 
through NOS was important for proliferation of T cells 
[115]. Under arginine restriction, T cells downregulate 
CD3ζ expression, preventing the expression of the TCR 
leading to reduced proliferation and cytokine secretion 
[116]. In neonates, arginine might regulate DNA meth-
ylation to modulate the maturation of the immune sys-
tem [117]. The arginine transporter, cationic amino acid 
transporter-1 (CAT1), supports both naïve and memory 
 CD4+ T cells as well as  CD8+ T cells to maintain T cell 
proliferation and activation [118].

More specifically, the uptake of arginine is controlled 
by the cationic amino acid transport (CAT1, 2a, 2b and 
3, encoded by SLC7A) [119, 120], which function as 
monomers on the plasma membrane [120]. Genera-
tion and persistence of memory T cells, but not effector 
T cells, can be reprogrammed by arginine transported 
by SLC7A1 in a mechanism partially dependent on 
mTORC1 [61]. SLC38A9, a lysosomal transmembrane 
protein, serves as an intracellular arginine sensor to inter-
act with lysosome membrane localized Rag GTPase and 
Ragulator, which acts as a scaffold to tether Rag GTPase 
and mTORC1 to the lysosome [121, 122]. Another key 
factor, CASTOR1, also senses arginine. However, the 
mechanism by which CASTOR1 and SLC38A9 sense 
arginine appears to be different. Arginine stimulates 
SLC38A9 to efflux essential amino acids, including leu-
cine, from lysosomes to the cytosol to be recycled, but 
SLC38A9 has low affinity for arginine transport and 
minor effects on arginine concentration [123]. On the 
contrary, CASTOR1 binds to cytoplasmic arginine with 
high affinity [124]. Thus, SLC38A9 transmits an argi-
nine sufficiency signal to mTORC1, leading to mTORC1 
activation, and the overexpression of SLC38A9 partially 
maintains mTORC1 activation upon amino acid depri-
vation [122, 125]. Whereas CASTOR1 serves to trans-
mit an arginine deprivation signal. When arginine is 
deprived, CASTOR1 and GATOR2 bind together pro-
moting the dissociation of the GATOR1/GATOR2 com-
plex (an upstream regulator of mTORC1), leading to the 
inhibition of mTORC1 activity [124, 126]. Moreover, the 
function of CASTOR1 is similar to Sestrin2 and SAR1B 
described above, except that they sense different amino 
acids. Therefore, SLC38A9 and CASTOR1 play a coun-
terbalancing role in arginine sensing to prevent abnormal 

activation of mTORC1, which may play a role in regulat-
ing proliferation and differentiation of tumor-associated 
immune cells. Supporting this notion, L-arginine deple-
tion dampened proliferation of T cells through GCN2, 
which may arrest T cells in the G1 phase of the cell cycle 
through impairment of cyclin D3 and cyclin-dependent 
kinase 4 (cdk4) activity [127, 128]. Interestingly, other 
studies have revealed that arginine levels might influence 
the cell cycle through regulating the mTOR pathway. In 
this context, arginine deprivation suppresses the activity 
of mTORC1, whereas the activity of mTORC2 increases, 
leading to cell cycle arrest, which can be reversed by argi-
nine supplementation [129]. As important amino acid 
sensors, both GCN2 and mTOR signaling pathways regu-
late cell cycle progression of T cells. Regarding therapeu-
tic T cells, such as chimeric antigen receptor (CAR)-T 
cells, recent evidence suggests that low arginine levels 
also impair their proliferation [130].

As a semi-essential amino acid, the de novo synthesis 
of arginine also plays an important role in maintaining 
intracellular arginine concentrations. Argininosuccinate 
synthetase (ASS) and argininosuccinate lyase (ASL) are 
key enzyme in arginine synthesis. ASS catalyzes con-
densation of citrulline and aspartate to argininosucci-
nate which is then converted to arginine and fumarate by 
ASL [131]. Citrulline, which is transported by SLC7A5 
(LAT1), could partially substitute for arginine deficiency 
to promote T cell proliferation via ASS and ASL in T 
cells, whereas rescue of proliferation was not observed in 
complete absence of arginine [132].

Besides reprogramming of amino acid metabolism, 
additional studies have found that other metabolic path-
ways such as glucose metabolism also regulates the activ-
ity of Tregs through the mTOR pathway [49, 133]. Tregs 
are characterized by oxidative and catabolic metabolism. 
However, Toll-like receptor (TLR) signals promote Treg 
proliferation and increased glycolysis, anabolic metabo-
lism, and expression of glucose transporter Glut1. Glut1 
reduced expression of FOXP3 in Tregs and hampered 
their immunosuppressive capacity [134]. Thus, mTOR 
plays a key role in regulating amino acid, lipid, and glu-
cose metabolism in Tregs, with further studies likely 
to uncover regulation of other metabolic pathways by 
mTOR in Tregs.

In the TME, owing to a lack of Arg1 and NOS in T lym-
phocytes, arginine may be consumed by Arg1 and NOS 
in tumor cells or myeloid cells leading to excessive argi-
nine consumption and a weakening of the Teff immune 
response. Besides the direct regulation on T cells, L-argi-
nine depletion induced myeloid-derived suppressor 
cells (MDSCs) to blunt the anti-tumor response of Teff 
cells [135]. Therefore, arginine depletion caused by ele-
vated Arg1 in the TME has been considered a hallmark 
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immunosuppressive mechanism. However, recent studies 
revealed Arg2, an isoform of Arg1 which functions in the 
mitochondria, is expressed in T cells and serves as a reg-
ulator of  CD8+ T cell activation, anti-tumor cytotoxicity, 
and memory formation, independently of extracellular 
arginine concentration [136]. L-arginine is rapidly con-
verted into downstream metabolites, and the addition of 
the arginase inhibitor norNOHA reduces this conversion, 
indicating that arginine is catabolized by Arg2 in T cells 
[137]. When  Arg2−/−  CD8+ T cells and wild-type  CD8+ 
T cells were co-transferred into wild-type mice,  Arg2−/− 
 CD8+ T cells outcompeted wild-type cells suggesting 
that Arg2 was detrimental to T cell survival [137]. This 
may partially explain why  Arg2−/− CD8+ T cells suppress 
tumor growth and synergize with PD-1 blockade [136]. 
Therefore, Arg1 or Arg2 are both negative regulators of T 
cell survival and function with Arg1 existing in cells other 
than T cells to consume free arginine in the TME, and 
Arg2 is found in T cells to consume intracellular arginine. 
Both intracellular and extracellular deprivation of argi-
nine are essential means to regulate the proliferation of T 
lymphocytes and maintain tissue homeostasis.

Serine
In 1865, Emil Cramer extracted component from silk, and 
named it serine from the Latin of silk, sericum [138]. As 
a non-essential amino acid, serine is synthesized de novo 
from the glycolytic intermediate 3-phosphoglycerate or 
transported by several transporters such as SLC1A5 into 
cells that cannot synthesize serine like mature neurons 
[139, 140]. Serine supports metabolic processes including 
protein and glutathione synthesis and serves as a crucial 
one-carbon donor for the folate cycle to participate in 
nucleotide synthesis, methylation reactions, and genera-
tion of NADPH [141, 142]. Based on these roles of serine, 
targeting cancer-associated serine metabolism is viewed 
as a potential cancer therapy.

Generally, following antigenic stimulation, the rate of 
serine synthesis increases in activated T cells to provide 
intracellular glycine and one-carbon metabolites to sup-
port the proliferation of T cells, indicating that serine is 
essential to the T cell adaptive immune response, and 
extracellular serine is dispensable to support optimal T 
cell expansion even when glucose is sufficient for T cell 
activation and function [143]. Another study found that 
in order to adapt a state of rapid proliferation of T cells, 
naïve T cells induce the reprograming of mitochondrial 
biogenesis and modeling, with one-carbon metabolism 
being the most highly induced pathway, which is fed by 
serine, and disruption of the key mitochondrial serine 
hydroxymethyltransferase (SHMT2) inhibiting T cells 
proliferation [144].

In the TME, serine activates mTOR to inhibit FOXP3 
expression and further hinder Tregs immunosuppressive 
capacity, but the transformation of serine to glutathione 
through glutamate cysteine ligase (Gclc) contributed to 
preserve Tregs immunosuppressive function, and Gclc 
ablation showed autoimmunity and enhanced anti-tumor 
responses [145].

Given serine is a non-essential amino acid, relatively 
fewer studies have focused on its role in immunity. How-
ever, with the studies described above highlighting a key 
role for serine in T cell function, a role for serine metabo-
lism in the tumor-associated immune response should be 
assessed further.

B lymphocytes
B cells have been recognized as a core component of 
humoral immunity. The mechanism by which B cells 
serve to defend against foreign antigens occurs through 
three different pathways: antibody secretion, antigen 
presentation, and their direct killing capacity. Following 
stimulation, B cells differentiate into plasma cells, and the 
immunoglobulins secreted by plasma cells facilitate the 
immune responses by antibody-dependent cellular cyto-
toxicity (ADCC) and complement-dependent cytotox-
icity (CDC). Several studies have revealed that a subset 
of amino acids play a role in these important processes 
(Fig. 2).

Leucine, transported into B cells through SLC7A5, tar-
gets mTORC1 to promote B cell differentiation, as well 
as supports the production of IgG and cytokines [146]. 
Furthermore, inhibition of the glutamine transporter 
SLC1A5 or key enzymes of glutamine metabolism, led 
to reduced production of IgM in B cells [147]. Moreo-
ver, restriction of amino acids such as tryptophan led 
to a developmental arrest of B cells in the bone marrow 
[148]. In addition, histidine is transported by SLC15A4 
from the lysosome to cytosol, and loss of SLC15A4 
disturbed the Toll-like receptor 7-triggered, mTOR-
dependent IRF7-IFN-I circuit that leads to auto-antibody 
production [149]. Given this importance of amino acids 
in B cell function, further studies are necessary to fully 
understand a role for amino acids in regulating B cell 
function.γ-Aminobutyric acid (GABA) originates from 
glutamic acid, one of the non-essential amino acids, 
through key enzymes including glutamate decarboxylase 
(GAD). In the past, GABA has been extensively stud-
ied in the context of neurobiology as a central suppres-
sive neurotransmitter. Interestingly, GABA has also been 
shown to play an important role in B cells anti-tumor 
immunity. GABA is synthesized and secreted by acti-
vated B cells and plasma cells, and this GABA further 
promotes monocytes to differentiate into anti-inflamma-
tory macrophages that secrete interleukin-10 and inhibit 
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 CD8+ T cell tumor killing function [150]. In addition, 
tumor cells aberrantly expressing GAD1 could enhance 
the tumors immune suppressive function through auto-
crine action of GABA [151]. Thus, GABA secreted by B 
cells may directly target tumor cells to promote tumor 
growth, therefore GAD should be studied as a potential 
anti-cancer target.

Germinal centers (GCs) are components of second-
ary lymphoid organs (SLOs) within the spleen, lymph 
nodes and mucosa-associated lymphoid tissue (MALT). 
They have important sites of B cell clonal expansion, 
somatic hypermutation, and affinity-based selection, 
a process that leads to the production of high-affinity 
antibodies [152]. GCs are divided into a light zone 
(LZ) and dark zone (DZ) which harbor distinct func-
tions. The DZ is the site of B cell clonal expansion 
and somatic hypermutation, whereas the LZ is the 
region where B cells undergo positively selection for 
affinity-based mutations with the help of T follicular 
helper (Tfh) cells [153]. Rapamycin, an mTOR inhibi-
tor, has been found block the formation of GCs [154]. 
Deficiency of the mTORC1 subunit Raptor reduce the 
population of B cells in GCs [155], and Raptor has 
been shown to fuel B cells differentiation and prolifera-
tion early after positive selection in the LZ, whereas it 
only regulates proliferation in the DZ [156, 157]. B cell 
homeostasis and function also requires Rictor, a subu-
nit of mTORC2 [158]. Both mTORC1 and mTORC2 
guard Tfh phenotypic and functional maturation to 

support B lymphocytes development [159, 160]. In 
addition, glucose, lipid and hypoxia influences GCs B 
cells through the metabolic sense of mTOR [161–163], 
and some chemokines such as BCL-6 [164] and CCL2 
[165] are important regulators of the mTOR pathway 
in GC B cells. In Peyer’s patches (PPs), another SLO, 
nutrient deficiency drastically reduces secretion of 
CXCL13 from stromal cells via PI3K-Akt-mTOR axis 
to decrease the number of B cells in SLOs, and further 
attenuate the digestive immune system [166]. In addi-
tion, the PI3K-Akt-mTOR axis is also be activated by 
CXCL13/CCR5 to promote proliferation and migration 
of clear cell renal cell carcinoma [167]. Although this 
study did not explore the functional consequences to 
B cells or nutrient deprivation, one may speculate that 
nutrients could affect tumor progress through the regu-
lation of B cells. Because B cells are critical for tertiary 
lymphoid structures (TLS), a tumor infiltrated ectopic 
lymphoid organ similar to SLOs, multiple studies found 
the higher number of infiltrating B cells in TLS indicate 
a better patient survival with malignant tumors, how-
ever the mechanism remains unclear [168, 169].

In summary, although several amino acids such as 
leucine, glutamine and glutamic acid have been shown 
to regulate tumor-associated B cells, the importance of 
mTOR in the formation of TLS and a correlation with 
the presence of B cells implicated within TLS suggests a 
key role of amino acids in both general biology and anti-
tumor roles of B cells that deserves further investigation.

Fig. 2 Amino acid metabolism in B cells. Several amino acids are associated with B cell function and differentiation, and threonine can further 
affect the differentiation and function of monocytes. The solid line represents certain effects and reactions in B cells, and the dashed line represents 
potential effects and reactions in B cells. The arrow line represents activation and the line with a bar at the end represents inhibition. GABA 
γ-aminobutyric acid; GAD Glutamate decarboxylase; Glu Glutamate; His Histidine; IgG Immunoglobulin G; IgM Immunoglobulin M; IL Interleukin; Leu 
Leucine; mTORC1 Mechanistic target of rapamycin kinase complex 1; SLC Solute carrier; Teff cell Effector T cell
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Natural killer cells
In 1975, Rolf Keissling and colleagues identified a new 
immune cell type mediating direct cytotoxicity against 
alloantigen and tumor-associated antigens, different 
from T or B lymphocytes [170, 171]. Subsequent studies 
of this cell type led to its classification as an innate lym-
phoid cell (ILC) named natural killer (NK) cells. Using 
high-throughput single-cell RNA-seq, NK cells have 
been further broken down into two major subsets based 
on marker expression. The first being NK1, which are 
 CD56dim in humans and  CD27−CD11b+ NK cells in mice. 
NK2 cells are  CD56bright in humans and  CD27+CD11b− 
NK cells in mice [172]. NK cells are widely distributed 
throughout the human body, including lymphoid tissues 
such as bone marrow, lymph nodes, and spleen, as well as 
peripheral tissues such as liver, skin, intestine, and uter-
ine [173]. Thus, it is important to explore the regulating 
factors, including amino acids, involved in controlling 
NK cell functions (Fig. 3).

Glutamine has been shown to be important in support-
ing physiological functions of NK cells. As an important 
regulator of the intestinal mucosa, glutamine supplemen-
tation increases the number of infiltrating NK cells and 
improves barrier function in a rat model of colitis [174]. 
In humans, glutamine supplementation in athletes with 
heavy load training led to an increase in NK cells activity 
[175]. However, another study provided contrary results 
regarding glutamine in regulating NK cell activity and 
function, where glutamine supplementation prevented 
the decline in plasm glutamine concentration but had 
no effect on NK cell cytotoxic activity [176]. However, in 
tubulointerstitial fibrosis, activated transglutaminase 2 in 
NK cells played an exacerbating role [177].

NK cells execute anti-tumor functions in multiple 
ways. First, they can recognize and respond to cancer 
cells lacking MHCI expression [178]. ADCC is another 
important mechanism by which NK cells function to 
restrict tumor growth and survival, and thus several 
studies have sought out ways to enhance ADCC such as 
assessing synergistic effects with anti-PD-L1, cytokine 
stimulation, and intercellular interactions [179–181]. NK 
cells also produce pro-inflammatory cytokines such as 
IFNγ and TNFα to promote anti-tumor activity of other 
immune cells or to directly inhibit tumor cells. Given NK 

cell characteristic ex  vivo activation, expansion, genetic 
modification, and tumor cell recognition, mechanisms 
to improve their tumor-killing capacity for therapeutic 
purposes have been studied [182], and the metabolism of 
amino acids has been shown to play a role.

Recent studies have shown that SLC7A5 was the pre-
dominant system L-amino acid transporter in acti-
vated NK cells, and glutamine transported by SLC7A5 
increases the expression of the transcription factor 
c-Myc through mTORC1 activation [183]. IL-12 induces 
the expression of the high-affinity IL-2 receptor CD25, 
and several amino acid transporters including SLC7A5, 
SLC1A5, and SLC3A2 are upregulated in response to IL-2 
stimulation [183, 184]. NKG2D-mediated IFN-γ produc-
tion and degranulation were decreased when SLC1A5 
and SLC3A2 where inhibited [184], but whether this is 
through reducing amino acid uptake remains unclear. 
Besides IL-2 and IL-12, other cytokines such as IL-18 
were shown to facilitate SLC7A5/SLC3A2 expression to 
promote proliferation of NK cells through the mTORC1 
pathway [185]. mTORC1 and mTORC2 are both essential 
for NK cell activity, but through different mechanisms. 
mTORC1 appears to function in early NK cell develop-
ment, whereas mTORC2 may function in terminal matu-
ration, and thus they may cooperate in a non-redundant 
manner [186, 187]. Specifically, mTORC1 sustains 
mTORC2 activity through CD122-mediated IL-15 stimu-
lation; however, mTORC2 negatively regulates mTORC1 
function through the inhibition of STAT5-mediated 
SLC7A5 expression [186]. Another membrane protein, 
metabotropic glutamate receptor 5 (mGluR5), was found 
to enhance cytotoxicity of NK cells following activation 
by glutamate, and pharmacological activation of mGluR5 
accelerated the regression of liver fibrosis [188].

While studies to date have focused largely on glu-
tamine, amino acid transporters, and mTOR signaling 
in NK cells, it is likely that other amino acids play a role 
in this axis as well, such as arginine and leucine as key 
mTOR regulators, which needs further investigation.

Amino acid metabolism in myeloid cells
Macrophages
Macrophages are important innate myeloid cells and a 
major cell type within the mononuclear phagocyte system 

Fig. 3 Reprogramming of amino acid metabolism in the innate immune system. In the innate immune system, various amino acids affect 
innate immune cell functions. The same amino acids may play different role in the homeostasis/inflammation microenvironment and tumor 
microenvironment. The arrow line represents activation and the line with a bar at the end represents inhibition. 3-HAA 3-hydroxyanthranilic acid; 
AHR Aryl hydrocarbon receptor; Arg Arginine; Arg1/2 Arginase-1/2; BCAA  Branched-chain amino acids; BCAT1 branched-chain aminotransferases 
1; BH4 Tetrahydrobiopterin; BTK Bruton’s tyrosine kinase; C3 Complement 3; CTLA4 Cytotoxic T-lymphocyte associated protein 4; Cys Cystine; GCN2 
General control nonderepressible 2; GCN2 General control nonderepressible 2; Gln Glutamine; Glu Glutamate; GSH Glutathione; HIF Hypoxia 
inducible factor; IDO Indoleamine 2,3-dioxygenase; IL Interleukin; iNOS Inducible isoform of NO synthase; KMO Kynurenine 3-monooxygenase; 
Kyn Kynurenine; KYNU 2-amino-4-[3-hydroxyphenyl]-4-hydroxybutanoic acid; Leu Leucine; LPS Lipopolysaccharide; SLC Solute carrier; STAT3 Signal 
transducer and activator of transcription 3; TAM Tumor-associated macrophages; TGF Transforming growth factor; Trp Tryptophan; Tα1 Thymosin α1

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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(MPS) [189]. Tissue-resident macrophages have various 
names tied to their specific function including micro-
glia, Kupffer cells, alveolar macrophages, and osteoclasts 
[190-193]. In physiological conditions, tissue-resident 
macrophages play an important role in tissue homeosta-
sis and organ development. The role of macrophages in 
development is often overlooked, including branching 
morphogenesis, neuronal patterning, angiogenesis, bone 
morphogenesis, generation of adipose tissue, and testicu-
lar organogenesis [194, 195]. As for homeostasis, Kupffer 
cells efficiently phagocytize pathogens entering from the 
portal or arterial circulation [191], and are essential for 
cholesterol transport to link lipid metabolism in the liver 
[196]. Alveolar macrophages play an important role in 
inhibiting pro-inflammatory responses to tissue debris 
or to innocuous antigens [192]. Osteoclasts are the only 
cells known to resorb bone to refresh or repair the skele-
tal system [193]. Spleen macrophages localize to the mar-
ginal zone and red pulp, which promote T cell immune 
responses and recycle iron elements from defective blood 
cells, respectively [197]. Testicular macrophages are 
known to contribute to spermatogenesis and the produc-
tion of male hormones outside of their classical immune 
function [195].

Macrophages are important innate immune cells for 
tissue homeostasis and organ development under physi-
ological conditions. It is generally recognized that M1/
M2 polarized macrophages are two extremes within the 
immune response and are induced by various internal or 
external signals. These polarized macrophages further 
coordinate with diverse factors to regulate the outcome 
of pathogen infection, local tumor immune responses, 
and tissue repair and remodeling. In fact, M1-like and 
M2-like tumor-associate macrophages (TAMs) exist in 
the same tumor, but during different stages. They play 
an anti-tumor role through recognizing and eliminat-
ing tumor cells; or a pro-tumor role by promoting tumor 
growth, invasion, and metastasis. Such phenomenon 
is a so-called double-edged sword, and the function or 
polarization of macrophages is affected by many fac-
tors including amino acids and amino acid metabolites 
(Fig. 3) [198].

Tryptophan
Tryptophan regulates macrophages in many diseases 
besides cancer. Low levels of free tryptophan in serum 
may be associated with decreased IDO activity in mac-
rophage and mental health syndromes such as anxi-
ety and depression in patients with chronic hepatitis C 
[199]. Tryptophan-containing hexapeptide-coated gold 
nanoparticle hybrid effectively reduced the inflamma-
tory response [200]. Consistently, reduced kynurenine 
production was shown to be associated with an increased 

inflammatory response in the lungs of aged individu-
als during an influenza infection [201]. Another study 
found kynurenine metabolism pathways were upregu-
lated in the inflammatory disease, aortic atherosclerotic 
aneurysm, and the metabolism of kynurenines help 
downregulate inflammation [202]. With progression of 
the kynurenine metabolism pathways, tryptophan is ulti-
mately broken down into small molecules such as  NAD+, 
picolinic acid (PA), ATP, and  CO2 [72], which each hav-
ing different roles in the anti-inflammatory function of 
macrophages.  NAD+ was found to limit inflammation 
and promote phagocytosis [203], whereas PA is an activa-
tor of macrophage pro-inflammatory function [204].

Tryptophan is transported by system L in macrophages 
[81]. M2-like macrophages expressing IDO suppress the 
immune response by promoting the function of Tregs, 
and inhibiting Teff cells via the KYN-AhR pathway [205, 
206]. AhR activation in tumor-associated macrophages 
might not only depend on tryptophan metabolism within 
macrophages, but might also require Lactobacillus 
metabolized dietary tryptophan to indoles to drive TAMs 
to acquire an immunosuppressive phenotype [207]. This 
observation emphasizes the importance of amino acid 
metabolism of the microbiota in the tumor immune 
response. Furthermore, high activity of AhR in glioblas-
toma is associated with reduced overall survival, suggest-
ing AhR might become a potential therapeutic target in 
some tumor settings [208].

Branched‑chain amino acids (BCAAs)
BCAAs have both pro- and anti-inflammatory functions 
in macrophages [209]. In early stages of macrophage acti-
vation following lipopolysaccharide (LPS) stimulation, 
transamination by BCAT1 is increased instead of upreg-
ulating BCAAs uptake [210]. The inhibition of BCAT1 
reduced itaconate production and limited flux through 
the tricarboxylic acid (TCA) cycle in macrophages, which 
is associated with reduced expression of immune respon-
sive gene 1 (IRG1). While this contributes to the down-
regulation of macrophage pro-inflammatory function, 
a detailed mechanism remains unclear [210, 211]. IRG1, 
one of the highly upregulated genes in activated mac-
rophages, functions to generate itaconic acid (also known 
as methylenesuccinic acid) through the decarboxylation 
of cis-aconitate, a TCA cycle intermediate [212]. Besides 
general analysis of BCAA metabolism, individual BCAA 
members such as leucine have also been studied as well. 
Supplementation of leucine decreases cholesterol levels 
by inhibiting cholesterol biosynthesis, and thus attenu-
ates macrophage foam-cell formation, which is beneficial 
for preventing atherogenicity [213]. Thus, in lipid metab-
olism, the deprivation of leucine led to white adipose 
tissue (WAT) browning and lipolysis through GCN2, 



Page 13 of 33Yang et al. Journal of Hematology & Oncology           (2023) 16:59  

which helps to treat obesity [214]. However, there is cur-
rently no direct evidence showing BCAAs regulate tumor 
growth through their metabolism in macrophages.

Arginine
Generally, in macrophages, arginine is catabolized by 
inducible isoform of NO synthase (iNOS) and arginase. 
After stimulation of Toll-like receptors (TLRs), activated 
macrophages produce NO through iNOS to resist vari-
ous pathogenic infections such as Mycobacterium tuber-
culosis, Leishmania, bacillus Calmétte-Guerin (BCG) 
[215-217]. For inflammatory disease, iNOS-dependent 
NO synthesis increases mesangial cell lysis leading to tis-
sue fibrosis in the anti-thymocyte serum (ATS)-induced 
model of glomerulonephritis [218]. This suggests that the 
effects of iNOS-dependent NO synthesis favor progres-
sion towards inflammation. On the other hand, given NO 
serves as an important neurotransmitter, the produc-
tion of NO by macrophages was shown to promote non-
adrenergic, non-cholinergic inhibitory nerve stimulation 
[219]. Furthermore, arginase, was shown to be critical for 
Leishmania proliferation [220]. Arginase-1, an arginase 
subtype, regulates the status of macrophages to promote 
the resolution of arthritis [221]. Similarly, arginase-2, 
localized to mitochondria in macrophages, relieved 
inflammation by regulating IL-10 [222]. In addition, argi-
nase promotes the accumulation of M2-like macrophages 
around arterial cell proliferation [223]. Given their simi-
lar metabolic substrates, iNOS and arginase also coop-
erated to control NO-mediated macrophage apoptosis 
[224].

Arginine undergoes different metabolic processing in 
M1-like and M2-like macrophages within the TME. In 
M1-like macrophages, arginine is metabolized to produce 
NO to inhibit tumor development [225, 226]. Whereas 
M2-like macrophages consumed arginine through argi-
nase-1 to limit arginine accessibility to other anti-tumor 
immune cells such as Teff cells, which has a negative con-
sequence on tumor killing [226]. Therefore, these results 
suggests that there may be a coordinated, or competi-
tion-based, mechanism between iNOS and arginase-1 
for arginine [227]. Whether through classical or alterna-
tive activation mechanisms, the expression of SLC7A2 is 
induced in macrophages [228] which allows for uptake of 
arginine to a high level in activated macrophages [229]. 
SLC7A2 knockout mice show a decrease in uptake of 
arginine [228, 230]. Although the expression of iNOS and 
arginase-1 was not changed, the metabolism of arginine 
was reduced in SLC7A2-deficient macrophages [228]. 
In recent years, a third fate for arginine metabolism has 
been characterized in macrophages where arginine is 
metabolized by two enzymes, glycine amidinotransferase 
and guanidinoacetate methyltransferase, to generate 

creatine, which promotes M2-like macrophage polariza-
tion [231]. However, the maintenance of creatine con-
centrations in macrophages is through the transporter 
SLC6A8, which allows for the possibility to influence 
phenotypes of macrophages and modulate macrophage-
mediated immune response though pharmacologically 
or genetically targeting SLC6A8 [231]. In breast cancer, 
supplementing sepiapterin, the precursor of tetrahyd-
robiopterin (BH4), which serves as a cofactor for NOS, 
redirects arginine metabolism in macrophages from the 
polyamines synthesis pathway to the NO pathway. This 
induces a shift of M2-like macrophages to M1-like mac-
rophages and blocks STAT3-dependent expression of 
PD-L1 in tumor cells to suppress their growth [232].

Glutamine
Similar to arginine, glutamine also promotes M2 polari-
zation, where deprivation of glutamine was shown to 
suppress M2-like macrophages and the production of 
the chemokine CCL22, potentially through the mTOR 
pathway [233]. Similarly, glutamine metabolites also 
play a role in M1/M2 polarization as well. The produc-
tion of α-ketoglutarate via glutamine lysis promoted 
M2-like macrophage activation, and the low ratio of 
α-ketoglutarate/succinate enhanced pro-inflammatory 
functions of M1-like macrophages [234]. Furthermore, 
downregulation of α-ketoglutarate is controlled by isoci-
trate dehydrogenase (IDH), which is a downstream target 
of the nuclear receptor Nur77 (Nr4a1) [235]. Therefore, 
glutamine promotes anti-inflammatory functions of 
macrophages through Nur77-mediated transcription 
[236, 237]. Additional functions of glutamine in mac-
rophages include promoting phagocytosis as metabolism 
of glutamine through glutaminase-1 is essential for mac-
rophages to eliminate apoptotic cells [238]. In addition, 
supplementation of macrophages in culture promoted 
cell cycle progression [239]. However, other studies have 
suggested that dietary supplementation of glutamine 
reversed macrophage function in newborn mice [240], 
and glutamine might also suppress lysosomal function, 
anti-inflammatory phenotypes, and cell survival under 
certain conditions [241].

Glutamine deprivation in the TME may not serve as a 
pro-inflammatory factor, but rather may promote tumor-
igenesis. The consumption of glutamine in clear cell renal 
cell carcinoma led to a local glutamine deprivation such 
that macrophages secreted IL-23 due to HIF-1α induc-
tion to strengthen immunosuppressive function of Tregs 
in the TME [242].

Dendritic cells
As the main antigen presenting cells (APCs), dendritic 
cells (DCs) are a key link between the innate immune 
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function with the induction of adaptive immunity. DCs 
are the central regulator of adaptive immunity and 
immune tolerance, and their discoverer Ralph M. Stein-
man was awarded the 2011 Nobel Prize in Physiology or 
Medicine [243].

Dendritic cells are classified into various subtypes 
depending on their function or lineage differentiation. 
These subtypes include conventional dendritic cells 
(cDCs), plasmacytoid DCs (pDCs) and monocyte-derived 
DCs (moDCs). cDCs are primarily associated with T cell 
differentiation [244]. Moreover, in the TME, pDCs and 
moDCs are indispensable for tumor immunity [245, 246], 
and pDC have been proposed to serve as a biomarker in 
triple negative breast cancer (TNBC) and non-small-cell 
lung cancer (NSCLC) [247, 248]. Other studies suggest 
pDCs may contribute to attenuate tumor development 
[249, 250], although mechanisms for these observations 
have not been clarified. moDCs are indirectly associated 
to anti-tumor immune response through the promotion 
of T cell polarization towards Th1, Th2, and Th17 sub-
types [251, 252]. However, DCs may function as a dou-
ble-edged sword regarding tumor immunity. A role for 
DCs in promoting tumorigenesis are centered on the 
recognition and combination of immune checkpoints. 
DCs expressed CD80/CD86 (B7-1/B7-2) which bind to T 
cells expressing CTLA-4 to deliver co-stimulatory signals 
to suppress the T cell response [253]. Furthermore, DCs 
that highly expressed PD-L1 bind to PD-1 receptors of T 
cells to allow tumor cells to escape from elimination by 
cytotoxic T cells [254]. Given the widespread effects of 
DCs on immunity both inside and outside of the TME, it 
is important to discuss the roles of amino acids in regu-
lating DCs (Fig. 3).

Tryptophan
IDO is typically considered an immune suppressive 
marker of DCs. In transplantation models in mice, both 
 IDO+ DCs and tryptophan metabolites were efficient to 
reduce organ rejection, with enhanced effects observed 
when provided in combination [255]. This is likely due 
to IDO and its byproducts inhibiting Teff cell function 
which may be due to IDO attenuating the generation 
of memory  CD8+ T cells and inhibiting the function of 
memory T cells in allograft rejection as well as prolif-
eration [256]. Interestingly, the activity of IDO is reg-
ulated by Arg1, as the release of polyamines that are 
catabolized by Arg1 coerced DCs toward an immuno-
suppressive phenotype through the promotion of IDO1 
phosphorylation [257]. This suggests the presence of 
amino acid metabolism crosstalk in DCs. Following 
catabolism by IDO, kynurenine was further catabolized 
by kynurenine 3-monooxygenase (KMO), and defi-
ciency of KMO led to the accumulation of kynurenine 

thereby promoting the generation of Tregs to relieve 
colitis [258]. Kynurenine is converted to 3-hydrox-
ykynurenine by KMO which is subsequently converted 
to 3-hydroxyanthranilic acid (3-HAA) by 2-amino-
4-[3-hydroxyphenyl]-4-hydroxybutanoic acid (KYUN). 
While DCs influence Teff cells through regulating 
tryptophan metabolism, the metabolites of tryptophan 
including 3-HAA inhibited the activation status of DCs 
to suppress the T cell response after LPS stimulation 
[259]. In addition, upstream molecules target IDO to 
influence function of DCs as well. For instance, thymo-
sin α1, a naturally occurring thymic peptide, induces 
IDO expression, and immunosuppressive function of 
DCs, by stimulating TLR and IFN signaling [260, 261]. 
Interestingly, the gut microbiota aids in tryptophan 
metabolism as well. Indole is produced from trypto-
phan by the gut microbiota, and is further metabolized 
to 3-indoxyl sulfate in the liver, which can contribute 
to regulating DCs anti-inflammatory functions [262]. 
Similar to biological molecules, inorganic molecules 
such as Zinc also influence DC maturation by reducing 
MHCII expression on the surface of DCs and promot-
ing IDO catalysis, which restrains the proinflamma-
tory response due to stimulation by TLR ligands [263]. 
In general, IDO is central to tryptophan metabolism in 
DCs and plays an important role in DCs immunosup-
pressive function.

The metabolism of tryptophan by IDO+ DCs may also 
activate Tregs and hence inhibit T cell-mediated anti-
tumor immunity [264]. Interestingly, CTLA-4 expres-
sion in Tregs promotes IDO secretion by DCs, and the 
inhibition of CTLA-4 could effectively reduce the pro-
duction of kynurenine and IFN-γ by DCs [265]. Such a 
mechanism between DCs and Tregs may exist as a posi-
tive feedback loop. In addition, kynurenine can serve as a 
signaling molecule to directly impede T cell anti-tumor 
response. Abnormal activation of protein kinases are 
a common pro-tumorigenic mechanism, and Bruton’s 
tyrosine kinase (BTK) is one such protein kinase that 
plays a crucial role in oncogenic signaling, especially in 
various B cell lymphomas [266]. In addition, BTK has 
been identified as a crucial regulator of the immunosup-
pressive function of myeloid cells including macrophages, 
myeloid-derived suppressor cells (MDSCs), and DCs 
[267, 268]. Initial studies indicated that activation of DCs 
could be inhibited by autocrine IL-10 secretion which 
activates BTK through the c-Src-PI3K-AKT-mTOR path-
way [269, 270]. Subsequent studies indicated that the link 
between BTK and mTOR is mediated by amino acid sign-
aling, and BTK may serve as an upstream regulator of the 
mTOR pathway. For instance, the BTK-IDO axis inhibits 
a GATOR2/GATOR1-mTORC1 derived tryptophan-sen-
sitive differentiation pathway in DCs [271].
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Arginine
The consumption of arginine by iNOS or argin-
ase is also a feature of DCs inhibitory phenotype. As 
described above, polyamines, produced by arginase, 
promoted DCs to an IDO1-dependent immune sup-
pressive phenotype [257]. When DCs were co-cultured 
with apoptotic cells, both the transcription of iNOS and 
the production of NO were increased due to the phos-
phorylation of STAT3, which converted DCs into sup-
pressive DCs [272]. Similarly, following Mycobacterium 
bovis infection, genes associated with NO synthesis 
were upregulated, such as SLC7A1, SLC7A2 and iNOS, 
which may contribute to bacterial survival [273]. The 
expression of arginase and iNOS are regulated by many 
factors. For instance, all-trans retinoic acid enhances 
arginase and iNOS expression, IL-35 induces argin-
ase-1 expression in murine splenic DCs, and deficiency 
of complement 3 downregulates iNOS-2 expression 
which reduces Treg generation [273-276]. Moreover, 
when iNOS and arginase are inhibited by L-NAME 
and NOHA, respectively, CD80/CD86 ligand, which is 
important for T cell activation, is reduced on the mem-
brane of DCs, which may contribute to pro-inflamma-
tory functions of the immune system [277].

As for the TME, given DCs and macrophages share 
similarity in arginine metabolism, we speculate that argi-
nine is also transported through SLC7A2 in DCs, but 
this needs further study. Arg1 is required for IDO induc-
tion by TGF-β in DCs, and TGF-β is necessary for the 
coexistence of Arg1 and IDO in DCs [257]. Thus, these 
results suggest that over expression of IDO and Arg1 in 
DCs leads to exhaustion of local tryptophan and argi-
nine, which promotes immunosuppression and tumor 
progression.

Myeloid‑derived suppressor cells
Based on their origination as myeloid cells and immune 
suppressive capacity, inflammatory-associated cells that 
share similarities to neutrophils and monocytes in phe-
notype and morphology are defined as myeloid-derived 
suppressor cells (MDSCs) [278]. Based on phenotypic 
criteria, MDSCs are classified into granulocytic MDSC 
(G-MDSC) also named polymorphonuclear MDSCs 
(PMN-MDSC), and monocyte MDSC (M-MDSC). How-
ever, this current definition of MDSCs itself is ambiguous 
and uncertain, and studies have confirmed extensive het-
erogeneity of MDSCs cells [279, 280]. Furthermore, the 
existing definition of MDSCs is self-limiting and could 
be developed beyond this to associate with disease and 
pathological signals [281]. MDSCs are produced and 
accumulate in response to pathological situations such as 
cancer, bacterial infection, and trauma, and amino acids 

have been shown to play a role in their development and 
function (Fig. 3).

Arginine has been heavily studied in MDSCs, as 
MDSCs compete with Teff cells for arginine leading to 
dysregulation of arginine metabolism in T cells. In sepsis, 
MDSCs attenuate T cell function by metabolizing argi-
nine to toxic molecules that impair T cell ζ chain expres-
sion [282]. In parasitic infection, MDSCs are induced by 
both larval and adult stages of Heligmosomoides poly-
gyrus bakeri and increase their expression of arginase-1 
and iNOS, which suggests that metabolism of arginine 
contribute to the maintenance of immunosuppressive 
function of MDSCs [283]. Another study observed that 
arginase-1 expressing MDSCs effectively inhibit the T 
cell response to alleviate tissue injury following hepati-
tis B viral infection [284]. Similarly, after physical injury, 
arginine availability is decreased and further induction of 
arginase-1 expression in MDSCs exhausts arginine levels 
to attenuate T cell activation and increase susceptibility 
to infection [111].

In mouse models of lung adenocarcinoma, Arg1 
expression is elevated in G-MDSCs and both lung ade-
nocarcinomas and squamous tumors [285]. Similarly, 
the number of Arg1 producing PMN-MDSCs increased 
in peripheral blood in renal carcinoma [286]. However, 
in human renal carcinoma Arg1 is released from PMN-
MDSCs [286]. Besides Arg1, iNOS, is also an important 
enzyme for MDSC exercising their suppressive function. 
In MDSCs, Arg1 and NOS2 coordinately upregulate the 
cationic amino acid transporter 2 (CAT2, also named 
SLC7A2), which functions in the transport of extracel-
lular arginine in mice [287]. Interestingly, another view 
has come into play for Arg1 in MDSCs where Arg1 is 
neither constitutively expressed in MDSCs nor necessary 
for MDSCs suppressive function, and induced expression 
of Arg1 in MDSCs does not influence MDSCs-mediated 
immune inhibition [288]. One possible explanation may 
be that samples in this study were isolated from bone 
marrow in B16 melanoma, MC38 colon carcinoma, or 
EL4 lymphoma mice, which differs from other stud-
ies, suggesting that the function of MDSCs may vary by 
organs, tissues, or cells, thus highlighting that the clas-
sification and definition of MDSCs may need further 
updating.

In a transplant model, MDSCs suppress macrophages-
mediated cytotoxicity in an IDO-dependent manner, 
to overcome xenotransplantation organ rejection [289]. 
With regard to tryptophan metabolism in tumors, IDO 
also mediates immune suppressive effects of MDSCs in 
breast cancer and lung cancer [290, 291], and the upregu-
lation of IDO in MDSCs depends on STAT3 phosphoryl-
ation [290]. Moreover, IDO associated with MDSCs also 
plays an important role in inducing the differentiation of 
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Treg or Breg cells, which suppress anti-tumor immunity 
[292, 293]. Inhibiting glutamine metabolism also blocks 
expression of IDO in MDSCs and tumor cell growth 
[294]. Indicating there may exist a crosstalk between 
amino acids in controlling IDO expression. Interestingly, 
besides its role in immunosuppression, IDO expression 
in MDSCs contributed to tumor angiogenesis which 
depends on GCN2 [295].

There are counter viewpoints regarding glutamine 
metabolism in tumor associated MDSCs. For instance, 
inhibiting glutamine metabolism markedly suppressed 
the generation and mobilization of MDSCs, and further 
promoted the generation of anti-tumor inflammatory 
cells [294]. Whereas another study showed glutamine 
deprivation promotes the generation of MDSCs [296]. 
Both of these studies focused on 4T1 triple negative 
breast cancer, but the former was carried out in  vivo, 
while the latter was primarily in vitro. This difference sug-
gests that the function of MDSCs may be regulated by the 
microenvironment where other cell types or cytokines 
may provide signals to direct MDSC function. Moreo-
ver, there appears to be crosstalk between glutamine and 
arginine metabolism in MDSCs. In glutamine-limited 
medium, the activity of iNOS, but not Arg1, was up reg-
ulated, which suggests that iNOS is induced to enhance 
central carbon metabolism and a high bioenergetic status 
[297].

While amino acid metabolism may directly regulate 
MDSCs immunosuppressive function, key metabolic 
sensing molecules including mTOR and GCN2 are also 
involved in regulating MDSCs. In acute kidney injury 
(AKI), the mTOR inhibitor rapamycin protected mouse 
kidneys from AKI in  vivo through the induction and 
recruitment of MDSCs to suppress an excessive immune 
response [298]. GCN2 was found to promote the transla-
tion of the transcription factor CREB2/ATF4 to promote 
MDSCs maturation in a melanoma mouse model, and 
deficiency of ATF4 and GCN2 reduced tumor growth 
[299]. However, while amino acid metabolism may play a 
role in tumor associated MDSCs, how amino acids affect 
MDSCs through the classical mTOR or GCN2 pathway 
requires further investigation.

Collectively, these results suggest that specific targeting 
of amino acid metabolic pathways in MDSCs may have 
therapeutic value.

Therapeutic opportunities of targeting altered 
amino acid metabolism in immune cells
As discussed above, tumor cells as well as some immu-
nosuppressive cells compete with anti-tumor immune 
cells for free amino acids. In addition, amino acids utilize 
several transporters in various cell types where they are 
detected by key sensors and metabolized by key enzymes. 

Thus, supplementing amino acids, or targeting trans-
porters, converting enzymes, metabolites and/or sensors 
involved in amino acid metabolism are potential thera-
peutic strategies. Some of which are already undergoing 
clinical development (Tables 1 and 2).

Supplementation of amino acids
As summarized above, one reason why amino acid 
metabolism influences the function of anti-tumor 
immune cells is that several cell types including tumor 
cells will compete for free amino acids with anti-tumor 
immune cells. Thus, studies have been devoted to explor-
ing the efficacy of free amino acid supplementation in 
cancer therapy (Table 1).

In cancer patients receiving concurrent chemoradio-
therapy, dietary supplementation of arginine, glutamine 
and fish oil reduced the incidence of a series of postop-
erative complications, such as hematologic toxicities and 
mucocutaneous fistula [300, 301]. Arginine supplementa-
tion also showed efficacy when combined with chemo-
therapy drugs. For instance, combining arginine with 
docetaxel (DTX), an immunomodulatory chemothera-
peutic agent, promoted anti-tumor phenotypes of DCs 
and reduced the proliferation of MDSCs in mouse mod-
els of breast cancer [302]. Supplementation of arginine 
increases infiltration of  CD8+ T cells into colon carci-
noma-bearing mice only when combined with of cyclo-
phosphamide (CP) [303]. In addition, arginine induced a 
metabolic shift of activated T cells from glycolysis to oxi-
dative phosphorylation to promote the generation of T 
cells with higher survival capacity and anti-tumor activity 
[137]. Consistent with these studies, arginine treatment 
markedly reduced the population of MDSCs and the 
expression of reactive oxygen species (ROS), and corre-
spondingly enhanced the anti-tumor activity of effector T 
cells which was thought to be due to excessive consump-
tion of arginine by MDSCs in the TME [304]. But in a 
clinical trial of colorectal cancer patients, arginine sup-
plementation did not reduce MDSCs frequency. On the 
contrary, an arginine-treated cohort showed an increased 
frequency of polymorphonuclear MDSCs (PMN-MDSC) 
and monocyte MDSC (M-MDSC) compared to the pla-
cebo-treated cohort [305]. Although, when combined 
with other amino acids, some clinical trials show a posi-
tive benefit to cancer patients, and while arginine sup-
plementation alone provided some effective anti-tumor 
efficacy when assessed in cell culture and animal models, 
mono therapy clinical trials of arginine supplementation 
have not been carried out.

Removal of tryptophan form the diet effectively inhib-
ited tumor growth in animal models, and supplementing 
tryptophan or its catabolite indole-3-acetic acid rescued 
tumor growth and promoted an immunosuppressive 
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Table 2 Clinical trials on blocking amino acid metabolic pathways in combination with traditional therapeutics

Targets Mechanism Drugs Combinatorial 
intervention

Type of cancer NCT number Phase Status

IDO1 Inhibiting trp-kyn 
metabolism pathway 
and enhance anti-tumor 
immunity

Epacadostat Biological: CRS-207 Platinum-resistant Ovar-
ian Cancer, Fallopian 
Cancer, Fallopian Cancer

NCT02575807 I/II Terminated

Biological: DEC-205/
NY-ESO-1 Fusion Protein 
CDX-1401
Drug: Poly ICLC

Fallopian Tube 
Carcinoma, Ovarian 
Carcinoma, Primary 
Peritoneal Carcinoma

NCT02166905 I/II Completed

Drug: Itacitinib Solid Tumors NCT02559492 I Terminated

Drug: Azacitidine
Drug: Pembrolizumab
Drug: INCB057643
Drug: INCB059872

Solid Tumors, Advanced 
Malignancies, Metastatic 
Cancer

NCT02959437 I/II Terminated

Biological: SV-BR-1-GM
Biological: INC-
MGA00012
Drug: Low dose cyclo-
phosphamide
Biological: Interferon 
Inoculation

Breast Cancer Female, 
Breast Neoplasm Female

NCT03328026 I/II Recruiting

Drug: Nivolumab
Drug: platinum chemo-
therapeutic drug

Lung Cancer NCT03348904 III Terminated

Drug: Pembrolizumab
Drug: Placebo

Urothelial Cancer NCT03361865 III Completed

Drug: Pembrolizumab
Drug: chemotherapeutic 
drug

Solid Tumor NCT03085914 I/II Completed

Drug: Nivolumab
Drug: Ipilimumab
Drug: Lirilumab

Solid Tumor NCT03347123 I/II Terminated

Drug: Retifanlimab Endometrial Cancer NCT04463771 II Recruiting

Drug: Pembrolizumab
Biological: CRS-207
Drug: CY
Biological: GVAX

Metastatic Pancreatic 
Adenocarcinoma

NCT03006302 II Active, not recruiting

Drug: Ipilimumab Melanoma NCT01604889 I/II Terminated

Drug: INCB001158
Drug: Pembrolizumab

Solid Tumors NCT03361228 I/II Terminated

Drug: Pembrolizumab Malignant Ovarian Clear 
Cell Tumor, Recurrent 
Ovarian Carcinoma

NCT03602586 II Terminated

Sarcoma NCT03414229 II Active, not recruiting

Renal Cell Carcinoma 
(RCC)

NCT03260894 III Active, not recruiting

Head and Neck Cancer NCT03358472 III Active, not recruiting

Urothelial Cancer NCT03374488 III Completed

BMS-986205 Biological: Relatlimab
Biological: Nivolumab

Advanced Cancer NCT03459222 I/II Recruiting

Biological: Nivolumab
Radiation: Radiation 
Therapy
Drug: Temozolomide

Glioblastoma NCT04047706 I Recruiting

Drug: Nivolumab Endometrial Adenocar-
cinoma, Endometrial 
Carcinosarcoma

NCT04106414 II Active, not recruiting
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tumor-associated macrophages phenotype [207]. Restric-
tion of dietary serine impaired pathogen-driven expan-
sion of T cells in vivo, but does not appear to influence 
overall immune homeostasis [143].

Targeting SLC transporters
The expression of SLC transporters is regulated by many 
factors, and studies assessing the regulation of SLC amino 
acid transporters in immune cells suggests the possibility 
of a clinical transformation in cancer therapy. Here, we 
summarize the effect of gene therapy and pharmacologi-
cal interventions on SLC family members (Table 3).

Besides direct regulation of SLC genes or proteins, 
recent studies also provide a series of potent targets 
to design effective and specific therapeutics. c-Myc, a 

well-known oncogene, controls the transcription of SLC 
transporters, but which transporters are regulated in 
T cells and tumor cells differ [306, 307]. Interestingly, 
amino acids transported by SLC transporters activate 
mTORC1 to increase c-Myc expression [308, 309], thus 
there may exist a positive feedback loop among c-Myc, 
SLC transporters, and mTORC1. In addition, mTORC1 
regulates the transcription factor ATF4 to balance cel-
lular amino acid supply with demand for protein syn-
thesis through regulating SLC transporters, and loss of 
ATF4 reduces amino acid uptake [310]. Similarly, c-Myc 
was also found to regulate SLC1A5 expression in B cells, 
which was curbed by the microRNAs let-7adf [147]. 
Similarly, another microRNA, miR-31-5p, suppressed 
the expression of SLC15A4 in pDCs and downregulates 

Table 2 (continued)

Targets Mechanism Drugs Combinatorial 
intervention

Type of cancer NCT number Phase Status

Hepatocellular Carci-
noma

NCT03695250 I/II Active, not recruiting

Indoximod Radiation: Partial Radia-
tion
Radiation: Full-dose 
Radiation
Drug: Temozolomide
Drug: Cyclophospha-
mide
Drug: Etoposide
Drug: Lomustine

Glioblastoma, Medul-
loblastoma, Epend-
ymoma, Diffuse Intrinsic 
Pontine Glioma

NCT04049669 II Recruiting

Drug: Ipilimumab
Drug: Nivolumab
Drug: Pembrolizumab

Melanoma NCT02073123 I/II Completed

LY3381916 LY3300054 Solid Tumor, Non-Small 
Cell Lung Cancer, Renal 
Cell Carcinoma, Triple 
Negative Breast Cancer

NCT03343613 I Terminated

KHK2455 Avelumab Urothelial Carcinoma NCT03915405 I Active, not recruiting

Arginase Prevent arginine cat-
abolize to immunosup-
pressive molecules and 
arginine exhaustion

INCB001158 Drug: chemotherapeutic 
drugs

Biliary Tract Cancer, 
Colorectal Cancer, 
Endometrial Cancer, 
Gastroesophageal 
Cancer, Ovarian Cancer, 
Solid Tumors

NCT03314935 I/II Active, not recruiting

Drug: Epacadostat 
(anti-IDO)
Drug: Pembrolizumab

Solid Tumors NCT03361228 I/II Terminated

Biological: Daratu-
mumab SC

Relapsed or Refractory 
Multiple Myeloma

NCT03837509 I/II Completed

AHR Block the trp-kyn-AHR 
pathway

IK-175 Drug: nivolumab Advanced Solid Tumors, 
Metastatic Solid Tumors, 
Urothelial Carcinoma

NCT04200963 I Recruiting

Head and Neck Squa-
mous Cell Carcinoma

NCT05472506 I Not yet recruiting

BAY2416964 Drug: Pembrolizumab Advanced Solid Tumors NCT04999202 I Recruiting

Advanced Solid Tumors NCT04069026 I Recruiting
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IFN-I production, but the mechanism remains unclear 
[311]. Under hypoxic conditions, SLC38A2 was upregu-
lated in a HIF-1α-dependent manner [312] whereas 
SLC7A5 is upregulated by HIF-2α [313]. Other mole-
cules such as interleukins induce SLC transporter activ-
ity as well. IL-2, IL-15 and/or IL-18 upregulated a series 
of SLC transporters in effector T cells and NK cells [32, 
184-186, 314]. Moreover, post-translational modifica-
tions, such as phosphorylation, N-glycosylation, acetyla-
tion, palmitoylation, ubiquitination and SUMOylation, 
also play important roles in SLC transporter functions as 
well [315].

In view of these processes that affect SLC transporter 
activity, overexpression of certain transcription factors, 
cytokines, and chemokines may upregulate SLC trans-
porters in immune cells to enhance amino acid uptake 
from the TME. The development of chimeric antigen 
receptor (CAR) immune cells may allow for exploita-
tion of these pathways to promote anti-cancer effects. 
For instance, CAR-NK cells increased their function 
and survival through autocrine signaling of IL-15 [316]. 
While these regulatory mechanisms warrant more inten-
sive study, elevating expression or activity of amino acid 
transporters may further empower these CAR-NK or 
CAR-T cells.

On the other hand, identifying mechanisms to down-
regulate SLC transporter activity in pro-tumor immune 
cells may also makes sense. Existing SLC transporter 
inhibitors mostly focused on tumor cells, and targeting 
SLC1A5, SLC3A2, or SLC7A5 has shown anti-tumor effi-
cacy [317–319]. Therefore, some immune cells such as 
Tregs or MDSCs which suppress the immune response 
may also serve as effective targets of SLC transporter 
inhibitors.

Targeting amino acid metabolism enzymes
IDO and TDO are key enzymes involved in tryptophan 
metabolism, and exist in tumor cells and immune cells 
except lymphoid cells. Both catabolize tryptophan to 
kynurenine which suppresses anti-tumor effects of lym-
phoid cells. Therefore, studies have focused on develop-
ing IDO or TDO inhibitors to improve the anti-tumor 
effects of immune cells, and IDO1, IDO2 and TDO 
inhibitors have already been summarized [320]. However, 
IDO1 inhibitor monotherapy did not show clinical effi-
cacy [321], which may be due to the fact that tryptophan 
can be catabolized by IDO2/TDO as well, and thus the 
combined therapy of inhibitors of these three enzymes 
may show increased responses. Recent efforts to develop 
dual inhibitors of IDO and TDO have elicited encourag-
ing results with respect to anti-tumor effects [322–326]. 
Moreover, IDO inhibition shows synergistic effects on 
tumor cytotoxicity with immune checkpoint inhibitors 

(Table  2), such as PD-1/PD-L1 blockade and CTLA-4 
blockade [327–329], and similar synergistic effects were 
also reported for chemotherapy [330-332] and radiother-
apy [333]. Consistent with this notion, supplementation 
with tryptophan or IDO inhibitors enhanced  CD8+ T 
cells to induce apoptosis of co-cultured cancer cells and 
increase the infiltration of  CD8+ T cells into cancer nests. 
Furthermore, supplementation of tryptophan may help 
IDO inhibition and PD-1 blockade in anti-cancer treat-
ments [334].

Pharmacologic inhibition of the BTK-IDO axis and 
deletion of BTK/IDO genes led to the robust differen-
tiation of inflammatory DCs and promoted anti-tumor 
T cell responses both in  vitro and in  vivo [271]. With 
respect to MDSCs, Ibrutinib, an irreversible inhibitor of 
BTK and IL2-inducible T-cell kinase (ITK), suppressed 
MDSC generation and downregulated mRNA expression 
of IDO in vitro [268]. From these studies, one can specu-
late that BTK-IDO may be a universal signaling pathway 
promoting immunosuppressive responses in various cell 
types, which may be a potential target of tumor therapy. 
Overall, studies with inhibitors of the IDO/TDO pathway 
display an inspiring prospect of clinical translation but 
may need to find additional possibilities for combination 
therapy in the future.

Metabolism of kynurenine by kynurenine-3-monoox-
ygenase (KMO) led to dysfunction of pDCs and immu-
nosuppressive activity in multiple myeloma. As a result, 
inhibition of KMO triggered both specific T cell and 
NK cell cytotoxic activity [335]. Interestingly, there was 
also a synergistic effect when KMO inhibition was com-
bined with PD-L1 blockade. Besides being converted into 
immunosuppressive metabolites, kynurenine directly 
inhibits effector T cell anti-tumor functions which is res-
cued by tetrahydrobiopterin (BH4) [336]. Furthermore, 
attempts to identify mechanisms to eliminate kynure-
nine and/or other immunosuppressive metabolites in 
the TME may become an effective way to inhibit tumor 
development. PEGylated kynureninase, also referred to 
as PEG-KYNase, degraded kyn into non-immunosup-
pressive metabolites, which increased proliferation of 
infiltrating  CD8+ T cells [337].

Arg1 is another key factor of immunosuppressive mye-
loid cells and tumor cells. A small-molecule inhibitor 
of Arg1, CB-1158, resulted in a pro-inflammatory shift 
within the TME, and effectively reduced tumor growth 
[338]. OAT-1746, another Arg1 inhibitor, completely 
abrogated the immunosuppressive function of Arg1 in 
extracellular vesicles secreted from  Arg1+ cells [339]. 
The novel Arg1/2 inhibitor, compound 9, restored effec-
tor T cell function but did not show anti-tumor effects 
in in vitro experiments [285]. A recent study revealed a 
novel synthesized inhibitor effectively increased arginine 
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concentrations in the serum [340], but whether it could 
hinder tumor growth has not been investigated. Inter-
estingly, a traditional Chinese medicine Shaposhnikov 
root extract Prim-O-glucosylcimifugin (POG) effectively 
inhibited the immunosuppressive function of PMN-
MDSCs and exhibited a synergetic anti-tumor effect 
with PD-1 blockade by inhibiting arginine metabolism in 
PMN-MDSCs [341]. Similarily, iNOS inhibitors promote 
an anti-tumor immune response. In cutaneous squa-
mous cell carcinoma, MDSCs impair vascular E-selec-
tin expression through iNOS-induced NO production, 
and N(ω)-nitro-L-arginine(L-NNA), an iNOS inhibitor, 
restored vascular E-selectin expression to enhance T 
cell recruitment [342]. Both the Arg1 inhibitor NOHA 
(NG-Hydroxy-L-arginine) and iNOS inhibitor L-NAME 
 (Nω-nitro-L-arginine methyl ester) upregulate expression 
of co-stimulatory molecules in DCs, facilitating the anti-
gen presentation function of DCs [277].

Dihydrolipoamide succinyl transferase (DLST), a mito-
chondrial enzyme and subunit of the α-KGDC complex 
within the TCA cycle, was found to associate with ovar-
ian cancer. Deprivation of glutamine reduced DLST 
expression in MDSCs and further rescued anti-tumor 
immune function [343].

Target amino acids sensors
As a kyn sensor, AhR plays a critical role in the try-IDO/
TDO-kyn-AhR pathway. Thus, it is generally recognized 
as a therapeutic target, both in immune cells and tumor 
cells. This immune suppressive axis could be an effective 
target by selective blockade of AhR to delay the progres-
sion of IDO/TDO overexpressing tumors and enhance 
anti-tumor efficacy when combined with immune check-
point blockade. To this end, we have summarized clinical 
trials using AhR inhibitors (Table 2). 3′,4′-dimethoxyfla-
vone (DMF) was reported to be an effective AhR inhibi-
tor that blocks the formation of nuclear AhR complexes 
in TCDD induced breast cancer cells [344]. DMF mark-
edly enhanced PD-1 blockade in  CD8+ T cells when 
combined with carboxyamidotriazole [345]. Consist-
ently, AhRil (CH-223191), another AhR inhibitor, pro-
motes pro-inflammatory polarization of macrophages 
and increases infiltration of  CD8+ T cells, leading to 
improved immune checkpoint blockade therapy with 
PD-1 antibody [95, 207, 346].

GCN2 senses amino acid deficiency, and negatively 
regulates the anti-tumor capacity of T cells. Disruption of 
GCN2 in T cells prevents inhibition of their proliferation 
induced by  IDO+ DC cells both in vivo and in vitro [85], 
but it has yet to be associated with GCN2 amino acid 
sensing capability. Subsequent studies of GCN2 inhibi-
tion mainly focused on tumor cells [347–349]. Although 
a role for GCN2 in amino acid metabolism and the 

anti-tumor efficacy of GCN2 inhibition has been dem-
onstrated, whether GCN2 inhibition is a potential thera-
peutic strategy to target tumor-associated T cells needs 
further evaluation.

The metabotropic glutamate receptor 2/3 (mGluR2/3) 
is expressed in MDSCs, and the mGluR2/3 antagonist 
LY341495 reduced the immune inhibitory function of 
MDSCs and further attenuated B16 melanoma growth 
[350].

Conclusions and future perspectives
With the application of ultra-sensitive metabolic detec-
tion technologies, metabolic reprogramming of amino 
acids has been extensively identified in various types of 
malignancies. These studies have demonstrated that 
amino acid metabolism is an essential layer of regula-
tion on immune cells to impact human tumorigenesis. 
As central amino acid sensors, mTOR and GCN2 inte-
grate nutrient availability signals to regulate growth, 
polarization, and functions of cancer-associated immune 
cells. Amino acid uptake by immune cells is facilitated 
jointly by multiple amino acid transporters in the SLC 
family, whose functions are still not fully understood 
and deserves further comprehensive studies. Moreo-
ver, a series of rate-limiting enzymes control amino acid 
metabolism to regulate immune cell function in the 
TME.

However, only limited studies have shed light on the 
mechanisms by which amino acids influence tumorigen-
esis through SLCs, key enzymes involved in catalysis, and 
targeted sensors, to influence immune cell phenotypes. 
Most studies have focused on the well-defined amino 
acid regulatory pathways in immune cells, such as the 
uptake process and the function of metabolites, lack-
ing a detailed understanding of mechanisms that drive 
metabolic reprogramming of immune cells. Moreover, 
there is increasing knowledge of T cell metabolism, but 
metabolic status of other infiltrating immune cells such 
as neutrophils or eosinophils have assessed. Similarly, 
with respect to amino acids, most studies have focused 
on a small subset of amino acids. The roles of many other 
amino acids in tumor-associated immune cells, as well 
as their metabolic processes and functional metabolites, 
require further investigation. In addition, dynamic regu-
lation of metabolism has not been taken into consid-
eration in most scenarios since cancer development and 
anti-tumor immunity is a spatiotemporally heterogenic 
process.

Therapeutic potential of targeting aberrant amino 
acid metabolism has been recently evaluated to enhance 
anti-cancer immunity. Compared to monotherapy (anti-
PD-1 or chemotherapy), combination therapy with 
either amino acid supplementation or metabolic enzyme 



Page 24 of 33Yang et al. Journal of Hematology & Oncology           (2023) 16:59 

inhibitors enhances efficacy. Moreover, manipulation 
of amino acid metabolism may also improve immuno-
therapy with CAR-T cells. However, one should bear in 
mind that amino acids are essential metabolites required 
for numerous physiological processes and thus caution 
should be taken to avoid systemic cytotoxicity by target-
ing these metabolic pathways for cancer therapy. In this 
regard, novel delivery systems should be applied to mod-
ulate amino acid levels in specific immune cells within 
the TME.

Due to the complex architecture of the TME, devel-
oping and using new cell culture system such as orga-
noids, will provide a more physiologically relevant 
environment to model the TME in  vitro. By adding 
infiltrating immune cells into organoid cultures will 
provide a platform to quantitatively study metabolic 
interaction between various immune cells and tumor 
cells. In addition, the ability to supplement amino 
acids and metabolites into organoid cultures will be a 
valuable method to evaluate whether these molecules 

are necessary and sufficient for anti-tumor immunity. 
These techniques will promote an in-depth understand-
ing of the reprogramming of amino acid metabolism in 
tumor-associated immune cells.

Together, tremendous progress has been made in this 
field, but there are still many outstanding questions in 
reprogramming of amino acid metabolism in the TME. 
Moreover, amino acid competition between immune 
cells and cancer cells appears to be a widely observed 
phenomenon (Fig.  4). However, the underlying regu-
latory mechanisms are just beginning to be explored. 
While there will no doubt be broadly functioning 
molecular mechanisms, there will also likely be con-
text-dependent factors driving amino acid competition 
in different cancer types. Further mechanistic insights 
into this fundamental nutrient metabolism rewiring 
will identify novel therapeutic targets to restore anti-
tumor immunity in the TME and improve immuno-
therapeutic efficiency in the clinic.

Fig. 4 Amino acid competition in the TME. T cells compete with macrophages, MDSCs, and tumor cells for several amino acids, which influence 
the anti-tumor functions of T cells. Moreover, these cells produce kynurenine to suppress T cells, emphasizing the complexity of amino acid 
metabolism in the TME. The dashed line represents two lines that do not intersect. The arrow line represents activation and the line with a bar at the 
end represents inhibition. AHR Aryl hydrocarbon receptor; Arg Arginine; Arg1/2 Arginase-1/2; DC Dendritic cell; IDO Indoleamine 2,3-dioxygenase; 
iNOS Inducible isoform of NO synthase; Kyn Kynurenine; MDSC Myeloid-derived suppressor cell; Met Methionine; MTA Methylthioadenosine; PD-1 
Programmed death 1; SAM S-adenosylmethionine; STAT5 Signal transducer and activator of transcription 5; TAM Tumor-associated macrophages; Trp 
Tryptophan
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