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Abstract 

Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to 
standard‑of‑care chemo‑immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. 
Current treatment options are limited, with no therapies specifically approved as third‑line or beyond. Delta‑like 
ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface 
of SCLC cells with minimal to no expression on normal cells. Several DLL3‑targeted therapies are being developed 
for the treatment of SCLC and other neuroendocrine carcinomas, including antibody‑drug conjugates (ADCs), T‑cell 
engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience 
with rovalpituzumab tesirine (Rova‑T), a DLL3‑targeting ADC, the development of which was halted due to a lack of 
efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving 
therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3‑targeting agents that are 
currently in development, including the TCE molecules—tarlatamab (formerly known as AMG 757), BI 764532, and 
HPN328—and the CAR T‑cell therapy AMG 119. We conclude with a discussion of the future challenges and oppor‑
tunities for DLL3‑targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease 
progression, and the potential of rational combinatorial approaches that can enhance efficacy.
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Background
Small cell lung cancer (SCLC) is an aggressive, high-
grade, neuroendocrine carcinoma (NEC) that annu-
ally contributes to 13%–15% of lung cancer diagnoses 
[1–3]. The prognosis for patients diagnosed with SCLC 
has been bleak; the 5-year survival rate ranges from 27% 
for those with localized disease to 3% for those with 
metastatic disease [1]. SCLC frequently presents at an 
advanced stage at the time of diagnosis and is character-
ized by rapid doubling time, a propensity to early metas-
tasis, and transient responses to current standard-of-care 
(SOC) therapies that are almost always followed by the 
development of drug resistance and relapse [4, 5]. Cumu-
latively, these factors have led to SCLC being branded as 
a recalcitrant cancer, with the majority of patients failing 
to achieve long-term disease control with currently avail-
able therapies. To date, no targeted therapy for SCLC has 
proven to be better than existing therapies, even in trials 
with selected patient populations [6].

The current first-line SOC treatment for SCLC is 
platinum-based chemotherapy (cisplatin plus etopo-
side or carboplatin plus etoposide; CE) with concurrent 
radiotherapy for patients with limited-stage SCLC (LS-
SCLC), followed by prophylactic cranial irradiation for 
patients who experience a complete response [7, 8], and 
CE with a programmed death-ligand 1 (PD-L1) inhibitor 
for patients with extensive-stage SCLC (ES-SCLC) [8]. 
In the US, topotecan (an antineoplastic, DNA-binding 
agent that induces lethal breaks in DNA) was the sole 
approved therapeutic agent for the second-line treatment 
of SCLC for more than two decades until lurbinectedin, 
an RNA polymerase inhibitor that inhibits active tran-
scription, received accelerated approval for the treat-
ment of relapsed SCLC in 2020 [7, 9, 10]. No therapeutic 
agent or regimen has received regulatory approval for 
the treatment of patients with SCLC who fail to respond 
or relapse after two or more lines of therapy. The lim-
ited improvement in outcomes with current therapies 
and the almost inevitable development of resistance and 
relapse following first-line chemotherapy serve to drive 
the ongoing search for more durably effective therapeutic 
approaches.

Immune checkpoint inhibitor (ICI) therapy has sub-
stantially improved outcomes for patients with non-small 
cell lung cancer and many other solid tumor types. Even 
though the high tumor mutation burden observed in 
SCLC has been correlated with an improved response to 
ICI therapy [2, 11], the addition of ICIs to first-line chem-
otherapy has provided transformative benefit in only a 
small subset of patients, with early retrospective analysis 
suggesting that the benefit may be confined to patients 
with inherently more inflamed tumors [12–14]. Several 
factors are thought to contribute to ICI resistance in 

SCLC, including downregulation of major histocompat-
ibility complex (MHC) molecules, failure of antigen pres-
entation, and high intratumoral heterogeneity [15, 16]. 
One strategy to bypass the lack of canonical antigen pres-
entation pathways is to target an alternative cell surface 
protein on the cancer cell. Delta-like ligand 3 (DLL3) has 
emerged as an attractive tumor-specific target uniquely 
overexpressed on the cell surface of SCLC and other 
high-grade NECs [17]. Despite the apparent lack of ben-
efit in short-term follow-up studies of ICIs in SCLC, it is 
important to note that emerging data from the long-term 
follow-up of patients with ES-SCLC from the CASPIAN 
and KEYNOTE-604 trials indicate that long-term main-
tenance treatment (> 3 years in the CASPIAN trial and up 
to 35 treatment cycles in the KEYNOTE-604 trial) with 
an ICI and chemotherapy was associated with significant 
improvement in survival (three times more patients alive 
at 3  years) compared with etoposide-platinum chemo-
therapy alone [12, 13].

In this review, we discuss various DLL3-targeting ther-
apies starting with rovalpituzumab tesirine (Rova-T), the 
first DLL3-targeting antibody-drug conjugate (ADC), 
which advanced to phase 3 clinical studies before devel-
opment was halted. We discuss the lessons that can be 
gleaned from the Rova-T clinical development program. 
We then summarize available preclinical and clinical data 
for the various DLL3-targeting therapeutic molecules 
currently in development and provide an overview of the 
different development stages of these programs with par-
ticular emphasis on the bispecific T-cell engager (TCE) 
tarlatamab (formerly AMG  757). We conclude with a 
perspective on the promise of DLL3-targeted therapeu-
tics for the treatment of SCLC and other NECs.

DLL3
In the search for alternative therapeutic targets for 
SCLC, the transcription factor achaete-scute homolog 1 
(ASCL1) has triggered particular interest due to its role 
as a key regulator of neuroendocrine differentiation and 
its ability to drive SCLC formation [18]. The increased 
expression of ASCL1 in some SCLC tumors (relative to 
the expression of the other neuroendocrine transcrip-
tion factors NEUROD1 and POU2F3) has since led to 
the identification of a separate SCLC subtype, SCLC-A 
which is discussed in greater detail in a later section of 
the article. ASCL1 drives SCLC disease progression and 
cell survival by regulating the expression of several proto-
oncogenes including MYCL1, RET, SOX2, NFIB, and 
BCL2 [18, 19], as well as the DLL3 gene, which encodes 
an inhibitory ligand that suppresses Notch signaling 
in SCLC cells [20]. The Notch pathway is an evolution-
arily conserved pathway and Notch signaling in SCLC 
is implicated in multiple oncogenic cellular processes, 
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such as cell proliferation, neuroendocrine cell plastic-
ity, differentiation, chemoresistance, and modulation of 
the immune microenvironment [21]. DLL3 is an atypical 
Notch ligand whose overexpression promotes the growth 
of SCLC cells and enhances their migratory and invasive 
capacity [22]. DLL3 has also been implicated in establish-
ing the metastatic- and treatment-resistant phenotype in 
NECs by promoting cell proliferation and the acquisition 
of resistance to platinum-doublet chemotherapy [23, 24]. 
DLL3 expression is low and mainly confined to the Golgi 
apparatus and cytoplasmic vesicles in normal cells but is 
upregulated and traffics to the surface of SCLC cells [25] 
(Fig.  1). Under physiological conditions, the transmem-
brane region and the flanking sequences in the DLL3 pro-
tein are thought to act as a retention signal confining the 
DLL3 protein to the Golgi membrane and cytoplasmic 

vesicles, with minimal-to-absent expression in normal 
cells [26]. Significant overexpression of the DLL3 protein 
leads to aberrant cell surface expression [26], as seen in 
SCLC, although the molecular mechanisms underlying 
DLL3 overexpression in transformed cells are not yet 
fully defined. Up to 85% of human SCLC tumors express 
the DLL3 protein on the cell surface [17, 27, 28]. The sta-
bility of DLL3 expression in SCLC tumors during ther-
apy remains inconclusive. A study of 1073 SCLC tumors 
concluded that DLL3 expression was independent of sex, 
age, tumor stage, performance status, and number of 
prior lines of therapy [27]. In contrast, a much smaller 
study that examined DLL3 expression in 30 paired 
chemotherapy-naïve and chemotherapy-relapsed SCLC 
tumor samples found that DLL3 expression increased or 
decreased following chemotherapy in more than 40% of 
samples [28].

In addition to SCLC, DLL3 is also widely expressed 
in other NECs, such as pulmonary (certain molecular 
subtypes of large  cell NEC [LCNEC]), gastroenteropan-
creatic, bladder, prostate, and cervical NECs [29]. High 
levels of DLL3 expression have been correlated with 
advanced disease and poor survival outcomes in these 
tumors [29].

The differential expression and localization profiles 
of DLL3 in normal and tumor cells render DLL3 an 
attractive, tumor-selective therapeutic target. Multiple 
approaches for targeting DLL3 are being explored pre-
clinically and clinically (Table 1), including the bispecific 
TCE molecule tarlatamab, and other TCEs that have 
entered the clinical testing phase, such as HPN328, BI 
764532, QLS31904, RO7616789, and PT217, as well as 
chimeric antigen receptor (CAR) constructs.

DLL3‑targeting ADCs
Mechanism of action
ADCs are typically composed of a humanized immuno-
globulin G (IgG) molecule that is specific for a tumor-
associated antigen (TAA) to which cytotoxic molecules 
(“warheads”) are attached by means of moieties called 
linkers. Linkers are generally designed to either cleave 
in special environments (e.g., low pH environment) or 
may require the presence of proteolytic enzymes, such 
as those found within a lysosome. ADCs bind to a cell 
surface–expressed TAA and are internalized via endocy-
tosis [30]. Cleavage of the linker then allows for release 
of the cytotoxic warhead, which induces cellular apop-
tosis by either damaging DNA or inhibiting microtubule 
assembly.

Fig. 1 DLL3 expression in normal and tumor tissue. DLL3 protein 
expression via immunostaining (brown color) in A normal pancreatic 
tissue and B an SCLC tumor section [114]. Staining for DLL3 
expression shows weak expression with a cytoplasmic pattern of 
localization in normal human pancreatic tissue sections (Panel A) 
and strong membranous and cytoplasmic expression in human 
SCLC (Panel B). Arrows in Panel A point to pancreatic islet cells. Blue 
hematoxylin counterstain is used to visualize cell nuclei. Original 
objective, ×200. DLL3 delta‑like ligand 3; SCLC small cell lung cancer
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Rova‑T
Rova-T is an ADC comprising a DLL3-specific human-
ized monoclonal antibody (SC16) conjugated to a mem-
brane-permeable pyrrolobenzodiazepine (PBD) dimer 
toxin (warhead) via a lysosomal, protease-sensitive 
dipeptide linker [17, 31]. Binding of Rova-T to cell sur-
face DLL3 causes internalization of the ADC-target com-
plex by endocytosis. Rova-T’s valine-alanine linker is 
subsequently cleaved by lysosome-associated cathepsin 
B, releasing PBD into the cytoplasm. PBD then enters the 
nucleus, cross-links DNA, and induces tumor cell death 
by apoptosis [32] (Fig. 2).

Preclinical experience
In preclinical studies, intraperitoneal administration of 
Rova-T inhibited tumor progression in patient-derived 
xenograft (PDX) models of SCLC with a time to tumor 
progression (TTP) of 132  days in comparison with cis-
platin treatment, which had a TTP of only 4  days [17]. 
Rova-T also showed activity against PDX tumor models 
that were refractory to CE treatment, suggesting poten-
tial utility in the context of platinum-refractory SCLC 
[17].

In preclinical toxicology studies, nonhuman primates 
(NHPs) treated with high and medium doses of Rova-T 
developed skin thickening, hyperpigmentation, mild kid-
ney degeneration, and reversible myelosuppression [17]. 
The toxicology profiles observed in NHPs predicted some 
of the clinical adverse events (AEs) as described below.

Clinical experience
Rova-T has been administered to more than 1000 patients 
as monotherapy and as combination therapy with other 
chemotherapy and immunotherapy treatments in at least 
10 clinical trials, including two phase 3 clinical trials. The 
first-in-human (FIH) study of Rova-T yielded an objective 
response rate (ORR) of 18%, which increased to 38% in 
DLL3-high patients with SCLC (patients whose tumors 
expressed DLL3 on ≥ 50% of cells by immunohistochem-
istry [IHC]) [31]. This impressive preliminary response 
rate appeared to be similar irrespective of whether the 
patient was treated in the second- or third-line setting. 
The observed efficacy led to the initiation of subsequent 
phase 2 and phase 3 trials of Rova-T.

Safety profile In phase 1–3 trials of Rova-T in patients 
with recurrent SCLC after platinum-based chemother-
apy, grade ≥ 3 treatment-emergent AEs (TEAEs) were 
observed in 38%–64% of patients with SCLC, and grade 
5 events were observed in 1.7%–7.1% of patients [6, 24, 
31, 33]. Serious TEAEs were reported in 30%–56% of 
patients. Thrombocytopenia, pleural effusion, photosen-

sitivity reactions, and anemia were among the most fre-
quently encountered TEAEs with Rova-T.

Treatment discontinuations as a result of AEs were 
reported in 10%–22% of Rova-T–treated patients in 
clinical studies [6, 31, 33–35]. Pleural and pericardial 
effusions, thrombocytopenia, and maculopapular rash 
were the most frequent causes for treatment discon-
tinuation [31, 33]. Rova-T–related AEs were typically 
managed by dose reductions, dose interruptions, treat-
ment discontinuations, and other symptom-specific, 
risk-management protocols [31, 33, 35]. The lack of a 
definitive understanding of the pathophysiological 
mechanisms underlying Rova-T toxicity and the high 
incidence of AEs may have contributed to the high dis-
continuation rates observed with this ADC.

The toxicity profile seen with Rova-T can be predom-
inantly attributed to the PBD warhead, as clinical stud-
ies of other ADCs linked to PBD have reported a similar 
toxicity profile (hematological abnormalities, skin tox-
icities, and pericardial/pleural effusions) [36]. Two 
potential mechanisms, which are not mutually exclu-
sive, may contribute to the exposure of nonmalignant 
tissues to the cytotoxic moiety of ADCs. First, prema-
ture cleavage of the ADC linker by tumor cells, tumor-
associated macrophages, or other sources of cathepsin 
B may result in systemic toxicity through the nonspe-
cific release of the warhead before it can be internalized 
by the target cell [6, 33]. Second, a “bystander” effect, 
in which diffusion of the cytotoxic warhead from dis-
integrating tumor cells and its subsequent uptake by 
healthy, nontarget cells resulting in the nonspecific lysis 
of cells, may potentially contribute to ADC-associated 
toxicity [33, 37]. The bystander effect can be a double-
edged sword as it not only amplifies the therapeutic 
effect of ADCs by killing neighboring target-negative 
tumor cells (thereby partially mitigating the challenges 
of tumor heterogeneity) but can also cause the death of 
healthy, nonmalignant cells, leading to systemic AEs.

Efficacy profile In the FIH study of Rova-T–treated 
patients with recurrent/progressive SCLC, previously 
treated with one or two chemotherapy regimens, includ-
ing a platinum-based regimen, the 1-year survival rate 
was 36% compared with the 14% survival rate observed 
in historical studies of conventional chemotherapy in 
the third-line setting [31, 38]. The promising ORR and 
1-year survival rates coupled with the lack of effective 
treatments in the third-line setting warranted further 
clinical evaluation of Rova-T.

In the phase 2 TRINITY study investigating Rova-
T as third-line and beyond therapy in 339 patients 
with DLL3-expressing SCLC (≥ 1% of DLL3-express-
ing tumor cells), the ORR was 12.4% and the median 
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overall survival (OS) was 5.6  months [33]. In patients 
with high DLL3 expression (DLL3 expressed by > 75% 
of tumor cells by IHC), the ORR was slightly higher at 
14.3%, with a median progression-free survival (PFS) of 
3.8 months and a median OS of 5.7 months.

The TAHOE (Rova-T vs topotecan as second-line ther-
apy) and MERU (Rova-T as maintenance therapy after 
first-line therapy vs placebo) phase 3 studies were termi-
nated early as they did not meet the prespecified interim 
primary PFS and/or OS endpoints [6, 35]. In the TAHOE 
study, the median OS was 6.3 months in the Rova-T arm 
and 8.6 months in the topotecan arm [6]. In the MERU 
study, the median OS was 8.8 months in the Rova-T arm 
and 9.9 months in the placebo arm; limiting the analysis 
to the subset of DLL3-high (≥ 75% DLL3-positive tumor 
cells) patients did not improve the efficacy [35]. These 
clinical findings and other strategic considerations led to 
the discontinuation of Rova-T development [39].

A summary of available clinical and preclinical data 
from DLL3-targeting development programs is presented 
in Table 2.

TCEs
Despite more than two decades of clinical testing, only 
four TCEs have received the US Food and Drug Admin-
istration (FDA) approval to date. Blinatumomab, a TCE 
that targets the cluster of differentiation (CD)19 antigen, 
was approved for the treatment of Philadelphia chro-
mosome (Ph)-negative relapsed/refractory B-cell pre-
cursor acute lymphoblastic leukemia (B-ALL) in 2014 
and for the treatment of Ph-positive relapsed/refrac-
tory B-ALL in 2017 [40]. In 2022, three TCE molecules 
were approved: tebentafusp-tebn for the treatment of 

unresectable or metastatic uveal melanoma [41], mosu-
netuzumab-axgb for the treatment of relapsed/refrac-
tory follicular lymphoma [42], and teclistamab-cqyv for 
relapsed/refractory multiple myeloma [43]. TCEs con-
tinue to advance in clinical development across multiple 
tumor indications and are expected to become an impor-
tant component of anticancer strategies. Of the TCEs 
that are currently in development for SCLC, tarlatamab 
is the most advanced, having entered phase 3 in 2023.

Mechanism of action
TCEs have dual specificities, a characteristic that allows 
them to simultaneously bind to the CD3 complex on T 
cells and a target antigen on tumors [44]. This dual bind-
ing brings tumor cells into close proximity with autolo-
gous T cells, triggers the formation of an immunological 
synapse and T-cell activation, and initiates a polyclonal 
T-cell response that is characterized by CD3 cluster-
ing, T-cell proliferation, and the release of pore-forming 
granzyme and perforin [45–47]. This sequence of events 
can culminate in tumor cell apoptosis and amplification 
of the T-cell response (Fig. 3A).

A characteristic feature of TCE molecules is MHC-I–
independent T-cell activation, which may be an advan-
tage in solid tumors that evade effective immune 
surveillance by downregulating surface expression of 
MHC-I [48]. Other features of TCEs that can prove 
advantageous include the ability to employ the entire 
T-cell repertoire against any cell that expresses the rele-
vant target and a capacity to induce T-cell–mediated kill-
ing at very low concentrations [49–51].

Structure of Rova-T

DLL3-specific ADC

PBD

Rova-T binding to 
surface DLL3

Receptor-mediated 
internalization and cleavage 

of PBD from Rova-T by 
lysosomal enzymes

Binding of PBD to 
nuclear DNA

Induction of apoptosis 
and tumor cell lysis

A B C D

Linker

DLL3

Tumor
cell

Nucleus

Lysosome

Fig. 2 Mechanism of action of Rova‑T. A Binding of Rova‑T to cell surface DLL3 triggers receptor‑mediated endocytosis and B internalization of the 
Rova‑T–DLL3 complex followed by fusion with the late endosome. C PBD is released from the Rova‑T complex following enzymatic cleavage within 
the lysosome. The released PBD intercalates between double‑stranded nuclear DNA in a site‑specific manner and causes DNA damage, which 
ultimately leads to D apoptosis [17]. ADC antibody‑drug conjugate, DLL3 delta‑like ligand 3, PBD pyrrolobenzodiazepine, Rova-T rovalpituzumab 
tesirine
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DLL3‑targeting TCEs
Tarlatamab
Tarlatamab is a bispecific TCE with dual affinity for 
DLL3 on tumor cells and CD3 on T cells. The tarlata-
mab molecule consists of two single-chain variable 
fragments (scFv) connected by a short, flexible linker 
and includes a stable, effector-functionless fragment 
crystallizable (Fc) domain to increase the serum half-
life (Fig.  3B). Tarlatamab is designed to form a cytol-
ytic synapse by simultaneously binding to tumor cells 
and T cells, which is associated with T-cell activation, 
transient cytokine production, and T-cell proliferation. 

Activated T cells release pore-forming enzymes, such 
as perforin and granzyme B, which cause tumor cell 
apoptosis [52, 53]. The activated T cells also proliferate, 
increasing the number of effector T cells in the vicinity 
of the tumor and amplifying the antitumor effect [54].

Other TCEs
Other DLL3/CD3 TCEs have similar mechanisms of 
action to tarlatamab, namely, the redirection of T cells 
to kill DLL3-expressing tumor cells. BI 764532 is a bispe-
cific DLL3/CD3 antibody that has an IgG-like scaffold 
(Fig. 3C) [55]. HPN328 is a Tri-specific T Cell-Activating 

Fig. 3 Mechanism of action of A TCEs and B–E structure of DLL3‑targeting TCEs in development. Panel A depicts a generic structure for T‑cell 
engagers, although it should be noted that Fc regions are not a feature of all DLL3‑targeting T‑cell engagers. The structures of the newer 
DLL3‑targeting T‑cell engagers RO7616789 and PT217 have not yet been published. CD cluster of differentiation; DLL3 delta‑like ligand 3, Fab 
fragment antigen‑binding, Fc fragment crystallizable, scFv single‑chain variable fragment, TAA  tumor‑associated antigen, TCE T‑cell engager, TCR  
T‑cell receptor
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Construct (TriTAC) comprising three humanized anti-
body-derived binding domains: an N-terminal domain 
that binds DLL3 on tumor cells, a middle domain that 
binds to human serum albumin (for half-life extension), 
and a C-terminal domain that binds to CD3 (Fig.  3D) 
[56]. TriTACs differ from other TCEs in having a much 
smaller molecular weight due to the use of single-domain 
antibodies for binding to the TAA and human serum 
albumin [56, 57]. QLS31904 is another DLL3/CD3 bispe-
cific TCE for which clinical evaluation is planned. This 
TCE comprises three chains covalently linked by disulfide 
bonds: an anti–DLL3-specific fragment antigen-binding 
(Fab) component, an anti–CD3-directed scFv fragment, 
and a modified Fc region to support heterodimerization 
and purification and prevent unwanted Fc receptor bind-
ing (Fig. 3E) [58].

Preclinical experience
Tarlatamab
In preclinical studies, tarlatamab monotherapy promoted 
significant tumor regression and complete antitumor 
responses in biologically relevant models of primary and 
metastatic SCLC [59]. Tarlatamab exhibited antitumor 
activity in orthotopic SHP-77 tumors and cleared liver 
metastases in the NCI-H82 model of metastatic SCLC. 
Tarlatamab treatment led to 83% and 98% tumor regres-
sions in two different PDX models of SCLC engrafted 
with human T cells. Consistent with its expected 
mechanism of action, tarlatamab promoted CD4 + and 
CD8 + T-cell infiltration into PDX SCLC tumors, T-cell 
activation, production of inflammatory cytokines, and 
the release of cytotoxic granules in  vitro [59]. Tarlata-
mab-induced granzyme B production and cytotoxicity 
occurred concurrently with the release of cytokines such 
as interferon (IFN)-γ, interleukin (IL)-6, IL-10, tumor 
necrosis factor (TNF)-α, and IL-4 [59].

Tarlatamab was well-tolerated in NHPs with no treat-
ment-related AEs (TRAEs) up to the highest dose level 
tested (4.5  mg/kg administered weekly). Tarlatamab 
induced transient decreases in lymphocyte populations 
at a high dose (4.5 mg/kg), and the immune cell infiltra-
tion into the pituitary (an organ that expresses low lev-
els of DLL3) was consistent with target engagement. 
The good tolerability in healthy NHPs underscores the 
low, mainly cytoplasmic expression of DLL3 in normal 
tissue [59, 60]. Tarlatamab has a mean half-life of 234 h 
(9.8 days) in NHPs, supporting intermittent dosing in the 
clinical setting [59].

BI 764532
As observed with tarlatamab, BI 764532 demon-
strated DLL3-dependent antitumor activity in preclini-
cal models of SCLC. BI 764532 induced the specific 

lysis of DLL3-expressing SHP-77 cells at effector-target 
ratios ranging from 2:1 to 30:1 with maximal activity at 
the ≥ 10:1 ratio [55]. BI 764532 could redirect CD4 + and 
CD8 + T cells to lyse DLL3-expressing cells with more 
potent cytotoxic activity observed in cells with higher 
DLL3 expression levels. In  vivo, BI 764532 induced sig-
nificant tumor growth inhibition and sustained tumor 
regression when compared with the vehicle-only con-
trol in CD3 + T-cell humanized mice bearing subcutane-
ous SHP-77 xenograft tumors. Analysis of tumor tissue 
from mice treated with BI 764532 revealed infiltration 
of CD3 + T cells into tumor tissue, including increased 
numbers of both CD4 + and CD8 + T cells within tumors 
compared with the vehicle-only controls. BI 764532 
demonstrated similar pharmacokinetics to tarlatamab in 
NHPs, with a half-life of 10 days [55].

HPN328
HPN328 also demonstrated dose-dependent, DLL3-
specific, T-cell–dependent, cellular cytotoxicity against 
DLL3-expressing SCLC cells. HPN328 induced the 
dose-dependent upregulation of CD25 and CD69 on T 
cells and the secretion of TNF-α and IFN-γ in the pres-
ence of DLL3-expressing tumor cells, consistent with the 
expected mechanism of action [61]. HPN328 mediated 
significant growth inhibition of subcutaneous NCI-H82 
SCLC xenograft tumors in mice. HPN328 was well-tol-
erated in NHPs at doses of 1 mg/kg and 10 mg/kg, with 
no adverse biochemical changes or clinically significant 
changes on necropsy. In NHPs, HPN328 exhibited a 
serum half-life between 2.7 and 3.5 days [61, 62].

Clinical experience
Tarlatamab
Tarlatamab is being evaluated in six ongoing clini-
cal studies, including five trials in patients with SCLC 
(phases 1–3; Table 1) and a phase 1 trial in patients with 
neuroendocrine prostate cancer (NEPC).

Safety profile In the ongoing DeLLphi-300 FIH trial of 
tarlatamab (NCT03319940), 90.7% (97/107) of patients 
experienced TRAEs of any grade and 30.8% (33/107) 
experienced grade ≥ 3 TRAEs [63]. Four patients (3.7%) 
discontinued tarlatamab due to TRAEs (pneumonitis 
[n = 2], immune effector cell–associated neurotoxicity 
syndrome, and encephalopathy [n = 1 each]). No grade 5 
TRAEs were identified. (Further investigation into a pre-
viously reported grade 5 TRAE due to pneumonitis led 
to a change in the etiology and causality of this event, 
which has now been deemed to be a grade 5 TEAE lung 
infection.) Cytokine release syndrome (CRS) was the 
most common TRAE and was seen in 52.3% (56/107) of 
patients. Of these, 73.2% (41/56) of patients experienced 
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grade 1 CRS, and only one patient developed grade 3 CRS. 
Grade > 3 CRS events were not observed. Tarlatamab-
associated CRS was characterized by transient mild fever 
and/or hypotension that generally did not require vaso-
pressor support [64] and typically occurred in the first 
treatment cycle; < 4% of patients experienced recurrent 
CRS in the second cycle or later. Tarlatamab-associated 
CRS was manageable with supportive care, including 
acetaminophen or paracetamol, intravenous fluids, sup-
plemental oxygen (where required), and in some cases, 
tocilizumab (anti–IL-6 monoclonal antibody); however, 
only 8/107 patients (7.5%) required the use of tocilizumab 
for CRS in this trial at the time of data cutoff.

In addition to CRS, neurological events also emerged 
as events of interest. Treatment-related neurologic AEs 
occurred in 53 patients (49.5%) and were mostly grade 
1 in severity, with dysgeusia (22.4%), headache (10.3%), 
confusional state (5.6%), and dizziness (5.6%) being the 
most commonly reported AEs. Treatment-emergent 
grade ≥ 3 neurological events occurred in 12 patients 
(11.2%), including confusional state (n = 5) and enceph-
alopathy (n = 2), all of which resolved. Grade 4 confu-
sion (n = 1) was the only grade > 3 neurological event 
that was observed. Neutropenia, an AE found to be 
associated with tarlatamab, was unexpected based on 
preclinical data; the mechanism is not currently under-
stood. Treatment-related neutropenia was observed in 
15.9% (17/107) of patients; grade ≥ 3 neutropenia was 
observed in 9.3% (10/107) of patients. Febrile neutrope-
nia occurred in one patient and was not considered to be 
treatment related.

CRS was expected with tarlatamab, given its mecha-
nism of action and based on clinical experience with 
other TCE molecules. While the molecular mechanisms 
of CRS are not completely understood, it can develop 
from activation of endothelial cells and bystander 
immune cells after TCE binding [65]. Activated T cells, 
monocytes, and macrophages produce supraphysiologi-
cal quantities of IFN-γ, IL-6, and TNF-α, which collec-
tively trigger an inflammatory cycle that can overpower 
the homeostatic mechanisms in the host [65]. It is not 
clear which, if any, of the cytokines induced by TCEs are 
required for their antitumor activity in patients [66].

The mechanism of neurological toxicity in the tarla-
tamab (FIH) study is not fully understood, as toxicology 
studies in NHPs did not reveal tarlatamab-related neu-
rological signs or histopathological evidence of neuro-
toxicity [59, 60]. Neurological AEs have been observed 
with the TCEs blinatumomab, mosunetuzumab, and 
teclistamab [67–69], but the extent to which expression 
of the targeted tumor antigen in neural tissue informs 
the potential neurotoxicity of TCEs, relative to other 
factors, needs to be explored further. In other studies, 

TCE-associated neurotoxicity has been linked to T-cell–
mediated inflammatory events in the perivascular space 
within the brain [70, 71]. Strategies such as step-dosing, 
premedication with corticosteroids, and fluid admin-
istration have been employed in ongoing clinical trials 
for mitigating CRS and neurological events and will be 
critical for successful clinical adoption. The neutropenia 
observed with tarlatamab treatment warrants further 
study, especially if tarlatamab is used in combination 
with bone marrow–suppressing agents.

Tarlatamab is administered in an inpatient setting 
as the current clinical trial protocols for tarlatamab 
require 48-h monitoring on days 1 and 8 of cycle 1, but 
the encouraging FIH safety profile has led to the ongoing 
exploration of reduced monitoring in phase 2 (20–24  h 
and 24 h monitoring) and phase 1 (6–8 h and 8 h moni-
toring) settings.

Efficacy profile At the latest data cutoff on July 19, 2022, 
the FIH study of tarlatamab had enrolled 107 patients with 
progressive or recurrent SCLC following at least one prior 
line of therapy (2L +), including platinum-based chemo-
therapy, across 10 dose levels ranging from 0.003 mg to 
100  mg [63]. Step-dosing was adopted starting with the 
3-mg cohort (using 1 mg as the run-in dose followed by 
the target dose on day 8, day 15, and once every 2 weeks 
thereafter) to mitigate the CRS observed in prior cohorts. 
Responses were seen starting at the 0.3-mg dose level, 
with a greater number of responses in the ≥ 3-mg dose lev-
els. Confirmed responses were seen in 25 patients (ORR: 
23.4%), which included two patients (1.9%) with complete 
responses and 23 patients (21.5%) with partial responses 
(PR). Stable disease (SD) was seen in 30 patients (28%). 
The disease control rate was 51.4%, median PFS was 
3.7  months (95% confidence interval [CI]: 2.1–5.4), and 
the median OS was 13.2 months (95% CI: 10.5–not esti-
mable). Among confirmed responders, the median time 
to response was 1.8 months (range: 1.2–7.4 months) and 
the median duration of response (DOR) was 12.3 months 
(95% CI: 6.6–14.9), indicating that in most responders, a 
response could be observed as early as by their first scan 
with a response duration that was encouraging relative to 
that observed in other trials of SCLC therapies.

HPN328
Preliminary results from the phase 1 trial of HPN328 
have been presented [72]. As of April 21, 2022, 18 patients 
with SCLC and other NECs had been treated with doses 
ranging from 0.015 mg/week to 12.0 mg/week with step-
dosing utilized at higher doses. In total, 3 of 11 patients 
(27%) with SCLC experienced a > 30% decrease in the 
sum of target lesion diameters, including one patient 
with SCLC who experienced a confirmed PR. Overall, 
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33% had SD [72]. Grade 1–2 CRS was seen in 22% of 
patients; grade > 3 CRS events were not observed at the 
tested dose levels, although dose optimization is ongoing 
and the maximum tolerated dose has not been reached. 
Treatment duration ranged from 4.1 to 41.4 weeks.

Other DLL3-targeting TCEs and molecules, includ-
ing BI 764532, QLS31904, RO7616789, and PT217, have 
entered phase 1 clinical trials and are being evaluated in 
patients with DLL3-positive SCLC and other neuroendo-
crine tumors (NETs; Table  1, Table  2). Clinical data for 
these TCEs are not yet available.

DLL3‑targeting CAR therapies
The success of CAR T-cell therapies in the treatment of 
hematological malignancies has prompted considerable 
interest in evaluating their efficacy in solid tumors. The 
identification of DLL3 as a tractable tumor-specific target 
has led to the design and testing of DLL3-targeting CAR 
therapies in SCLC.

AMG 119
AMG 119 is a genetically engineered T cell that is gen-
erated by transducing autologous T cells with a self-
inactivating lentiviral vector that encodes an anti-DLL3 
target-binding domain, a CD28 and 4-1BB co-stimula-
tory domains, and a CD3 domain. In preclinical studies, 
AMG 119 exhibited specific cytotoxic activity against 
DLL3-expressing SCLC cells and antitumor activity in 
SCLC xenograft models [73, 74].

A phase 1 clinical trial of AMG 119 in five patients with 
relapsed/refractory SCLC revealed no dose-limiting tox-
icities or grade ≥ 4 AEs [74]. One patient experienced a 
confirmed PR with 43% reduction in the sum of target 
lesion diameters from baseline, while another experi-
enced 16% reduction in the sum of target lesion diame-
ters and disappearance of multiple liver metastases but 
did not qualify as a responder per the Response Evalu-
ation Criteria in Solid Tumors (RECIST) v1.1 criteria. 
AMG 119 CAR T cells were detectable for up to 86 days 
after infusion. These preliminary data provide proof-of-
principle for the further development of DLL3-targeting 
CAR T-cell therapies in SCLC.

Other DLL3-targeting CAR T-cell therapies for SCLC, 
such as LB2102 and ALLO-213, are in development but 
are yet to initiate clinical testing.

DLL3‑targeting CAR‑NK therapies
CAR-transduced natural killer (NK)-92 cells have dem-
onstrated potent and specific lytic activity in preclinical 
studies and have additional advantages, such as a donor-
independent manufacturing process and “off-the-shelf” 
availability [75]. NK-92 cells that were transduced with a 
vector encoding the anti-DLL3 scFv domain, an NKG2D 

transmembrane domain, and a 2B4-CD3 domain exhib-
ited specific antitumor activity against DLL3-positive 
cell lines and induced tumor regression in a pulmonary 
metastasis tumor model in immunodeficient mice [76]. 
A phase 1 trial of DLL3-CAR-NK cells in patients with 
relapsed/refractory ES-SCLC has recently begun patient 
recruitment (NCT05507593).

Clinical outlook
DLL3‑targeting TCEs
TCEs have certain distinct advantages, especially in the 
context of SCLC biology. SCLC demonstrates multi-
ple characteristics that may promote escape from the 
host immune response, including downregulation of 
MHC-I expression, establishment of an immunosuppres-
sive tumor microenvironment, and negative regulation 
of cytotoxic T cells [15]. Importantly, TCEs activate T 
cells independent of MHC class I molecules and PD-L1 
expression. Other advantages of TCEs include (1) the 
requirement for co-engagement of a target cell with the 
effector cell for activity, thereby preventing nonspecific 
activation of effector cells, (2) the lack of requirement for 
prior stimulation of T cells or in vivo co-stimulation, (3) 
the small size of many TCEs, which can bring together 
target and effector cells in close proximity, thereby ena-
bling efficient lysis of tumor cells, and (4) off-the-shelf 
availability [77].

In preclinical studies, anti-DLL3 TCEs have shown 
strong binding ability to and potent lytic ability even 
against cells that expressed low levels of surface DLL3 
(< 1000 molecules/cell) [59]. This suggests that these 
agents may exert an antitumor effect even in the case of 
low levels of DLL3 expression in some tumor cells—if a 
sufficient number of T cells are present.

The safety profiles and the management protocols for 
AEs observed with TCEs and ADCs are markedly dif-
ferent. In general, TCE-associated toxicities derive from 
their immunostimulatory mechanism of action, while 
ADC-associated toxicities are related to the cytotoxic 
warhead. Tarlatamab-related AEs typically resolved 
either with dose modification, a temporary cessation of 
treatment, corticosteroid use, administration of anti–
IL-6 therapy, or spontaneously and have been thus far 
manageable from a clinical perspective. The availabil-
ity of evidence-based protocols for the management of 
CRS and neurological events will be critical to ensure 
an acceptable safety profile and treatment adherence. 
The accumulation of more data on the mechanisms and 
natural course of the AEs along with additional evidence 
confirming the reliability of current AE management 
strategies may aid the development of outpatient dosing 
protocols.
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Response rates for topotecan or lurbinectedin mono-
therapy as second-line treatments for chemotherapy-
refractory SCLC range between 10% and 35%, with a 
median DOR of around 5  months for lurbinectidin [78, 
79]. Updated results from the FIH trial of tarlatamab 
indicate a similar response rate but a notably favorable 
median DOR (12.3 months) [63], although final data from 
the phase 1 study are awaited to confirm these outcomes. 
The durability of these responses may translate into a sur-
vival shift, as suggested by the observed median OS data 
in the FIH study. A phase 2 study (DeLLphi-301) evaluat-
ing tarlatamab in patients with relapsed/refractory SCLC 
(NCT05060016) after two or more prior lines of treat-
ment is expected to yield primary results in 2023, while 
the phase 3 DeLLphi-304 study, which aims to compare 
the efficacy of tarlatamab against SOC chemotherapy in 
patients with relapsed/refractory SCLC following plat-
inum-based first-line chemotherapy, will shortly begin 
recruiting patients (NCT05740566).

Additional clinical data from the ongoing anti-DLL3 
TCE studies will be necessary to further define the clini-
cal safety and efficacy profiles of these agents. Studies of 
other TCEs suggest that efficacy can be impacted by nat-
urally arising biological phenomena, such as downregu-
lation of target antigen expression [80] and an increase 
in the frequency of regulatory T cells [81]. Although 
these phenomena have not been documented with tar-
latamab so far, monitoring of patients through the lon-
gitudinal analysis of immune cells and tumor DLL3 
expression could provide important insights. Another 
potential concern with many biologics including TCEs is 
the development of antidrug antibodies (ADAs), which 
can potentially neutralize therapeutic efficacy, alter 
drug pharmacokinetics, and cause drug-related toxici-
ties [82]. In the FIH trial of tarlatamab, 10 of 97 (10.3%) 
evaluable patients developed anti-tarlatamab antibodies 
on therapy; two patients (2.0%) had pre-existing ADAs 
at baseline [63]. There was no apparent impact of ADAs 
on tarlatamab exposure or on the safety profile in these 
patients.

Tarlatamab is also being evaluated in first-line 
SCLC. An ongoing phase 1b (DeLLphi-303) study 
(NCT05361395) aims to investigate the safety and effi-
cacy of quadruplet therapy with tarlatamab in combi-
nation with CE and a PD-L1 inhibitor (atezolizumab or 
durvalumab), followed by maintenance treatment with 
tarlatamab and a PD-L1 inhibitor in patients with ES-
SCLC in the first-line setting. Another study arm in this 
trial will investigate the safety and efficacy of tarlata-
mab when used in combination with a PD-L1 inhibitor 
as maintenance-only treatment following SOC chemo-
therapy. Additionally, a phase 3 study that will evaluate 

tarlatamab as first-line treatment in ES-SCLC is sched-
uled to commence in 2024.

The therapeutic potential of tarlatamab could be 
further enhanced by transformation of the current 
inpatient-only administration protocol to an outpa-
tient setting starting from the early treatment cycles to 
improve patient adherence and convenience. In the FIH 
(DeLLphi-300) study, tarlatamab-associated CRS could 
be managed with multiple strategies, as described pre-
viously. As we continue to gain a better understanding 
of the timing, development and management of AEs, 
and strategies for the rational employment of biomark-
ers, the early identification of patients who are most 
likely to develop serious AEs that can result from these 
approaches may eventually help in the realization of 
outpatient dosing.

ADCs
ADCs were designed to be the “magic bullets” that would 
achieve targeted delivery of a toxic payload to tumor 
cells only, thereby avoiding systemic toxicities associated 
with conventional chemotherapy regimens. Additionally, 
the wide therapeutic scope of ADCs, given their abil-
ity to exert antitumor activity independent of a patient’s 
immune status, was considered a clear advantage. Unfor-
tunately, the toxicities associated with the PBD warhead 
of Rova-T precluded repetitive dosing of this agent in 
many patients and are likely to have contributed ulti-
mately to their failure to demonstrate superior efficacy 
over SOC options in later-phase clinical trials. It is also 
possible that the patient population selected for the 
Rova-T FIH phase 1 study was not as representative of 
real-world patient populations as those included in later 
studies. It will be of interest to see if other non–DLL3-
targeting ADCs with distinct cytotoxic warheads that 
are currently being evaluated for the treatment of SCLC 
(NCT04152499 and NCT04826341) will be able to suc-
ceed where Rova-T did not.

The next generation of ADCs is being designed to 
address some of the limitations observed with earlier 
generations. Enhanced antibody formats with new link-
age technologies, improved stability profiles, and an 
optimized drug-antibody ratio aim to improve pharma-
cokinetics and expand the therapeutic window [83–85]. 
Similarly, structural improvements that “miniaturize” 
antibodies by the removal of the Fc segment, peptide-
drug conjugates, and recombinant antibody fragments 
whose smaller size can potentially facilitate tumor pen-
etration or uptake by tumor cells have the potential to 
make ADCs an attractive option for solid tumor ther-
apy [86, 87]. ADCs may be well-suited for inclusion in 
rational combinatorial approaches with immunotherapy 
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in solid tumors. ADC payloads released from dying 
tumor cells can directly prime dendritic cells and recruit 
effector cells to the vicinity of the tumor [83], suggesting 
that ADCs and immunotherapy combinations can poten-
tially synergize to improve antitumor efficacy [85].

Challenges and future perspectives
Predictive/prognostic value of DLL3 and other biomarkers
Rova-T, tarlatamab, and other agents have shown speci-
ficity for DLL3-expressing cells and tumors in preclinical 
studies. It is reasonable to assume that the preselection 
of patients with high DLL3 expression would improve the 
efficacy of DLL3-targeting therapies. Indeed, in the FIH 
study of Rova-T, an exploratory subanalysis revealed that 
patients with high tumoral expression of DLL3 (≥ 50% of 
DLL3-expressing tumor cells) had improved ORR (35% 
vs 0%) and disease control (90% vs 60%) compared with 
DLL3-low patients [31]. However, subsequent clinical 
studies of Rova-T, including those that recruited only 
DLL3-high patients and those that analyzed subsets of 
patients with high DLL3 expression, did not confirm 
DLL3 expression as a biomarker predictive of therapeu-
tic response [6, 33]. Several explanations have been put 
forward to explain this discrepancy, including the limited 
patient numbers in the FIH study and differences in the 
IHC techniques used to measure DLL3 expression [6]. 
Another theory proposes that the lack of response in 
DLL3-high patients may be related to suboptimal drug 
concentrations at the tumor site as a result of degrada-
tion of Rova-T in the peripheral circulation [88]. Addi-
tionally, the use of tumor biopsy IHC as a technique to 
assess tumoral DLL3 expression has certain drawbacks, 
including the lack of contemporaneous tumor biopsies—
a potential issue in a rapidly progressive carcinoma, such 
as SCLC. The variability in DLL3 expression between 
the primary tumor and metastases could also confound 
interpretation [89].

The predictive role of DLL3 expression levels in deter-
mining response to DLL3-targeting therapies continues 
to be a matter of investigation. Exploratory analyses in 
the ongoing trials of tarlatamab in SCLC may shed addi-
tional light on this. Newer molecular techniques, such as 
the analysis of circulating tumor cells (CTCs) and/or cir-
culating tumor nucleic acids, may allow for a real-time, 
noninvasive sequential analysis of DLL3 [90, 91]. Recent 
developments, such as the identification of DLL3 + /
CD45– CTCs as a dynamic marker potentially associated 
with response to treatment, represent another potential 
avenue for future research [92]. In a study of 48 patients 
with advanced SCLC, the detection of DLL3-expressing 
CTCs in the peripheral blood was associated with sig-
nificantly poorer survival outcomes [90]. Other nonin-
vasive methods of assessing DLL3 expression, such as 

immuno-positron emission tomography (immunoPET), 
have the ability to measure low levels of DLL3 expression 
in primary tumor sites as well as in sites of distant metas-
tases in real time [89]. ImmunoPET techniques may ulti-
mately improve patient selection and could provide early 
information on the efficacy of DLL3-targeting therapies. 
It is notable that clinical studies have so far provided con-
flicting results on the stability of DLL3 expression over 
time and over lines of therapy [27, 28]. This is a critical 
issue that needs to be resolved, as this may help inform 
the design of the most optimal strategies for the use of 
DLL3 as a biomarker and treatment target.

Recent technological advances, such as the mapping 
and quantitation of tumor-specific methylation patterns 
in circulating cell-free DNA in patients with SCLC, could 
potentially predict disease progression, facilitate patient 
stratification in clinical trials, and help optimize treat-
ment strategies to maximize clinical benefit [93].

SCLC subtypes
It has been proposed that SCLC be classified into four 
subtypes based on the expression levels of the transcrip-
tion factors ASCL1, NeuroD1, YAP1, and POU2F3 as 
SCLC-A, SCLC-N, SCLC-Y, and SCLC-P, respectively 
[94]. In subsequent IHC studies, YAP1 protein expression 
was shown to be low across subtypes, thereby prompting 
a modified classification approach comprising the SCLC-
A, SCLC-N, SCLC-P, and SCLC-I subtypes, with SCLC-I 
referring to an inflamed state with low expression levels 
of the other three transcription factors but high expres-
sion levels of genes related to human leukocyte antigen 
expression, IFN-γ activation, and immune checkpoint 
molecule expression [14, 95]. The clinical relevance of 
these subtypes is suggested by a subgroup analyses of 
data from patients receiving platinum-etoposide with 
atezolizumab in the IMpower133 trial. A trend toward 
improved OS was observed in patients with the SCLC-
I subtype relative to that seen in patients with the other 
subtypes (18  months vs 10  months) [14]. It will be of 
interest to see whether DLL3-targeting therapies achieve 
better outcomes in patients with SCLC-A and SCLC-
N, as these subtypes express higher levels of DLL3 [14, 
96]. In addition, it can also be expected that SCLC sub-
types will play an important role in the choice of the PDX 
model to be used in preclinical studies, as a patient selec-
tion criterion in clinical trials, and potentially, as an addi-
tional predictive marker [97].

Combination strategies with other therapeutic approaches
Combining TCEs and ADCs with other therapies could 
potentially provide a multipronged approach to reduce 
drug resistance, improve treatment efficacy, and allow 
for the use of lower treatment doses, thereby improving 
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the therapeutic index. Checkpoint inhibitors have been 
explored in combination with both ADCs and TCEs. In a 
preclinical murine SCLC tumor model, Rova-T in combi-
nation with anti–programmed cell death protein-1 (PD-
1) enhanced antitumor activity even at subefficacious 
doses [98]. This strategy also enhanced the tumor expres-
sion of PD-L1 and MHC 1 and increased the proliferative 
potential of and granzyme B production by CD8 + T cells 
[98]. A phase 1/2 study that evaluated Rova-T in combi-
nation with the ICIs nivolumab and ipilimumab in heav-
ily pretreated patients with ES-SCLC reported an ORR 
of 30% [34], which compares favorably to that reported 
with Rova-T (ORR: 18%) [31] or nivolumab monother-
apy (ORR: 11.6%) [99]. However, combinatorial toxicity 
was a concern, as 50% of patients (3 of 6 patients) in the 
high-dose cohort experienced dose-limiting toxicities 
and more than 90% experienced grade ≥ 3 TEAEs [34]. 
While it was not possible to fully distinguish the TEAEs 
caused by Rova-T from those caused by nivolumab or 
ipilimumab, the most frequently occurring AEs such as 
thrombocytopenia, serosal effusions, fatigue, and anemia 
were also observed in the Rova-T monotherapy studies, 
suggesting that Rova-T likely contributed to the develop-
ment of these AEs.

Combining checkpoint inhibitors with TCEs has the 
potential to mutually increase each agent’s antitumor effi-
cacy. TCEs can induce upregulation of PD-1 and PD-L1 
expression on immune and tumor cells, and the addi-
tion of PD-1 and PD-L1 inhibitors was associated with 
enhanced activity of both T cells and TCEs in hemato-
logical malignancies and solid tumors [100]. In preclini-
cal studies, tarlatamab upregulated PD-L1 expression 
on SCLC tumor cells and enhanced the T-cell–mediated 
lysis of tumor cells when combined with an anti–PD-1 
antibody [101, 102]. In addition to the quadruplet combi-
nation mentioned previously, a phase 1b study exploring 
the safety and tolerability of a combination of tarlatamab 
with an anti–PD-1 antibody for patients with progressive 
or recurrent SCLC is ongoing (NCT04885998).

Combining conventional chemotherapy with targeted 
immunotherapy is another approach that offers multi-
ple synergies that can potentially amplify the antitumor 
effect of TCEs. Several classes of chemotherapy drugs, 
such as alkylating agents, taxanes, platinum-based 
agents, and nucleoside analogs, have the ability to poten-
tiate the activity of immunotherapy by sensitizing tumor 
cells to the granzyme B produced by cytotoxic T lym-
phocytes upon engagement, by enhancing tumor anti-
gen recognition, by inhibiting immune suppressive cells, 
by reducing tumor burden levels, and by inducing the 
rapid rebound proliferation of CD8 + T cells after chem-
otherapy [103, 104]. Despite these postulated synergies, 
Rova-T in combination with CE did not improve efficacy 

rates in frontline ES-SCLC in a small group of 26 patients 
[105]. While lower doses of the Rova-T–CE combina-
tion were found to be tolerable, the combination did not 
improve clinical outcomes (median OS, PFS, or ORR) 
compared with the response rates typically seen with CE 
alone [105]. A study to evaluate tarlatamab in combina-
tion with carboplatin, etoposide, and a PD-L1 inhibi-
tor as first-line treatment in patients with ES-SCLC has 
been initiated (NCT05361395) and may yield additional 
insights on the utility of this approach.

DLL3‑targeting therapies in other NETs
DLL3 is a TAA of interest in other high-grade NETs. High 
levels of DLL3 expression have been observed in NECs of 
the cervix (81% of tumor samples), poorly differentiated 
gastroenteropancreatic cancer (76.9%), castration-resist-
ant NEPC (76.6%), LCNEC (74.0%), and neuroendo-
crine bladder cancer (68.0%) [29, 106–108]. A phase 1/2 
study that evaluated Rova-T in 200 patients with DLL3-
expressing advanced tumors, including NECs and other 
NETs, revealed a consolidated ORR of 13% in patients 
with NEC/NET [109]. Tarlatamab is currently under 
evaluation for the treatment of NEPC (NCT04702737). 
In addition to patients with SCLC, the phase 1 study of 
HPN328 has enrolled patients with NEPC and other neu-
roendocrine neoplasms with some preliminary evidence 
of antitumor activity in these tumor types [72]. The phase 
1 trial of BI 764532 is recruiting patients with DLL3-
positive LCNEC and NEC of any origin in addition to 
patients with DLL3-positive SCLC [110].

Concluding perspectives
DLL3 continues to be a target of interest in SCLC and 
other NETs, as evidenced by the multiple DLL3-targeting 
molecules that are currently being clinically evaluated 
and a host of preclinical agents that are beyond the scope 
of this review. The successful clinical development of 
DLL3-targeting agents may benefit from a deeper under-
standing of SCLC biology and the willingness to revisit 
the lessons from other therapies that have failed in SCLC.

DLL3-directed TCEs have exhibited encouraging ini-
tial efficacy and safety profiles in early clinical studies of 
patients with relapsed/refractory SCLC. The identifica-
tion of markers of response and toxicity, the characteriza-
tion of DLL3 as a dynamic biomarker, and the refinement 
of AE management approaches are important areas of 
development for many of the DLL3-targeting therapies.

An ongoing challenge for DLL3-targeting ADCs in 
SCLC will be improvement of the therapeutic index 
through a combination of strategies, including opti-
mization of the dosing schedule, treatment intervals, 
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treatment duration, linker design, and warheads [111]. 
ADCs with improved toxicity profiles, improved drug-
to-antibody ratios, an ability to engage with low levels of 
surface antigens in solid tumors, and carefully selected 
payloads are required for the treatment of solid tumors 
such as SCLC.

Despite the many challenges, the emerging data with 
DLL3-targeting agents offer renewed hope for patients 
with metastatic SCLC (Additional File 1).
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