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Abstract 

Background BCMA-directed CAR T-cell therapy (CAR-T) has altered the treatment landscape of relapsed/refractory 
(r/r) multiple myeloma, but is hampered by unique side effects that can lengthen hospital stays and increase morbid-
ity. Hematological toxicity (e.g. profound and prolonged cytopenias) represents the most common grade ≥ 3 toxicity 
and can predispose for severe infectious complications. Here, we examined the utility of the CAR-HEMATOTOX (HT) 
score to predict toxicity and survival outcomes in patients receiving standard-of-care idecabtagene vicleucel and cil-
tacabtagene autoleucel.

Methods Data were retrospectively collected from 113 r/r multiple myeloma patients treated between April 2021 
and July 2022 across six international CAR-T centers. The HT score—composed of factors related to hematopoietic 
reserve and baseline inflammatory state—was determined prior to lymphodepleting chemotherapy.

Results At lymphodepletion, 63 patients were  HTlow (score 0–1) and 50 patients were  HThigh (score ≥ 2). Compared 
to their  HTlow counterparts,  HThigh patients displayed prolonged severe neutropenia (median 9 vs. 3 days, p < 0.001), 
an increased severe infection rate (40% vs. 5%, p < 0.001), and more severe ICANS (grade ≥ 3: 16% vs. 0%, p < 0.001). 
One-year non-relapse mortality was higher in the  HThigh group (13% vs. 2%, p = 0.019) and was predominantly 
attributable to fatal infections. Response rates according to IMWG criteria were higher in  HTlow patients (≥ VGPR: 70% 
vs. 44%, p = 0.01). Conversely,  HThigh patients exhibited inferior progression-free (median 5 vs. 15 months, p < 0.001) 
and overall survival (median 10.5 months vs. not reached, p < 0.001).

Conclusions These data highlight the prognostic utility of the CAR-HEMATOTOX score for both toxicity and treat-
ment response in multiple myeloma patients receiving BCMA-directed CAR-T. The score may guide toxicity manage-
ment (e.g. anti-infective prophylaxis, early G-CSF, stem cell boost) and help to identify suitable CAR-T candidates.
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Background
BCMA-directed CAR-T represents a practice-changing 
immunotherapy platform for patients with r/r multiple 
myeloma [1–5]. Still, it is associated with a unique tox-
icity profile that includes Cytokine Release Syndrome 
(CRS) and Immune Effector Cell-Associated Neuro-
toxicity Syndrome (ICANS) [6, 7]. Real-world evidence 
has further underlined the importance of hematologi-
cal toxicity, referring to severe and/or prolonged cyto-
penias, which can persist long after lymphodepleting 
chemotherapy and resolution of clinical CRS [8–11]. 
Hematotoxicity not only represents the most frequently 
encountered grade ≥ 3 toxicity of CAR-T [12], but also 
substantially contributes to the multimodal immunosup-
pression (e.g. combined cellular and humoral) that drives 
infectious complications [13–15]. With advances in tox-
icity management of CRS and ICANS, fatal infections 
now represent the most common cause of non-relapse 
mortality (NRM) following CAR-T therapies [16–18].

Early hematological toxicity occurs as a result of the 
lymphodepleting chemotherapy applied prior to CAR-T 
administration and has been reported in other disease 
settings devoid of CAR T-cells [19]. In addition, the 
unique feature of CAR-T related hematotoxicity stems 
from the observation that neutrophil and platelet recov-
ery often follow a biphasic trajectory with transient 
recovery followed by a second dip [8, 20]. Furthermore, 
recent reports have linked high-grade CRS and the asso-
ciated inflammatory markers to prolonged cytopenias, 
supporting the notion that inflammatory insults play 
a relevant pathophysiologic role [9, 21]. We previously 
developed the CAR-HEMATOTOX (HT) score to model 
CAR-T related hematotoxicity in a r/r large B-cell lym-
phoma (LBCL) patient cohort [8]. The score is calculated 
prior to lymphodepletion and integrates factors related 
to pre-CAR-T hematopoietic reserve (e.g. hemoglobin, 
absolute neutrophil count [ANC], platelet count) and 
inflammatory state (e.g. C-reactive protein [CRP], ferri-
tin). Notably, the score was associated with an increased 
rate of severe infections, particularly bacterial infections, 
and poor treatment outcomes in LBCL patients receiving 
commercial CD19-directed CAR-T in the 3rd line setting 
[17, 22]. However, it remains unclear if the HT score also 
risk-stratifies for toxicity events and clinical outcomes 
in r/r multiple myeloma patients receiving idecabtagene 
vicleucel (ide-cel) or ciltacabtagene autoleucel (cilta-cel). 
Furthermore, detailed real-world reporting of cytopenia 
and infection incidence rates  following BCMA CAR-T 
remains scarce.

Methods
Patients and data collection
In this multicenter retrospective observational study, 
we included all patients infused with standard-of-care 
BCMA-directed CAR-T for r/r multiple myeloma across 
six international CAR-T centers. Toxicity and survival 
outcomes were assessed in 113 patients receiving either 
standard-of-care ide-cel (n = 106) or cilta-cel (n = 7). 
Patients were treated between April 2021 and July 2022. 
Lymphodepleting chemotherapy with fludarabine and 
cyclophosphamide was administered according to the 
manufacturers’ instructions [1, 2]. Clinical metadata was 
extracted from medical records and databases with IRB 
approval (see supplemental methods).

CAR‑HEMATOTOX
The score was calculated prior to lymphodepletion using 
the online CAR-HEMATOTOX calculator from the Ger-
man Lymphoma Alliance (GLA): https:// www. german- 
lymph oma- allia nce. de/ Scores. html. A leniency period 
of up to three days for laboratory markers was provided 
[8]. One point was allotted for the following criteria: 
ANC ≤ 1200/µl, hemoglobin ≤ 9.0  g/dl, platelet count 
76–175 G/l, CRP ≥ 3.0 mg/dl, and ferritin 650–2000 ng/
ml. Two points were provided for a platelet count ≤ 75 
G/l and ferritin ≥ 2000 ng/ml. A sum score of 2 or greater 
was classified as high risk  (HThigh), a score of 0–1 as low 
risk  (HTlow).

Defining hematological toxicity
Severe thrombocytopenia was defined as  a platelet 
count < 50 G/L. Severe anemia was defined as  a hemo-
globin < 8  g/dL or anemia requiring transfusion with 
packed red blood cells. Neutropenia was defined on the 
basis of the joint American Society of Clinical Oncology/
Infectious Diseases Society of America (ASCO/IDSA) 
consensus guidelines for cancer-related infection risk 
[23]. We assessed the total cumulative duration of severe 
neutropenia as days with an ANC < 500/µL between 
days 0–60 [8]. The phenotypes of neutrophil recovery 
(quick, intermittent, aplastic) were defined as previously 
described [8].

Toxicity and infection grading
Grading of CRS and ICANS followed American Soci-
ety for Transplantation and Cellular Therapy (ASTCT) 
consensus criteria [24]. Toxicity management followed 
institutional guidelines [17, 25]. A detailed overview of 
prophylaxis strategies across the participating centers 

https://www.german-lymphoma-alliance.de/Scores.html
https://www.german-lymphoma-alliance.de/Scores.html
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is outlined in Additional file 1: Table S1. Early infection 
events (day 0–90) were defined as bacterial, viral or fun-
gal based on microbiologic or histopathologic data, or as 
a clinical syndrome of infection (e.g. pneumonia, cellu-
litis, cystitis) based on retrospective chart review. Infec-
tion onset was defined as the day of the diagnostic test. 
The clinical source of infection was allocated based on 
the combination of clinical symptoms, microbiologic iso-
lates and radiographic findings. In the absence of clinical 
symptoms and/or microbiologic data, neutropenic fever 
alone was not considered an infection event. Grading 
of infection severity was determined on a 5-grade scale 
as previously described: mild, moderate, severe, life-
threatening or fatal [13, 17, 26]. Severe (grade ≥ 3) infec-
tions were defined as requiring intravenous anti-infective 
agents and/or hospitalization.

Clinical outcomes
Efficacy outcomes were assessed according to the Inter-
national Myeloma Working Group  (IMWG) criteria [27]. 
Confirmatory testing and imaging to confirm complete 
response in case of extramedullary disease were not man-
dated [28]. Kaplan–Meier estimates for progression-free 
(PFS) and overall survival (OS) were calculated from time 
of CAR-T infusion. HT score groups (high vs. low) were 
compared by log-rank test, while a univariate Cox regres-
sion was applied to study hazard ratios (HRs) comparing 
HT risk groups. NRM was defined as death post CAR-T 
infusion without evidence of relapse or progression.

Multivariable analyses for the aplastic phenotype, severe 
infections and survival outcomes
Multivariable analysis was performed as a Cox propor-
tional hazards model for PFS and OS incorporating esti-
mated glomerular filtration rate (eGFR) ≥ 60  ml/min, 
LDH greater than upper limit of normal, Eastern Coop-
erative Oncology Group performance status (ECOG PS) 
of 2 or greater, plasma cell infiltration of the bone mar-
row greater than 50%, and HT score risk category as 
input variables. These covariates were also explored in 
a multivariable binary logistic regression analysis study-
ing  either the aplastic phenotype or severe infection as 
the binary outcome.

Statistical considerations
Receiver operating characteristic (ROC) analyses were 
performed to assess test characteristics. Associations 
between continuous variables were analyzed using the 
Spearman correlation coefficient (r). Statistical signifi-
cance between groups was explored by non-parametric 
Mann–Whitney test for continuous variables and Fish-
er’s exact test for comparison of percentages. Statisti-
cal analysis and data visualization was performed with 

GraphPad Prism (v9.0), SPSS (IBM, v26.0), or R Statis-
tical Software (v4.1.2).

Results
Baseline patient characteristics
Between April 2021 and July 2022, we identified 113 
patients treated with ide-cel or cilta-cel. Patient char-
acteristics are provided in Table  1. Median age was 
65  years (range 39–81), median ECOG was 1 (95% 
confidence interval [CI] 0–1), and 30% of patients had 
high-risk cytogenetic abnormalities (del17p, t(4;14), 
t(14;16)). The patients  had received a median of six 
prior lines of therapy (95% CI 5–6), including 88% with 
prior autologous stem cell transplantation (ASCT), 
reflecting the heavily pretreated nature of this patient 
cohort. Notably, 42.5% of patients had penta-refractory 
disease and 37% were exposed to alkylating chemo-
therapy in the 3  months prior to CAR-T. On the last 
bone marrow (BM) assessment prior to CAR-T infu-
sion, ≥ 5% and ≥ 50% clonal plasma cells were detected 
in 46% and 25% of patients, respectively. The majority 
of patients presented to CAR-T therapy with stable or 
progressive disease.

The median CAR-HEMATOTOX score was 1 (95% 
CI 1–2), including 63  HTlow (score 0–1) and 50  HThigh 
(score 2–7) patients. No differences in age, sex, race, 
country, disease refractoriness, use of bridging therapy, 
or exposure to alkylating-based bridging therapy were 
noted between both risk groups (Table 1). However, we 
found that  HThigh patients were more likely to have an 
ECOG PS ≥ 2 (24% vs 0%, p < 0.001) and higher Revised 
International Staging System (R-ISS) stage (23.1% 
vs 7.5%, p = 0.066). Compared to the  HTlow group, 
 HThigh patients were more likely to have received prior 
BCMA-directed therapy (22% vs 4%, p = 0.01) and 
experienced impaired renal function manifesting as 
reduced creatinine clearance (CrCl) at lymphodeple-
tion (CrCl < 60 mL/min: 38% vs. 16%). Relative to  HTlow 
patients,  HThigh patients more frequently exhibited BM 
infiltration (≥ 50% plasma cells: 42% vs. 11%, p < 0.001; 
Table  1) and more frequently received  a prior ASCT 
(94% vs. 83%, p = 0.087), providing a correlate for the 
more extensive baseline cytopenia. For example, the 
median hemoglobin was 8.5  g/dL (95% CI 8.2–9.2  g/
dL), median platelet count was 63 G/L (95% CI 49–93 
G/L), and median ANC was 1.77 G/L (95% CI 1.31–
2.49 G/L) for the   HThigh group. As expected,   HThigh 
patients exhibited elevated systemic inflammatory 
markers, including a median  serum CRP of 1.02  mg/
dL (95% CI 0.42–2.50  mg/dL) and median  serum fer-
ritin of 811 ng/mL (95% CI 625–1158 ng/mL) at time of 
lymphodepletion.



Page 4 of 13Rejeski et al. Journal of Hematology & Oncology           (2023) 16:88 

Table 1 Baseline patient characteristics

Patient characteristics All patients (n = 113) HT low (n = 63) HT high (n = 50) P

Demographic features
Median age, years (range) 65 (39–81) 65 (46–81) 66 (39–77) 0.36

Sex, female, n (%) 48 (42%) 27 (43%) 21 (42%)  > 0.9

Race, Black vs.  not#, n (%) 23/102 (23.2%) 10/55 (19.2%) 13/47 (27.7%) 0.34

ECOG PS at lymphodepletion

 Median (95% CI) 1 (0–1) 0 (0–1) 1 (1–1)  < 0.001
 PS ≥ 2, n (%) 12 (9%) 0 (0%) 12 (24%)  < 0.001

Country, USA, n (%) 89 (79%) 47 (75%) 42 (84%) 0.25

Disease features
Extramedullary disease, n (%) 51 (45.1%) 27 (42.9%) 24 (48%) 0.70

Revised ISS stage 3, n (%) 12/79 (15.2%) 3/40 (7.5%) 9/39 (23.1%) 0.066
Triple refractory disease, n (%) 92 (81.4%) 53 (84.1%) 39 (78%) 0.47

Penta refractory disease, n (%) 48 (42.5%) 28 (44.4%) 20 (40%) 0.70

Any high-risk cytogenetic abnormality (del(17p), t(4;14), (14;16)), n (%) 31/105 (29.5%) 14/56 (25.0%) 17/49 (34.7%) 0.29

Gain1q, n (%) 28/99 (28.3%) 11/52 (21.2%) 17/47 (36.2%) 0.12

Serum LDH

 Median (U/l), 95% CI 208 (194–218) 197 (188–213) 221 (201–278) 0.049
 > ULN, n (%) 36 (31.9%) 13 (20.6%) 23 (46%) 0.005

Median serum albumin (g/dL), 95% CI 3.8 (3.6–3.9) 3.9 (3.8–4.1) 3.4 (3.2–3.6)  < 0.001
Median serum beta-2-microglobulin (mg/L), 95% CI 3.1 (2.6–3.4) n = 83 2.6 (2.3–3.1) n = 45 4.0 (3.1–4.4) n = 38 0.001
CAR product
Ide-cel, n (%) 106 (94%) 61 (97%) 45 (90%) 0.24

Cilta-cel, n (%) 7 (6%) 2 (3%) 5 (10%)

Prior therapy
Median lines of prior therapy, 95% CI 6 (5–6) 6 (5–7) 6 (5–6) 0.19

Prior BCMA-directed therapy, n (%)

 Bispecific or ADC 12/96 (13%) 2/51 (4%) 10/45 (22%) 0.01
Exposure to alkylating Chemotherapy in the 3 months before CAR-T, n (%) 42 (37%) 20 (32%) 22 (44%) 0.24

Bridging therapy, n (%) 76 (67%) 40 (64%) 36 (72%) 0.42

Response to bridging therapy, n (%)* 0.66

 PR or better 7/67 (10%) 4/33 (12%) 3/34 (9%)

 SD/PD 60/67 (90%) 29/33 (88%) 31/34 (91%)

Alkylating-based bridging therapy, n (%) 23 (20%) 10 (16%) 13 (26%) 0.24

Prior autologous SCT, n (%) 99 (88%) 52 (83%) 47 (94%) 0.087
Prior allogeneic SCT, n (%) 4 (3.5%) 2 (3.2%) 2 (4.0%)  > 0.9

Kidney function
Creatinine clearance—at LD (eGFR) 0.009

 > 60 ml/min—n (%) 84 (74%) 53 (84%) 31 (62%)

 30–60 ml/min—n (%) 25 (22%) 10 (16%) 15 (30%)

 < 30 ml/min—n (%) 4 (4%) 0 (0%) 4 (8%)

BM studies
Median plasma cells in BM (%), 95% CI 3 (1.5–11) 2.5 (0.5–5) 15 (1.5–65) 0.013
BM plasma Cells > 5%—n (%) 52 (46.0%) 23 (36.5%) 29 (58%) 0.036
BM plasma Cells > 50%—n (%) 28 (24.8%) 7 (11.1%) 21 (42%)  < 0.001
CAR‑HEMATOTOX Components [8]

Median C-reactive protein (mg/dl), 95% CI 0.58 (0.40–0.92) 0.45 (0.37–0.65 1.02 (0.42–2.50) 0.03
Median ferritin (ng/ml), 95% CI 211 (120–354) 86 (64–141) 811 (625–1158)  < 0.001
Median ANC (G/l), 95% CI 2.47 (1.98–2.84) 2.95 (2.30–3.30) 1.77 (1.31–2.49)  < 0.001
Median platelet count (G/l), 95% CI 144 (125–158) 181 (163–209) 63 (49–93)  < 0.001
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Influence of the CAR‑HEMATOTOX score on hematological 
toxicity
The proportion of patients displaying aplastic neutrophil 
recovery was markedly increased in the  HThigh group 
(32% vs. 3%, p < 0.0001; Fig.  1A). Importantly, the HT 

score remained an independent risk factor for the aplas-
tic phenotype when adjusting for other baseline risk fac-
tors (adjusted OR [aOR] 10.8, 95% CI 1.9–60.4, p = 0.003; 
Additional file  1: Fig. S1A). Of interest, ≥ 50% plasma 
cell infiltration of the bone marrow also independently 

Patient baseline characteristics prior to BCMA-directed CAR T-therapy. If not otherwise stated, the median and 95% confidence interval (95% CI) are provided. P-values 
< 0.1 are highlighted in bold. If the measurement wasn’t available for all patients, the denominator is indicated in the table. LD: lymphodepletion chemotherapy. 
ECOG: Eastern Cooperative Oncology Group. R-ISS: Revised International Staging SystemHigh-risk cytogenetics: Includes del(17p), t(4;14) and t(14;16) as per the 
KarMMa trial and Sonneveld et al., Blood 2016. Triple-refractory disease: Refractory to one IMiD, one PI and daratumumab. Penta-refractory disease: Refractory to 
lenalidomide, pomalidomide, bortezomib, carfilzomib and daratumumab
* Response assessment to bridging therapy according to IMWG response criteria was not available or unknown in 7 HT low and 2 HT high patients

Table 1 (continued)

Patient characteristics All patients (n = 113) HT low (n = 63) HT high (n = 50) P

Median hemoglobin (g/dl), 95% CI 10.5 (9.7–11.1) 11.6 (11.1–1.9) 8.5 (8.2–9.2)  < 0.001
Median CAR-HEMATOTOX score, 95% CI 1 (1–2) 1 (0–1) 3.5 (3–4)  < 0.001

Fig. 1 The CAR-HEMATOTOX score identifies patients at risk for severe hematotoxicity. A Relative distribution of neutrophil recovery phenotypes 
by CAR-HEMATOTOX score. Quick: sustained neutrophil recovery without a second dip below an ANC < 1000/µL. Intermittent: neutrophil recovery 
(ANC > 1500/µl) followed by a second dip with an ANC < 1000/µL after day 21. Aplastic: continuous severe neutropenia (ANC < 500/µL) ≥ 14 days. 
B Median duration of severe neutropenia (ANC < 500/µL) between days 0 and + 60 by CAR-HEMATOTOX score with whiskers indicating the 95% 
CIs. P-value determined by Mann–Whitney U test (****p < 0.0001). C Univariate analysis comparing the CAR-HEMATOTOX score with the duration 
of severe neutropenia (ANC < 500/µL) between CAR infusion and day + 60. The Spearman correlation coefficient and respective p-value is provided. 
The calculated slope (β1) of the linear regression curve is shown, indicating an average increase in the duration of severe neutropenia of 2.48 days 
for every increase of 1 in the score. Light shading indicates the 95% confidence bands of the best-fit lines from the simple linear regression. D 
Receiver operating characteristic (ROC) analysis studying the influence of the HT score on the binary outcome of severe neutropenia ≥ 14 days vs. 
0–13 days. The area under the curve (AUC), p-value, and test characteristics (sensitivity, specificity) are provided
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increased the probability of aplastic neutrophil recovery 
(aOR = 6.6, 95% CI 1.9–22.9, p = 0.007). The median dura-
tion of severe neutropenia (ANC < 500/µL) was sig-
nificantly longer in  HThigh patients compared to their 
 HTlow counterparts (9 vs. 3 days, p < 0.0001; Fig. 1B). We 
observed a significant positive correlation between the 
HT score and the duration of severe neutropenia on uni-
variate analysis (r =  + 0.49, p < 0.0001, β1 = 2.48; Fig.  1C). 
On ROC analysis, we confirmed the discriminatory capac-
ity of the HT score in regard to the previously validated 

endpoint of severe neutropenia ≥ 14  days (AUC = 0.82, 
p < 0.0001, sensitivity = 86%, specificity = 65%; Fig. 1D).

HThigh patients experienced significantly higher rates 
of severe thrombocytopenia (78% vs 27%, p < 0.0001 
and 56% vs. 6.3%, p < 0.0001), anemia (84% vs. 22.2%, 
p < 0.0001 and 48% vs. 9.5%, p < 0.0001), and neutrope-
nia (84% vs. 63.5%, p = 0.02 and 36% vs. 6.3%, p < 0.0001) 
compared to  HTlow patients within 30 and 100  days 
post BCMA-directed CAR T-cell therapy, respectively 
(Table  2). The rates of severe protracted (ANC < 500/

Table 2 Hematotoxicity and management

Distribution of metrics of hematological toxicity and concomitant management in the first 100 days after ide-cel or cilta-cel infusion comparing CAR-HEMATOTOX 
(HT) high vs. low patients. P-values determined by Mann–Whitney test for continuous variables and Fisher’s exact tests for categorical variables; p-values < 0.1 are 
highlighted in bold

Characteristic All Patients (n = 113) CAR‑HEMATOTOX Score p

Low (n = 63) High (n = 50)

Severe thrombocytopenia (Platelet Count < 50 G/L)
Day 0–30 56 (49.6%) 17 (27.0%) 39 (78%)  < 0.0001
Day 31–100 32 (28.3%) 4 (6.3%) 28 (56%)  < 0.0001
Severe anemia (Hb < 8 g/dL or requiring transfusion)
Day 0–30 56 (49.6%) 14 (22.2%) 42 (84%)  < 0.0001
Day 31–100 30 (26.5%) 6 (9.5%) 24 (48%)  < 0.0001
Neutropenia
Phenotype of neutrophil recovery  < 0.0001

  Quick 45 (39.8%) 39 (61.9%) 6 (12%)

  Intermittent 50 (40.2%) 22 (34.9%) 28 (56%)

  Aplastic 18 (15.9%) 2 (3.2%) 16 (32%)

Severe (ANC < 500/µL)

 Day 0–30 82 (72.6%) 40 (63.5%) 42 (84%) 0.02
 Day 31–100 22 (19.5%) 4 (6.3%) 18 (36%)  < 0.0001

Protracted, severe (ANC < 500/µL for ≥ 7 days) 28 (24.8%) 5 (7.9%) 23 (46%)  < 0.0001
Profound (ANC < 100/µL) Day 0–100 33 (29.2%) 12 (19.0%) 21 (42%) 0.01
Protracted, profound (ANC < 100/µL for ≥ 7 days) 7 (6.2%) 0 (0%) 7 (14%) 0.003
Prolonged (ANC < 1000/µL measured ≥ 21 days after CAR-T) 57 (50.4%) 21 (33.3%) 36 (72%)  < 0.0001
Supportive therapies—n (%)
Platelet transfusion

 D1–30 33 (29.2%) 4 (6.3%) 29 (58%)  < 0.0001
 D30–100 13 (11.5%) 2 (3.2%) 11 (22%) 0.002

pRBC transfusion

 D1–30 52 (46.0%) 13 (20.6%) 39 (78%)  < 0.0001
 D30–100 23 (20.4%) 4 (6.3%) 19 (38%)  < 0.0001

Granulocyte colony stimulating factor (G-CSF) use 59 (52.2%) 28 (44.4%) 31 (62%) 0.087
 First day of G-CSF—median (range) 9 (1–114) 9 (3–30) 9 (1–114) 0.96

 Last day of G-CSF—median (range) 22.5 (7–149) 21 (7–149) 27 (7–137) 0.29

Thrombopoetin (TPO) agonist use 10 (8.8%) 3 (4.8%) 7 (14%) 0.01
 First day of TPO agonist—median (range) 36 (4–125) 41 (37–42) 33 (4–125) 0.38

 Last day of TPO agonist—median (range) 42 (6–223) 101 (37–140) 42 (33–223) 0.50

CD34 + Stem cell boost 3 (2.7%) N/A 3 (6%) 0.084
 Day of boost (range) 84 (71–118) N/A 84 (71–118)

 Dose of boost (CD34 + cells ×  106/kg)—median (range) 2.6 (2.41–2.97) N/A 2.6 (2.41–2.97)

IVIG use 24 (21.2%) 16 (25.4%) 8 (16%)  > 0.9
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µL for ≥ 7  days: 46% vs. 7.9%, p < 0.0001), profound 
(ANC < 100/µL: 42% vs 19%, p = 0.01), profound pro-
tracted (ANC < 100/µL for ≥ 7 days: 14% vs 0%, p = 0.003) 
and prolonged (ANC < 1000/µL after day + 21: 72% vs 
33.3%, p < 0.0001) neutropenia were significantly higher 
in  HThigh vs  HTlow patients, respectively.  HThigh patients 
more frequently required transfusions for both platelets 
(58% vs. 6.3%, p < 0.0001 and 22% vs. 3.2%, p = 0.002) and 

packed red blood cells (pRBC: 78% vs. 20.6%, p < 0.0001 
and 38% vs. 6.3%, p < 0.0001) within 30 and 100  days 
post BCMA-directed CAR-T, respectively. A trend was 
observed for increased granulocyte colony stimulat-
ing factor (G-CSF) use in  HThigh versus  HTlow patients 
(62% vs. 44.4%, p = 0.087). Thrombopoietin (TPO) ago-
nists were more commonly used in the  HThigh cohort 
(14% vs. 4.8%, p = 0.01) and a similar trend was observed 

Fig. 2 The CAR-HEMATOTOX score identifies patients at risk for severe infectious complications. A Clinical source of infection of the 51 infection 
events. B–C Relative distribution of infection grades for all infection subtypes (B) and bacterial infections only (C) comparing HT high versus low 
patients. Infection grades (1°–5°) are color-coded in shades of green with the connecting green and gray lines and percentage numbers comparing 
all-grade and grade ≥ 3 infections, respectively, in HT high versus low patients. Significance values were determined by Fisher’s exact test (*p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001). D–H Cumulative incidence curves (D0–90) by HT score for any-grade (D), grade ≥ 3 (E), as well as bacterial 
(F), viral (G), and fungal (H) infections. Comparison of HT risk groups was performed by log-rank test
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regarding  the increased use of CD34 + stem cell boosts 
(6% vs. 2.7%, p = 0.084).

The CAR‑HEMATOTOX score identifies patients at risk 
for ICANS, early infections and non‑relapse mortality
While severe CRS rates (grade 3 or higher) were numeri-
cally higher in  HThigh versus  HTlow patients (10% vs 
2%, p = 0.14),  no statistically significant difference was 
observed. Both the rate of mild-to-moderate ICANS 
(18% vs. 9%) and especially severe ICANS (16% vs. 0%, 
p < 0.001) was higher in  HThigh patients, likely resulting 
in the increased utilization of glucocorticoids (52% vs. 
29%, p = 0.01; Additional file  1: Table  S2). On the other 
hand, the anti-IL-6 receptor antagonist tocilizumab and 
anti-IL-1 receptor antagonist anakinra were employed at 
a similar rate across both risk groups. A trend towards 
more frequent intensive care unit (ICU) admissions 
was noted in  HThigh compared to  HTlow patients (10% 
vs 1.6%, p = 0.086). Overall, the increased toxicity bur-
den observed in the  HThigh cohort translated into a 
longer median duration of hospitalization (13 vs. 8 days, 
p < 0.0001; Additional file 1: Fig. S2).

During the first 90 days following BCMA-directed CAR 
T-cell therapy, we observed a total of 51 infection events 
in 44 patients (39%). Bloodstream infections represented 
the most common infection source (28%), followed by 
upper/lower respiratory (17%, respectively) and gastro-
intestinal tract infections (14%) (Fig.  2A). Infections of 
any-grade were more common in the  HThigh cohort (58% 
vs. 23%, p = 0.0002; Fig. 2B). This was particularly evident 
for severe infections (40% vs. 5%, p < 0.0001), including 1 
fatal fungal infection (death on day + 65) and 2 fatal bac-
terial infections (days + 6 and + 26) in  HThigh patients. 
Severe bacterial infections were markedly more frequent 
in the  HThigh cohort (34% vs. 3%, p < 0.0001; Fig.  2C). 
Conversely, no life-threatening (grade IV) or fatal (grade 
V) infections were noted in the  HTlow group. Concomi-
tantly, the cumulative 90-day rate of any-grade and severe 
infections was increased in  the  HThigh patients (Fig. 2D, 
E). The cumulative rate of bacterial infections was  also 
higher in the  HThigh compared to the  HTlow cohort (40% 
vs. 13%, p = 0.0015). However, no significant differences 
were observed between groups in  the cumulative viral 
(12% vs. 7.9%, p = 0.46) and fungal (4.0% vs 0%, p = 0.11) 
infection rates (Fig. 2F–H). Notably, multivariable analy-
sis identified the HT score to be an independent predic-
tor for the development of severe infections (aOR 4.9; 
95% CI 1.1–21.4; p = 0.03; Additional file 1: Fig. S1B).

Seven (6.2%) patients who received BCMA-directed 
CAR T-cell therapy died as a result of non-relapse mor-
tality (NRM) by last follow-up: 5 deaths (71.4%) were 
attributed to infection, 1 (14.3%) was attributed to grade 

5 CRS, and 1 (14.3%) was a result of cardiotoxicity (car-
diomyopathy) (Additional file 1: Fig. S3A). On the other 
hand, 20 patients died of multiple myeloma progression 
during the first year after CAR-T infusion. One-year 
NRM for the entire cohort was 6.9% and was significantly 
increased in  HThigh versus  HTlow patients (12.7% vs. 2.1%, 
p = 0.019; Additional file 1: Fig. S3B).

Prognostic influence of the CAR‑HEMATOTOX score 
on response to therapy and survival
Best overall response rate (ORR) by day 90 was assessed 
in 108 patients as 5 patients who were in active follow-
up had not reached this time point and/or did not have 
an evaluable response assessment. A high HT score was 
associated with inferior ORR (72.9% vs. 88.3%, p = 0.048) 
and inferior very good partial response (VGPR) rates 
(43.8% vs. 70.0%, p = 0.01), but not complete response 
(CR) or stringent CR rates (33.3% vs. 45.0%, p = 0.24) 
(Fig.  3A; Additional file  1: Table  S3). After a median 
follow-up of 7.9  months, the median PFS for the entire 
cohort was 11.2  months (95% CI 8.6  months—not 
reached) and the median OS was not reached (Additional 
file  1: Fig. S4). In evaluable patients, 1-year PFS was 
47% (95% CI 36–61%) and 1-year OS was 71% (95% CI 
61–83%).

Compared to their  HTlow counterparts,  HThigh 
patients displayed inferior PFS (median PFS 5.4 vs. 
14.9 months, respectively; p < 0.0001; Fig.  3B) and OS 
(median OS 10.5 months vs. not reached, respectively; 
p < 0.0001; Fig. 3C). In the  HThigh cohort, those with a 
HT score ≥ 5 had particularly poor PFS (median 1.9 vs. 
6.6  months respectively; p = 0.0009; Fig.  3D) and OS 
(5.4 vs not reached, respectively; p < 0.0001; Fig.  3E) 
relative to the patients with a HT score of 2–4. Multi-
variable Cox proportional hazards modelling adjusting 
for other established adverse risk factors showed that a 
high HT score represented an independent adverse risk 
marker of both PFS (aHR 3.5, 95% CI 1.7–6.9, p < 0.001; 
Fig.  4A; Additional file  1: Table  S4) and OS (aHR 3.5. 
95% CI 1.1–11.2, p = 0.03; Fig.  4B; Additional file  1: 
Table S5). Furthermore, poor ECOG PS represented an 
independent poor risk factor of OS (p = 0.008), with a 
trend observed for PFS (p = 0.08).

Discussion
In this multi-center international study, we describe a 
high real-world incidence of both hematological toxic-
ity and early infections in 113 patients receiving BCMA 
CAR-T for r/r multiple myeloma. Furthermore, we dem-
onstrate that the CAR-HEMATOTOX score identified 
high-risk candidates for severe toxicity events prior to 
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Fig. 3 The CAR-HEMATOTOX score identifies patients at risk for poor treatment outcomes. A Best overall tumor response at day 90 according 
to International Myeloma Working Group (IMWG) criteria. B–C Kaplan–Meier estimates of progression-free survival (PFS, B) and overall survival 
(OS, C) comparing HT high versus low patients. D–E Kaplan–Meier estimates of PFS (D) and OS (E) comparing low risk (HT score 0–1, green), 
intermediate to high-risk (score 2–4, yellow), and ultra high-risk patients (score ≥ 5, red). The superimposed table depicts the median and 95% 
confidence interval of survival estimates, as well as the p-values from the univariate Cox regression. The number at risk at each follow-up time point 
ist depicted below the x-axis. The p-value of the Mantel–Cox log-rank test is provided on the graph inset
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lymphodepleting chemotherapy. Of interest, high HT 
scores were also associated with inferior response rates at 
day 90 and poor survival outcomes.

Overall, the incidence of hematological toxicity in our 
multiple myeloma cohort was slightly lower compared 
to a pooled analysis of 235 r/r LBCL patients employ-
ing a similar methodology [8]. Interestingly, severe CRS 
was less frequent in the myeloma compared to the LBCL 
cohort, and the myeloma patients also exhibited lower 
levels of systemic inflammation prior to lymphodeple-
tion [8, 9, 21, 29]. One likely hypothesized reason for the 
lower rate of hematotoxicity may lie in the antigen target 
(BCMA vs. CD19), as BCMA is preferentially expressed 
by mature B-lymphocytes with minimal expression in 
hematopoietic stem cells [30–32], while CD19 is com-
monly expressed on marrow-derived B-cell progeni-
tors [33]. This may result in less extensive on-target/
off-tumor toxicity within the bone marrow niche for 
BCMA-directed CAR T-cells. Nonetheless, the cyto-
penia rate was still substantial in our cohort, with cyto-
penia representing the most frequent CTCAE grade ≥ 3 
toxicity, which we observed in approximately 75% of 
our myeloma patients during the first 100  days follow-
ing CAR-T infusion. For this reason, future clinical trials 
should include detailed reporting on both the quantity 
(e.g. depth, duration) and quality (e.g. biphasic vs. mono-
phasic, phenotypes) of post-CAR-T cytopenias. To this 
end, a harmonized consensus grading system has been 
developed for immune effector cell-associated hemato-
toxicity (ICAHT) by the European Hematology Associa-
tion (EHA) and European Society for Blood and Marrow 
Transplantation (EBMT) [34, 35].

Importantly, the degree of cellular immunosuppres-
sion conferred by profound and prolonged cytopenia 

likely plays a critical role in predisposing myeloma 
patients for infectious complications. Indeed, the large 
majority of infections, particularly severe and bacte-
rial infections, were observed during the first 30  days 
during the phase of coincident cytopenia and CRS/
ICANS, consistent with prior reports [10, 36]. The high 
incidence of bacterial infections in the  HThigh patients 
highlights the link between the duration and depth of 
neutropenia and subsequent development of infec-
tions. While the incidence of viral infections during the 
first 90 days was low in our cohort at 10%, these infec-
tions are typically observed at a later time point as a 
consequence of prolonged B-cell aplasia and consecu-
tive hypogammaglobulinemia [14]. Notably, infections 
were the main determinant of non-relapse mortality. 
With advances in CRS management and the associ-
ated decrease of severe CRS, myeloma patients are 
thus more likely to die of infectious causes than CRS or 
ICANS following CAR-T therapy. To mitigate the clini-
cally relevant risk of infections, physicians may con-
sider the use of early and/or prophylactic G-CSF. For 
example, Lievin and colleages recently reported that 
early G-CSF prophylaxis on day + 2 was safe, did not 
impact CAR-T expansion kinetics, and reduced the rate 
of febrile neutropenia [37]. In a further retrospective 
report by Miller et  al., early G-CSF resulted in faster 
neutrophil recovery, and was not associated with a sig-
nificant differences in toxicity in myeloma patients [38]. 
Furthermore, broad anti-infective prophylaxis (includ-
ing the use of fluoroquinolones and mold-active azoles) 
during the early phase of CAR-T therapy may reduce 
the rate of severe infections, though prospective stud-
ies are needed to shed light on potential harmful seque-
lae. Finally, stem cell boosts, generated from either an 
autologous or allogeneic source, represent a safe and 

Fig. 4 The CAR-HEMATOTOX score represents an independent adverse risk marker for PFS and OS on multivariable analysis. Forest plots 
of the multivariable Cox regression analysis for PFS (A) and OS (B) adjusted for the baseline risk factors of poor renal function (eGFR < 60 ml/min), 
LDH greater than upper limit of normal, ECOG performance status 2–4, plasma cell infiltration of the bone marrow greater than 50%, as well as HT 
risk group (high vs. low). Adjusted p-values accounting for the respective covariates are displayed on the graph inset. Variables reaching a p-value < 
0.1 are highlighted in red (increased hazard ratio)
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clinically feasible strategy to alleviate severe (pan-) 
cytopenias [15, 39–41].

The extensive validation of the HT score demon-
strates the importance of pre-CAR-T hematopoietic 
reserve and baseline inflammatory state for the subse-
quent development of toxicity and early progression in 
patients receiving BCMA-directed CAR-T. Systemic 
inflammatory markers have been linked to tumor inter-
feron signaling and suppressive myeloid cells, which can 
blunt the CAR T-cell expansion necessary for efficient 
eradication of tumor cells [42, 43]. However, it remains 
to be studied if similar resistance mechanisms extend to 
myeloma patients [44]. The poor prognostic impact of 
cytopenia may be of two-fold origin. On the one hand, 
cytopenia likely reflects poor disease biology and poor 
marrow reserve due to multiple prior treatments (includ-
ing alkylators) or plasma cell infiltration of the bone mar-
row (Table  1) [45–47]. On the other hand, long-lasting 
cytopenias may prevent myeloma patients from receiving 
efficacious post-relapse therapy, such as novel bispecific 
antibodies or allogeneic CAR-T products, as incomplete 
count recovery represents a common study exclusion cri-
terion [48–53].

Key limitations of this study include the retrospec-
tive nature and limited follow-up. While the inclusion 
of multiple sites across different health care settings and 
countries represents a strength of the analysis, this likely 
resulted in heterogeneity in terms of toxicity manage-
ment strategies. A further limitation was that response 
assessment was not performed centrally (by independent 
review committee). Despite these limitations, we see sev-
eral salient clinical implementations of the CAR-HEMA-
TOTOX score. The score can be easily calculated using 
the online calculator and enables early risk-stratification 
of severe toxicity and poor treatment response prior to 
lymphodepletion. As a result, future studies may explore 
HT-adapted strategies for anti-infective prophylaxis and 
early G-CSF use, so as to mitigate the risk of severe infec-
tions [17, 37]. Considering their overall low risk of severe 
toxicity,  HTlow patients represent an attractive population 
to explore antibiotic-sparing measures that could prevent 
deleterious effects on the gut microbiome [54]. Integrat-
ing longitudinal assessments of serum procalcitonin may 
help to identify particularly low-risk patients in the con-
text of CRS (e.g.  HTlow patients with non-elevated serum 
procalcitonin at time of first fever) [22, 55]. Low-risk can-
didates may also be considered for outpatient CAR T-cell 
application [56, 57]. On the other hand, patients with a 
high HT score likely benefit from intensified monitor-
ing, anti-infective prophylaxis, early G-CSF, and aware-
ness for a potential stem cell boost. Considering the 
expected approval of several T-cell engaging therapies for 
clinical use in r/r multiple myeloma [48, 50–52], future 

studies may also evaluate the utility of the HT score for 
this treatment modality.

Conclusions
In conclusion, the CAR-HEMATOTOX score represents 
a potent risk-stratifier for severe toxicity and clinical 
outcomes prior to lymphodepletion, warranting further 
prospective validation. The score could enable tailored 
interventions for CAR-T-related toxicity according to the 
individual risk profile of each patient, and help identify 
CAR-T candidates in need of combinatorial and/or novel 
therapeutic strategies.
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