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Abstract 

Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules 
that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA spe-
cies include microRNA  (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small 
RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide 
composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant 
to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In 
this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as 
well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant 
to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.

Keywords  Small RNA, RNA modifications, MicroRNA, PIWI-interacting RNA, tRNA-derived small RNA, 
N6-methyladenosine, 2′-O-methylation, 5-Methylcytosine, Pseudouridine

Introduction
RNA molecules play essential and diverse roles in numer-
ous biological functions, as studied in organisms ranging 
from prokaryotes to eukaryotes [1–3]. From those stud-
ies, it emerged that post-transcriptional modifications 
are essential for the functions of RNA molecules to carry 
out their cellular functions. In the 1960s, scientists first 
discovered modifications in RNA bases through enzy-
matic digestion and electrophoresis [4]. Since then, over 
170 different types of RNA post-transcriptional chemi-
cal modifications have been described across all cur-
rently known RNA species [5]. Over the course of these 

investigations, the enzymes responsible for writing (cata-
lyzing and modifying nucleotides), reading (recognizing 
and binding modified nucleotides) and erasing (catalyz-
ing the removal of specific modifications) RNA modifi-
cations have also been discovered [6–9]. Small RNAs, 
which are a class of noncoding RNAs that are less than 
200 nucleotides in length, are widely present in various 
cell types and tissues [10–12]. Over the past 20  years, 
extensive research has led to their classification on the 
basis of their size and structural characteristics, as fol-
lows: traditional small RNAs, structural small RNAs and 
derived small RNAs (also called non-canonical small 
RNAs, Fig.  1 and Table  1) [13]. These small RNAs are 
involved in various biological processes through different 
mechanisms. For example, traditional small RNA spe-
cies, including, microRNA (miRNA), PIWI-interacting 
RNA (piRNA) and small interfering RNA (siRNA), inter-
act with Argonaute proteins to mediate RNA-silencing 
effects. Furthermore, structural small RNAs (including 
tRNA, rRNA, snoRNA, snRNA, yRNA and vtRNA) are 
essential components within cells that regulate physi-
ological homeostasis. In contrast, non-canonical small 
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Fig. 1  The structure and classification of small RNAs. The left panel displays traditional small RNAs, including miRNA, piRNA and siRNA; the middle 
panel displays structural small RNAs, including tRNA, yRNA, vtRNA, rRNA (containing 5s rRNA and 5.8s rRNA, and 5s rRNA was showed here), snoRNA 
and snRNA; the right panel displays derived small RNAs, whose fragment sizes are less than 50nt, and predominantly includes tsRNA from tRNA, 
ysRNA from yRNA, vtsRNA from vtRNA, rsRNA from 5s rRNA, snosRNA from snoRNA and snsRNA from snRNA. This figure was developed using 
BioRender.com
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RNAs represent structural RNAs of poorly characterized 
functions independent of Argonaute proteins, and these 
are generated following enzymatic cleavage by evolution-
arily ancient RNases [14]. Further to these small RNAs, 
new evidence suggests that small RNAs can be modified 
in a variety of ways which significantly influence their 
functions across various biological processes [14, 15]. 
Here, we detail the roles for small RNA modifications in 
the biogenesis and functions of small RNAs, with a focus 
on the following modifications: N6-methyladenosine 
(m6A), 2′-O-methylation (Nm), 5-methylcytosine (m5C) 
and pseudouridine (Ψ). Also, we summarize the cur-
rent methods of detecting these small RNAs, highlight 
the evidence for this molecular process in cell and tissue 
homeostasis and discuss the potential clinical application 
of small RNAs and its modifications in human disease.

Small RNA modifications
N6‑methyladenosine (m6A)
N6-methyladenosine (m6A), first discovered in the 1970s 
[40, 41], is a methylation modification of the sixth nitro-
gen (N) atom of adenine (A). The m6A modification is 
one of the most abundant type of modification to mes-
senger RNAs (mRNAs) in the biological world [42, 43], 
including in small RNAs of eukaryotic species [44]. This 
m6A modification can be catalyzed by S-adenosylme-
thionine (SAM) binding proteins methyltransferase-like 
3 (METTL3) and methyltransferase-like 14 (METTL14) 
[45, 46]. Notably, other cofactors, such as Wilms tumor-
associating protein (WTAP) [47], methyltransferase-
like 16 (METTL16) [48], RNA-binding motif protein 15 
(RBM15) [49], KIAA1429 (also called VIRMA) and zinc 
finger CCCH domain-containing protein 13 (ZC3H13) 
[50], are also known to be essential for catalyzing func-
tion of m6A methyltransferases. The proteins known as 
fat mass and obesity-associated protein (FTO) and ALKB 
homolog 5 (ALKBH5) are both also identified as m6A 
demethylases [51, 52]. On the other hand, members of 
YT521-B homology domain family 1/2/3 (YTHDF1/2/3) 
[7, 53], YT521-B homology domain-containing pro-
teins 1/2 (YTHDC1/2) [7, 54], members of the het-
erogeneous nuclear ribonucleoprotein protein families 
(including HNRNPC, HNRNPA2/B1) [7, 55], eukaryotic 
translation initiation factor 3 (eIF3) [49], as well as insu-
lin-like growth factor-2 mRNA-binding proteins 1/2/3 
(IGF2BP1/2/3) [56] have all been characterized as reader 
proteins that recognize m6A methylation (Fig. 2A).

In 2015, Alarcon and colleagues reported that alter-
ations to levels of the methyltransferase METTL3 
affected the expression of mature miRNA as well 
as unprocessed primary miRNA (pri-miRNA), in 
addition to its known effect on mRNAs [57]. This 
result suggests that m6A is associated with miRNA 

biosynthesis. As described [13], the first step in miRNA 
biosynthesis involves binding and recognition by the 
double-stranded RNA-binding protein (DGCR8) to the 
junction between the pri-miRNA hairpin stem and the 
flanking single-stranded RNA within the nucleus, fol-
lowed by recruitment of RNase III endonuclease Drosha 
to form a microprocessor complex. This leads to cleav-
age of pri-miRNA to produce a precursor miRNA (pre-
miRNA) species. The pre-miRNA then binds exportin 5 
and is transported to the cytoplasm to be cleaved into 
mature miRNA by Dicer. Interestingly, Alarcon and col-
leagues found that this biological process is dependent 
on m6A modification of RNA [57]. Indeed, METTL3 
can methylate pri-miRNAs for HNRNPA2/B1 recog-
nition, following which HNRNPA2/B1 recruits and 
interacts with DGCR8 to bind to pri-miRNA, leading 
to acceleration of miRNA production. Thus, m6A is 
an important post-transcriptional modification of effi-
cient miRNA biosynthesis within cells (Fig.  2B) [57]. 
This finding provides important insight into the role of 
m6A in various biological processes, as well as in the 
progression of human diseases. For example, a mecha-
nism for aberrant cell proliferation in bladder cancer 
implicates a pathway in which high METTL3 expres-
sion enhances DGCR8 recognition and binding of 
m6A-modified pri-miR221/222 which, in turn, potenti-
ates miR221/222 maturation and subsequent reduction 
in levels of phosphatase and tensin homolog (PTEN), 
a known target of miR221/222 [58]. Also, in the con-
text of patients spinal tissue degeneration, it has been 
reported that METTL14 regulates m6A modification of 
pri-miR-34a-5p to accelerate DGCR8 recognition and, 
through this mechanism, increases miR-34a-5p to tar-
get silent information regulator sirtuin 1 (SIRT1) and, 
in the process, promotes Tumor necrosis factor-alpha 
(TNF-α)-induced cell senescence within the nucleus 
pulposus invertebral disc tissue [59]. In addition to the 
actions of methyltransferases, m6A demethylases and 
reader proteins also affect the biological processes of 
miRNAs. For example, In lung cancer, the m6A reader 
HNRNPA2B1 interacts with LINC01234 to recruit 
DGCR8, and this leads to potentiation and accumula-
tion of miR-106b-5p which, in turn, exerts a down-
regulatory effect on cryptochrome circadian regulator 
2 (CRY2) levels, leading to elevated c-Myc levels and 
lung cancer growth [60]. In the scenario lung fibroblast 
activation and silica-induced lung fibrosis, it has been 
reported that ALKBH5, a demethylase, can demethyl-
ate pri-miR-320a-3p to prevent its interaction with 
DGCR8 and this, in turn, blocks the generation of miR-
320a-3p, leading to dysregulation in the expression of 
its target genes, including forkhead box M1 (FOXM1), 
which ultimately leads to lung tissue damage [61]. 
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Table 2 provides a summary of the roles of small RNA 
modifications in various cellular contexts in homeosta-
sis and disease.

In addition to its functions with methylation readers, 
writers and erasers, m6A modification may also facili-
tate miRNA maturation by promoting Dicer splicing of 
precursor miRNAs (Fig. 2C). In the context of non-small 
cell lung cancer, METTL3 has been shown to increase 
pre-miR-143-3p splicing in an m6A-dependent man-
ner to promote miR-143-3p biogenesis, leading to lung 
cancer invasion and angiogenesis through a mechanism 
involving dysregulation of vasohibin 1 (VASH1) expres-
sion [62]. This finding provides a potential avenue of 

investigation through which to develop novel treatments 
for patients with non-small cell lung cancer, as well as 
brain tissue metastasis by cancer cells.

Interestingly, in the absence of changes to its primary 
transcript, it has been reported that levels of several 
mature miRNAs are decreased within cells after down-
regulation of the m6A demethylase known as FTO, and 
this suggests that m6A can negatively regulate miRNA 
biogenesis [63]. Consistent with this observation, NSUN2 
methyltransferase inhibits processing of pri-miR-125b 
to miR-125b, and this results in a decrease in miR-125b 
expression levels [64]. This process of NSUN2-depend-
ent miR-125b downregulation may be facilitated by the 

Fig. 2  The m6A modification in miRNA. A. The chemical structure of adenosine and the site of methylation on N6 are shown alongside the 
enzymes (writers, eraser and readers) known to be involved. B. The m6A modification of pri-miRNA mediated by METTL3 or METTL14 is recognized 
by HNRNPA2/B1, so as to promote the interaction between DGCR8 and pri-miRNA, leading to acceleration of miRNA biosynthesis. On the contrary, 
ALKBH15 demethylates pri-miRNA, preventing DGCR8 from interacting with pri-miRNA, and this results in blockade of mature miRNA synthesis. 
HNR-: HNRNPA2/B1. C. The m6A modification in pre-miRNA mediated by METTL3 promotes the binding of Dicer to pre-miRNA which, in turn, 
accelerates the biosynthesis of miRNA (note that the specific m6A modification sites remain unknown). D. While studies have found that m6A 
modifications can be detected on mature miRNAs, the origin and biological relevance of such modifications remains to be better characterized
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actions of the protease activation receptor 2 (PAR2) and 
can ultimately promote rectal cancer metastasis through 
dysregulation of the expression of GRB2-associated bind-
ing protein 2 (Gab2) gene [65]. Contrastingly, in studies 
of endocrine-resistant breast cancer cells, HNRNPA2/
B1 appears to play a more complex role in miRNA bio-
genesis. HNRNPA2/B1 is found to be overexpressed in 
endocrine-resistant breast cancer cells, and this leads 
to upregulation of miR-1266-5p, miR-1268a and miR-
671-3p, as well as reductions in levels of miR-29a-3p, 
miR29b-3p and miR-222 which, collectively, is linked to 
a reduction in the sensitivity of such cells to cancer drugs 
4-hydroxytamoxifen and fulvestrant [66]. Thus, while 
m6A methylation is important to miRNA homeostasis 
and in the context of cancer, the underlying mechanisms 
remain to be better characterized. Since m6A methyla-
tion signatures can regulate mRNA degradation, inhibi-
tion of miRNA processing by m6A could be explained 
by a mechanism involving downregulation of the mRNA 
expression of protein factors that read, process and inter-
act with m6A RNA species, such as DGCR8, Drosha and 
Dicer. Further to this issue, Chen and colleagues suggest 
that m6A modification on pri-miRNAs may be selectively 
recognized by specialized readers involved in regulating 
miRNA instability or degradation, or both. Evidence for 
such a mechanism has been demonstrated for several 
ncRNAs and mRNA [67, 68].

Furthermore, m6A can be found in mature miRNAs 
[69]. However, the origin of m6A on mature RNAs and 
its impact is poorly understood (Fig. 2D).

Taken together, m6A modification is essential to 
miRNA processing, and our understanding of the func-
tional impact of m6A modification of miRNAs remains 
to be better clarified.

2′‑O‑methylation (Nm)
Another RNA modification is 2′-O-methylation (Nm), 
which is an abundant and highly conserved modification 
that replaces hydrogen (-H) atom on the ribose fraction 
2′-hydroxyl (-OH) with a methyl group (-CH3) [107]. The 
Nm modification can be found at various sites within 
transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small 
nuclear RNAs (snRNAs) [108] and messenger RNAs 
(mRNAs) [109]. Also, Nm modifications are detected 
on the 3′-ends of small RNAs such as miRNAs and siR-
NAs in plants [110, 111], Argonaute 2 (AGO2)-loaded 
siRNAs and miRNAs in flies, as well as piRNAs in ani-
mals [112, 113]. During the maturation process of small 
RNAs in humans, small RNAs undergo Nm modification 
at their 3′ end nucleotides after their processing by Dicer 
or PIWI proteins [114], and this modification is impor-
tant for them to form stable structures protected from 
3′–5′ truncation and 3′-uridine-triggered degradation 
(Fig. 3) [115–118]. In addition, Nm is postulated to affect 
the stability of small RNAs by affecting thermodynamic 

Fig. 3  The 2′-O-methylation (Nm) modification in piRNA. HEN1 catalyzes Nm modification of piRNA, replacing a hydrogen (–H) atom on the ribose 
fraction 2′-hydroxyl (–OH) with a methyl-group (–CH3). During piRNA maturation, the 3′-terminal nucleotide undergoes Nm modification, leading 
to formation of a stable piRNA structure that is protected from 3′-uridine degradation
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properties such as base stacking and structural rigidity 
[119, 120].

The first identified 2′-O-methyltransferase respon-
sible for Nm modification of small RNAs was the HUA 
ENHANCER 1 (HEN1) protein, discovered in Arabi-
dopsis as a methylase for miRNAs and siRNAs [111, 
121]. Subsequently, HEN1 homologs were found in 
other plants, as well as homologs that methylated piR-
NAs in animals, as well as AGO2-associated small RNAs 
in Drosophila [112, 122–127]. Studies have shown that 
HEN1 knockout or mutation in Arabidopsis leads to 
elevated levels of heterogeneous 3′-ends and poly-U, 
both features of which are known to disrupt RNA sta-
bility [110, 118], and which result in aberrant lengths as 
well as decreased levels of small RNAs, respectively. This 
phenotype is predicted to be associated with the role of 
enzymes responsible for 3′ uridylation of small RNAs, 
such as HEN1 SUPPRESSOR1 (HESO1) [116, 117] and 
UTP:RNA uridylyltransferase 1 (URT1) [128]. For exam-
ple, in Drosophila, loss of Pimet (HEN1 homolog) activity 
leads to deletion of Nm in piRNA and siRNA [129]. In 
addition, mutations in the HEN1 gene accelerate neuro-
degeneration and shorten lifespan, suggesting that Nm 
of small RNAs may affect age-related signaling events 
within cells [130]. In zebrafish, the absence of Hen1 
(HEN1 homolog) results in a decrease in piRNA content 
within oocytes and a shortening of exonuclease-mediated 
piRNAs, which ultimately leads to oocyte loss and infer-
tility [124]. Collectively, these findings highlight the roles 
for HEN1 and its orthologs across a broad range of plant 
and animal model systems in stabilizing germline small 
RNAs, with species-specific consequences.

In mammals, the HEN1 homolog, HENMT1, plays 
an essential role in fertility. For example, in mice, loss 
of HENMT1 expression leads to piRNA instability, 
observed as reductions to piRNA volume and length, 
as well as developmental arrest of germ cells during 
the process of spermatogenesis. Particularly, loss of 
HENMT1 and the associated loss of piRNA collectively 
lead to defective meiosis and precocious and selective 
expression of haploid transcripts during meiosis [131]. 
This finding shows that HENMT1 is critical to piRNA 
homeostasis in maintaining TE inhibition and spermat-
ogenesis in germ cells [131]. Of note, Nm modifications 
have also recently been detected in mature miRNAs 
in mammals. Different 3′-terminal Nm patterns of 
miRNAs, particularly miR-21-5p, have been reported 
in RNAs from non-small cell lung cancer cells from 
human subjects, as well as within cells of their paired 
normal tissue extracts. This methylation is reported to 
enhance the capacity for miR-21-5p to resist degrada-
tion by the polyribonucleotide nucleotidyltransferase 
enzyme PNPase 1 (PNPT1) which, in turn, leads to 

their prolonged loading onto AGO2 to form a com-
plex that enhances the inhibition of expression of pro-
grammed cell death 4 (PDCD4) [132]. This suggests 
that Nm modification of miRNA can enhance miRNA 
stability and prevent their degradation by enzymes such 
as PNTP1 [132].

In addition to HEN1, other 2′-O-methyltransferases, 
such as FTSJ1 and FBL, are also crucial for Nm modifi-
cation on small RNAs and their functions. For instance, 
studies have shown that the reduction of human FTSJ1 
orthologs-mediated tRNA Nm modification in Dros-
ophila leads to small RNA pathway dysfunction and 
increased susceptibility to RNA virus infection. This 
phenomenon is also associated with small RNA-
induced gene silencing pathways [133]. FTSJ1-mediated 
Nm modification on tRNA also can effectively suppress 
DRAM1 expression, consequently inhibiting the pro-
gression of non-small cell lung cancer [134]. Yi et  al. 
discovered that EZH2 has a direct interaction with FBL, 
a 2′-O-methyltransferase, leading to an enhancement 
in the 2′-O-methylation of rRNA, which promotes the 
assembly of box C/D small nucleolar ribonucleopro-
teins and facilitates tumor cell translation [135]. Over-
all, Nm modifications on tRNA play important roles in 
RNA silencing, translation and antiviral defense.

5‑Methylcytidine (m5C)
Another RNA modification is 5-Methylcytidine (m5C) 
in which the fifth carbon atom (C) of cytosine is meth-
ylated within RNAs [108]. The highly conserved NSUN 
(NOL1/NOP2/Sun) domain family has been identified 
as specific enzymes responsible for m5C RNA modifica-
tion [136, 137]. Also, the enzyme DNA methyltransferase 
2 (DNMT2) has been found to catalyze the formation of 
m5C at position C38 of tRNAs (Fig. 4A) [136, 137].

All these methyltransferases can also methylate small 
RNAs. For example, Shobbir Hussain and coworkers 
found that vault RNAs, a class of small RNAs of approxi-
mately 88 to 100 nucleotides in length and transcribed by 
RNA polymerase III, contain 6 methylated cytosines by 
NSUN and formed riboprotein granules called Vault with 
proteins [138]. The authors also used NSUN2-deficient 
patient cells to further demonstrate that loss of cyto-
sine-5 methylation in vt-RNA leads to abnormal process-
ing of argonaute-associated small RNA fragments that 
could function as miRNAs (Fig. 4B) [139]. The methyla-
tion of cytosine 69 in vtRNA occurs frequently in human 
cells and is jointly regulated by NSUN2 and serine/argi-
nine splicing factor 2 (SRSF2), such that vtRNA process-
ing produces different small-vault RNA (svRNA), which 
is implicated in the regulation of epidermal differentia-
tion [140]. In addition, m5C modification is also present 
on miRNAs [141].m5C modifications on miRNAs have 
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been reported to interfere with the formation of miRNA/
mRNA pairing, resulting in loss of gene silencing activ-
ity of the miRNAs themselves (Fig.  4C). For example, 
m5C modification abolishes the capacity for miRNA-
181a-5p to function as a tumor suppressor and correlates 
with poor prognosis in glioblastoma patients [142]. The 
m5C modification of miRNAs is also found to result in 

structural changes in the RNA-induced silencing com-
plex (RISC). For example, m5C modification at position 9 
of miR-200c-3p adjacent to its recognition with the RISC 
complex can disrupt the hydrogen bond formed between 
miRNA and AGO Ser220, resulting in guanine interac-
tion at miRNA position 8 with Arg761 of AGO transloca-
tion [69].

Fig. 4  The m5C modification in small noncoding RNAs. A. The chemical structure of cytosine and the site of methylation on C5 are both shown 
alongside the relevant enzymes (writers, eraser and readers). B. The m5C modification in vtRNA. The m5C modification of vtRNA catalyzed by 
NSUN2 affects cleavage by Dicer, resulting in persistence of svRNA4 products and a relative decrease in svRNA1, svRNA2 and svRNA3 (↓ denotes 
downregulation, while ↑ denotes upregulation). C. The m5C modification in miRNAs. Nsun2-mediated m5C modification in miRNA can interfere 
with the formation of miRNA;mRNA pairing, resulting in the loss of miRNA-mediated gene silencing activity. D. The m5C modification in tRNA. 
DNMT2-mediated m5C modification of tRNA can reduce the affinity of ANG to tRNA, leading to a reduction in tsRNA synthesis in cells
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In addition, m5C modifications on tRNAs affects the 
generation of tsRNA species. The formation of tsRNAs 
is reported to be induced in response to stress, since 
unconventional 5′ initiation sites can be found in the 5′ 
UTR of stress response transcripts to inhibit canonical 
translation and favor ribosome assembly [143]. Thus, 
m5C modification on tRNA protects them from angio-
genin (ANG) processing into tsRNA (Fig. 4D) [144–148]. 
In contrast, DNMT2-mediated loss of cytosine 38 meth-
ylation of tRNA leads to accumulation of tsRNAs, lead-
ing to mis-translation of specific codons and disruptions 
to protein synthesis [146]. These tRNA and tsRNA altera-
tions therefore inhibit protein synthesis and negatively 
affects cell function and development [144, 146, 147, 
149]. Furthermore, in sperm, small RNAs can encode 
paternal information through m5C modifications with 
the capacity for intergenerational transmission of pater-
nally acquired phenotypes. For example, Zhang and col-
leagues altered the expression profile of sperm small 
RNAs, including the levels of tsRNAs and rRNA-derived 
small RNAs, by knocking out mouse tRNA methyltrans-
ferase DNMT2. This intervention led to a prevention of 
the high-fat diet-induced elevation of RNA modifica-
tions (m5C, m2G) in the 30-40nt RNA fraction in sperm 
and subsequent abolishment of the transmission of 
small RNA-mediated metabolic disorders from high-fat 
diet-induced sperm. This finding suggests that DNMT2-
mediated m5C modification of RNAs contributes to the 
secondary structure and biological characteristics of 
small RNAs that underlie their capacity for paternal epi-
genetic memory, programmed as "coding marks" within 
sperm RNAs [150].

Other modifications on small RNAs
In addition to the modifications mentioned above, 
various other small RNA modifications have also been 
reported, including pseudouridine (Ψ) modifications, 
m7G modifications and m1A modifications, and of which 
also seem to play important roles in cell biological pro-
cesses, as described below. One caveat is that the under-
lying effects of such modifications on the structure and 
functions of RNAs remain to be better characterized.

Pseudouridine (Ψ)
Pseudouridine (Ψ), an isomeric form of uridine also 
known as 5-ribosyluracil, was discovered in the 1950s 
and is described as the most abundant type of post-tran-
scriptional RNA modification discovered in all kingdoms 
of life [151–153]. Pseudouridine is catalyzed by an evo-
lutionarily conserved family of pseudouridine synthases 
(PUS) or by RNA-dependent mechanisms that involve 
a significant number of H/ACA box small nucleolar 
RNA (snoRNA) [154]. Pseudouridine can be detected 

in tRNAs [155], rRNAs [156, 157], small nuclear RNAs 
(snRNAs) [158–160] and mRNAs [161, 162]. Its presence 
is known to affect the biogenesis, structure, function and 
coding potential of RNA, with attendant effects on down-
stream signaling and cell homeostasis.

Recent studies have found that pseudouridine cata-
lyzed by PUS7 could activate tsRNAs that are involved 
in protein synthesis which are vital to the functions of 
mammalian stem cells. For example, inhibition of a pseu-
douridine-driven regulatory network can severely affect 
hematopoiesis and promote the incidence and pathogen-
esis of human myeloid malignancies [163]. With regard 
to the impact of pseudouridine synthesis on miRNAs, 
it has been reported that inhibition of PUS10 results in 
reduced mature miRNA and accumulation of primary 
miRNA, yet this process is independent of catalytic activ-
ity of ubiquitin-specific peptidase 10 (USP10) [164]. In 
another example, endogenous TruB1, a predominant 
mammalian pseudouridine synthase, is able to bind the 
stem-loop of pri-let-7 to enhance the interaction of this 
miRNA with the microRNA processor protein DGCR8, 
so as to enhance the maturation of let-7 microRNA fam-
ily members that signal to inhibit cell proliferation [165]. 
These studies suggest that ability for cells to synthesize 
pseudouridine, as well as the presence of pseudouridine 
on multiple small RNA species are all critical to the regu-
lation of critical biological functions.

N7‑methylguanosine (m7G)
N7-methylguanosine (m7G) is a methylated modifica-
tion of the seventh nitrogen atom of guanine in RNA, 
and the modification is documented in tRNAs, rRNAs, 
mRNAs and miRNAs [166–170]. The m7G modification 
within cells can be catalyzed by METTL1 and WD repeat 
domain 4 (WDR4) proteins [171]. For example, METTL1 
binds directly to the miRNA precursor via m7G and 
accelerates miRNA maturation [168]. After pre-miRNA 
processing, m7G can persist on mature miRNAs and its 
presence can influence the function of mature miRNAs. 
For example, in lung cancer cells, a mature let-7e miRNA 
that encodes a m7G modification is capable of down-
regulating the stability and translation efficiency of the 
mRNA transcript encoding high mobility group protein 
2 (HMGA2). This, in turn, leads to a reduction in levels of 
translated HMGA2 protein and subsequent arrest of lung 
cancer cell proliferation and migration [168].

N1‑methyladenosine (m1A)
N1-methyladenosine (m1A) modification involves the 
methylation of the first nitrogen atom of adenine within 
RNA. This modification is mainly detected in tRNAs, 
rRNAs, mRNAs and small RNAs, and its presence has 
been found to influence the structure and functions of 
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these RNA species [172–174]. Particularly, small RNAs 
can regulate gene expression through m1A. For exam-
ple, Su and colleagues found that TRMT6/61A, an RNA 
methylase enzyme, was highly expressed in urothelial 
carcinoma cells derived from human bladder, compared 
with normal cells, and this was accompanied by higher 
levels of m1A modification across multiple RNAs includ-
ing tsRNAs. This resulted in dysregulation of the tsRNA 
targetome and contributed to cellular functions related to 
malignant transformation, including a direct effect on the 
unfolded protein response within these cancer cells [175].

Clinical applications
Prevention
Current evidence in the literature has indicated that 
therapeutic manipulation of small RNA modification 
may be clinically beneficial in the treatment and preven-
tion of human disease conditions. For example, Wang 
and colleagues investigated changes in methylation of 
22 miRNAs in 57 cases of human neural tube defects 
(NTDs) and reported that methylation of the microRNA 
hsa-let-7  g directly effects its expression (176). Further-
more, the methylation levels for hsa-let-7 g were signifi-
cantly correlated with folate concentration. Thus, the 
correlation between aberrant methylation of hsa-let-7  g 
and folate metabolism could indicate that, by improv-
ing early-pregnancy nutrition, NTDs could be avoided 
through a mechanism which involves adequate dietary 
supply of methyl-donors for miRNA modification within 
fetal cells [176]. In addition, growing evidence indicates 
that small RNAs in sperm can mediate the intergenera-
tional transmission of paternally phenotypes [177, 178]. 
For example, Chen and coworkers found that small RNA 
modifications in sperm were involved in encoding pater-
nity information [150]. There, the authors found that 
depletion of mouse tRNA methyltransferase DNMT2 
prevented the high-fat diet (HFD)-induced elevation of 
RNA modifications (m5C, m2G) in the 30-40nt RNA 
fraction of sperm, and this blocked the epigenetic trans-
mission of phenotypic traits for HFD-induced metabolic 
disorder that would have otherwise been detected in the 
offspring. Indeed, Dnmt2-mediated m5C modifications is 
crucial to endow small RNAs within sperm with special-
ized secondary structures and biological properties, and 
this is a powerful example of how small RNA modifica-
tions are critical to the epigenetic inheritance of paternal 
traits [150]. Thus, in these examples of NTD and sperm 
function, small RNA modifications influence the devel-
opmental homeostasis and organismal survival of mam-
malian offspring.

Prediction and surveillance
In 2006, Seidel and colleagues applied a chromatogra-
phy method to discover that the modified nucleosides 
in urine samples have high sensitivity and specificity as 
potential biomarkers to identify a variety of cancers in 
patients [179]. Recently, with the rapid development of 
detection techniques, the great potential of small RNA 
modification as a biomarker of disease is being realized. 
For example, Su and workers used an improved RNA 
sequencing detection technique of Thermostable Group 
II Intron Reverse Transcriptase (TGIRT) and discovered 
the presence of m1A, m1G and N2, N2- dimethylguano-
sine (m2 2G) modifications on tsRNAs and rsRNAs in 
bladder cancer cells [180]. Yan and colleagues applied 
a highly efficient liquid chromatography-tandem mass 
spectrometry method and discovered that small RNA 
modifications in the liver cells of diabetic mice were 
significantly altered compared to control treatment, 
highlighting the correlation between small RNA modifi-
cations and diabetes [181]. Zhang and coworkers found 
that 2′-O-methylcytidine (Cm), m7G, 2′-O-methyl-
guanosine (Gm),  and m2 2G modifications in 15–25 nt 
RNA from cells within the cerebral cortex of Alzheimer’s 
disease patients were significantly increased, compared 
with normotypic control samples [182]. Konno and col-
leagues reported that methylation of some miRNAs was 
elevated in tumor samples compared to normal tissues. 
Of note in one particular study, the methylation levels for 
miR-17-5p in serum were sensitive enough to distinguish 
patients with pancreatic cancer from healthy individuals 
[69]. Furthermore, small RNA modifications have been 
suggested to be reliable as a potential biomarker for male. 
There, studying RNA samples from patients with asthe-
nozoospermia and teratozoospermia relative to controls, 
Guo and colleagues used a high-throughput sequencing 
platform to detect RNA modifications and identified 13 
RNA modification signatures on total sperm RNA, as 
well as 16 RNA modification signatures on sperm RNA 
fragments of varying sizes. Particularly, the modifications 
m1G, m5C, m2G and m1A were found to be significantly 
correlated with clinically-graded sperm motility meas-
ures [183].

In addition to their potential value as diagnostic mark-
ers, the presence and relative abundance of small RNA 
modifications may also serve as prognostic biomark-
ers. For example, in patients diagnosed with glioma, 
low miRNA-181a-5p expression and cytosine methyla-
tion levels were associated with poor survival progno-
sis (reported as median survival rates of 12.4  months 
and 8.5  months, respectively), while glioma patients 
with high levels of unmethylated miRNA-181a-5p 
were found to have a better survival prognosis (median 
16.5  months) [184]. Guzzi and colleagues reported that 
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the dysregulation of the terminal oligoguanine (TOG) 
at 5′-terminal end of tRFs, which is regulated by pseu-
rouridine driven by PUS7 activity, is linked to leukemia 
transformation and reduced survival rates in patients and 
increases the risk of progressing from myelodysplastic 
syndrome (MDS) to acute myeloid leukemia [185].

Taken together, these findings suggest that small RNA 
modifications may be informative as markers that reflect 
the pathogenesis and progression of human disease.

Therapy and other applications
Given the examples of direct effects for small RNA 
modifications on human diseases such as bladder can-
cer and armed with the knowledge that evolutionarily 
conserved mechanisms drive small RNA modifications 
within cells, researchers are now exploiting these discov-
eries to design novel RNA-based treatments for human 
disorders [186]. For example, it has been found that Nm 
modified siRNAs are significantly more stable in serum 
so that it persists longer as an effective treatment to 
inhibit Enterovirus Type 71 (EV71) replication  [187]. In 
another example that demonstrates their stability when 

Fig. 5  Applications of small RNA modifications. Current applications of small RNA modifications are described in the context of disease prevention 
(such as in neural tube defects (NTDs), lipid metabolic disorders), cancer treatment (such as bladder cancer), disease prediction and surveillance 
(such as for cancer, metabolic diseases, neurodegenerative disease and male infertility). This figure was created with BioRender.com
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delivered into animals, siRNAs modified by thiophos-
phate, Nm and other modifications, stimulant-related 
analytes were delivered intravenously into rats and, 24 h 
later, these modified RNA species could still be detected 
in rat blood and urine samples by liquid chromatogra-
phy-high-resolution/high-precision mass spectrometry 
[188]. Nm modifications in plant miRNAs can extend 
their half-lives, and so this must be taken into considera-
tion regarding the use of modified RNAs, their potential 
to be ingested by humans and the impact of RNA treat-
ments in plant horticulture that has consequences on 
human physiology in those that adopt predominantly 
plant-based diets [189, 190]. In a related example, the 
tRNA methyltransferase known as TrmH which is 
required for G18 tRNA Nm, is not present in most bac-
teria, however, specific Nm modification to guanosine in 
bacterial tRNA position 18 is required to inhibit Toll-like 
receptor 7-mediated immune activation during a human 

host–pathogen response episode [191, 192]. Thus, Nm 
modification may be a feature of active selection in sym-
biotic and pathogenic species, such as in regulating the 
recognition of autologous and non-autologous-derived 
RNAs [15].

Recently, as indicated above, Su and colleagues 
reported that m1A modifications are highly enriched in 
22-nucleotide long 3′ tRNA fragments and is depend-
ent on its methylase TRMT6/61A [193]. In bladder 
cancer cells, high TRMT6/61A expression is observed, 
m1A modification levels of tRFs is increased and these 
molecular findings correlated with abnormal regulation 
of tRF target genes, such as those critical to the unfolded 
protein response [193]. Thus, small RNAs can regulate 
gene expression through base modifications, and this 
highlights their potential as a therapeutic avenue for the 
design of treatments to conditions such as bladder cancer 
(summarized in Fig. 5).

Table 3  Detection techniques of small RNAs

Method Verified small RNA species Specific features of the approach References

ARM-seq tRNA, tsRNA AlkB treatment to remove m1A, m3C and m1G modifica-
tions in tRNA

[194]

DM-tRNA-seq tRNA AlkB treatment to remove m1A, m3C and m1G modifica-
tions in tRNAs; thermostable group II intron RT (TGIRT) 
with high processivity to generate cDNA from highly 
structured tRNA adds RNA-seq adaptors by template-
switching without RNA ligation

[195]

multiplex small RNA-seq library 
preparation method (MSR-seq)

tRNA, tsRNA and other small RNAs Design of a biotinylated oligonucleotide used for bar-
code adapter ligation, immobilization, on-bead reverse 
transcription, second adapter ligation and PCR; AlkB treat-
ment removes m1A and m1G modifications in tRNAs

[196]

CPA-seq small RNAs including tsRNA, snsRNA, snos-
RNA, lncsRNA, miRNA

Use of a deacylation buffer (pH = 9.0) to remove ami-
noacyl residues in aminoacyl-tRNA-derived 3′-tsRNAs; 
Cap-Clip to remove the 5′-cap and 5′-ppp from RNAs 
to generate 5′-P termini; T4 PNK to reduce terminus 
multiplicities; AlkB and AlkB(D135S) (AlkB mix) used to 
remove methylation in m1A, m3C and m1G; TGIRT-III, a 
highly processive reverse transcriptase, used to increase 
the detection of sRNAs derived from tRNAs containing 
m1A, m3C and m1G sites

[197]

PANDORA-seq miRNA, tsRNA and rsRNA AlkB treatment to remove m1A, m3C, m1G and m2
2G 

modifications in tsRNAs;T4PNK treatment to convert 
5′-OH at the 5′end into 5′-P and 3′-P and 2′,3′- cP at the 
3′end into 3′-OH

[198]

AQRNA-seq all types(tRNA and miRNA, mRNA, rRNA, etc.) AlkB treatment to remove m1A, m1G and m1I modifica-
tions; Shrimp alkaline phosphate treatment to convert 
5′-P into 5′-OH and 3′-P into 3′-OH; Adaptor ligation 
at the 3′end of RNAs, to resolve the issue of 5′terminal 
modification

[199]

cP-RNA-seq 5′-tRNA halves; cP-containing RNA reper-
toires in various transcriptomes

Gel-purified RNAs specific sizes are purified and treated 
with a phosphatase (CIP), followed by treatment with a 
periodate (NaIO4) to disrupt 3′-ends of RNAs containing 
3′-P and 3′-OH ends; T4PNK to selectively capture RNAs 
with 2′,3′-cP at their 3′ termini

[200]

5´XP sRNA-seq miRNA, piRNA, tsRNA and rsRNA Simultaneous capture of 5′-P and non-5′-P RNAs with 
the 5′-P RNA tagged with a barcode sequence resolved 
during bioinformatic analyses

[201]
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Detection techniques
Detection techniques of small RNAs
As researchers discover the critical roles for small RNAs 
in physiological and pathological processes, an increasing 
number of sequencing techniques to detect small RNAs 
with high sensitivity and specificity have been reported. 
However, the complex landscape of small RNA modifica-
tion presents as a challenge for high-throughput analysis 
of small RNAs because such modifications interfere with 
the preparation of RNA-seq libraries and can limit their 
detection. Table 3 lists the current approaches to improv-
ing small RNA sequencing by overcoming specific RNA 
modifications.

Detection techniques of small RNA modifications
Several RNA-seq methods involve sequencing of the 
cDNA intermediate of RNA, and the conversion of RNA 
to cDNA can lead to loss of detection of small RNA mod-
ification. Table  4 lists the currently reported detection 
methods for small RNA modification sequencing. Recent 
studies have described two innovative methods for 
detecting m6A modifications on mRNA, including m6A-
SAC-seq and eTAM-seq. The m6A-SAC-seq method uses 
the Dim1/KsgA family of dimethyltransferases, which 
transfer the methyl group from S-adenosyl-L-methionine 
(SAM) to adenosines, resulting in the formation of m6A, 
followed by N6,N6-dimethyladenosine (m62A) in con-
secutive methylation reactions [202]. eTAM-seq relies 
on global A deamination, which enables the detection of 
m6A as persistent A [203]. Nonetheless, neither of these 
two methods has been applied to detect small RNA mod-
ifications yet. With further modifications, both of these 
methods would be utilized in detecting small RNA modi-
fications in the future. In summary, these technologies 
provide basic scientific tools and methods for compre-
hensive analysis of small RNA modifications and biologi-
cal studies.

Conclusion and perspective
As a recently discovered class of regulatory RNAs, 
small RNAS (also known as sncRNAs) can negatively 
or positively regulate the expression of tumor markers 
through different molecular pathways and intracellular 
signaling mechanisms. These functions for small RNAs 
depend on their sequence, their three-dimensional 
structure and their extent of RNA modification. As 
highlighted in this review, emerging evidence suggests 
that RNA modifications are essential not only in their 
capacity to influence the biogenesis and function of 
small RNAs, but their potential value as biomarkers for 
human diseased states is also noted [15]. Novel detec-
tion technologies including high-throughput LC–MS/

MS and sequencing-based approaches have accelerated 
our ability to identify, quantify and define the roles of 
small RNA modifications in homeostasis and diseases 
[137, 181, 195, 220, 221]. However, in contrast to the 
pace of the discovery of diverse types of small RNAs, 
which has been relatively rapid [14], research into the 
significance and biological impact of small RNA modifi-
cation in health and disease remains in its infancy. One 
of the most important tasks in the future is to address 
these technical challenges that enable researchers in the 
field of sncRNA biology to capture and study all known 
modified sncRNA sequences with high sensitivity and 
specificity. It is anticipated that these advances will lead 
to new insights into the physiological roles of modified 
small RNAs and accelerate sncRNA drug discovery as 
viable treatments for human health conditions.
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