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Abstract 

Background About half of AML patients achieving complete remission (CR) display measurable residual disease 
(MRD) and eventually relapse. FLYSYN is an Fc‑optimized antibody for eradication of MRD directed to FLT3/CD135, 
which is abundantly expressed on AML cells.

Methods This first‑in‑human, open‑label, single‑arm, multicenter trial included AML patients in CR with persisting 
or increasing MRD and evaluated safety/tolerability, pharmacokinetics and preliminary efficacy of FLYSYN at dif‑
ferent dose levels administered intravenously (cohort 1–5: single dose of 0.5 mg/m2, 1.5 mg/m2, 5 mg/m2, 15 mg/
m2, 45 mg/m2; cohort 6: 15 mg/m2 on day 1, 15 and 29). Three patients were treated per cohort except for cohorts 
4 and 6, which were expanded to nine and ten patients, respectively. Primary objective was safety, and secondary 
efficacy objective was ≥ 1 log MRD reduction or negativity in bone marrow.

Results Overall, 31 patients were treated, of whom seven patients (22.6%) experienced a transient decrease in neu‑
trophil count (two grade 3, others ≤ grade 2). No infusion‑related reaction or dose‑limiting toxicity was observed. 
Adverse events (AEs) were mostly mild to moderate, with the most frequent AEs being hematologic events and labo‑
ratory abnormalities. Response per predefined criteria was documented in 35% of patients, and two patients main‑
tained MRD negativity until end of study. Application of 45 mg/m2 FLYSYN as single or cumulative dose achieved 
objective responses in 46% of patients, whereas 28% responded at lower doses.

Conclusions FLYSYN monotherapy is safe and well‑tolerated in AML patients with MRD. Early efficacy data are prom‑
ising and warrant further evaluation in an up‑coming phase II trial.

Trial registration This clinical is registered on clinicaltrials.gov (NCT02789254).
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Background
AML is primarily a disease of adults (median age at 
diagnosis 68 years) with a high unmet medical need [1]. 
Treatment with curative intention comprises intensive 
induction chemotherapy to achieve morphological com-
plete remission (CR), followed by consolidation chemo-
therapy, allogeneic hematopoietic-cell transplantation 
(allo-HCT), or both [2]. Patients not eligible for inten-
sive induction therapy due to age and comorbidities 
are often treated with a combination of venetoclax and 
hypomethylating agents. MRD frequently (about 40%) 
remains detectable after achieving morphological CR 
and constitutes the basis for relapse [3–6]. Until recently, 
no treatment was established for patients with MRD, 
with exception of HCT that is associated with substan-
tial morbidity and mortality [7–9]. Recently, relapse-free 
survival was reported to be prolonged by oral azacitidine 
as maintenance therapy after successful first-line therapy 
[10].

The introduction of monoclonal antibodies (mAbs) 
has largely improved treatment options and outcome 
of cancer patients [11]. While mAb treatment mean-
while constitutes a standard of care in lymphoid neo-
plasia particularly of B-cell origin (e.g., Rituximab [12]), 
mAb immunotherapy is so far not established in myeloid 
malignancies in general and in AML in particular. Mono-
clonal Abs directed to various targets have been evalu-
ated preclinically and clinically, including CD33, CD123 
and CD38 [13], as exemplified by results obtained with 
lintuzumab (anti-CD33), which failed to achieve benefi-
cial effects in AML [14]. Notably, the antibody–drug con-
jugate Gemtuzumab ozogamicin (anti-CD33) is approved 
in AML, but anti-leukemic effects are accompanied by 
toxicity particularly at higher doses, leading to tempo-
rary withdrawal from market use, and its mechanism of 
action does not involve induction of anti-tumor immune 
response [15].

FMS-like tyrosine kinase 3 (FLT3, CD135) is a sur-
face expressed member of the class III receptor tyros-
ine kinase family. In healthy cells, low levels of FLT3 are 
expressed on immature hematopoietic progenitors, den-
dritic cells and monocytes [16–18]. In contrast, substan-
tial FLT3 levels are expressed on leukemic cells in almost 
all AML patients, and binding to FLT3 is not affected by 
activating mutations in the FLT3 gene [19–22]. Based on 
this favorable expression pattern, a mAb targeting FLT3 
(LY3012218) was developed and clinically evaluated 
in refractory and relapsed AML, but failed to achieve 
clinical efficacy [23]. Induction of antibody-dependent 
cellular cytotoxicity (ADCC) constitutes a major mech-
anism by which mAbs mediate their efficacy [24–26]. 
Among others, tumor burden, the ratio of malignant and 
immune effector cells, and the capacity of a given mAb 

to stimulate Fcγ receptor bearing immune effector cells 
determine therapeutic efficacy of ADCC. This prompted 
the development of mAbs with genetically modified Fc-
parts to increase affinity to the Fcγ receptor CD16 and 
thus immunostimulatory capacity [27]. In turn, the fail-
ure of LY3012218 may be explained by the fact that it 
contains an unmodified/non-optimized Fc-part and was 
evaluated in patients with high leukemic burden [23, 28]. 
Here, we report on the first clinical evaluation of FLY-
SYN, a chimeric FLT3 mAb which contains the amino 
acid modifications S240D and I333E (SDIE) in the CH2 
domain to improve binding to CD16 and has demon-
strated highly promising preclinical efficacy [22]. The 
optimized capacity of FLYSYN to induce ADCC and the 
reasoning to treat patients with low tumor burden led us 
to conduct a first-in-human trial evaluating safety and 
preliminary efficacy in AML patients in CR with detect-
able MRD.

Methods
Patients
Eligible patients, presented with histologically confirmed 
AML by WHO criteria [29], were aged ≥ 18  years and 
had an ECOG performance status of 0–2. Morphologi-
cal CR according to ELN definition [30] after any ther-
apy except for allo-HCT with stable or increasing MRD 
in two sequential measurements determined by central 
RT-qPCR and/or NGS constituted the main inclusion 
criterion (either in peripheral blood (PB) or bone mar-
row (BM) or both) [31–33]. FLT3 expression had to be 
confirmed on leukemic blasts. Details on inclusion and 
exclusion criteria are provided in Additional file 1.

All patients provided written informed consent prior 
to enrolment. The study was approved by the lead-
ing ethics committee of the University Hospital Tübin-
gen (184/2016AMG1), local ethics committees and the 
Paul Ehrlich Institute (2893). The trial was registered on 
clinicaltrials.gov (NCT02789254) and EudraCT number 
2016-000236-17.

Trial design and regimes
Results of an open-label, single-arm, first in man multi-
center trial (recruitment period February 2017 to March 
2020) evaluating safety/tolerability and efficacy of FLY-
SYN in AML patients with persistent or increasing MRD 
are reported.

Dose escalation followed a standard 3 + 3 design. 
Patients were enrolled in six dosing cohorts, with 
cohorts 1–5 evaluating a single FLYSYN application 
and up to three mAb treatments in cohort 6. FLYSYN 
was administered i.v. over 3 h with a fixed dose on day 
1 (0.5  mg/m2) and the remaining dose of the respec-
tive dose level applied on day 2. In cohort 1, a single 
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dose of FLYSYN of 0.5 mg/m2 body surface area (BSA) 
was applied, whereas patients in cohorts 2, 3, 4 and 5 
received a total dose of 1.5 mg/m2 BSA, 5 mg/m2 BSA, 
15 mg/m2 BSA, 45 mg/m2 BSA, respectively. In cohort 
6, patients received 15  mg/m2 BSA every 2  weeks for 
a total of three applications. In the absence of dose-
limiting toxicity (DLT), three patients were treated per 
cohort except for cohorts 4 and 6, which were expanded 
to 9 and 10 patients, respectively (Additional file 1: Fig. 
S1).

Treatment-emergent adverse events (AEs) and treat-
ment-related AEs were summarized as per the Medical 
Dictionary for Regulatory Activities and the National 
Cancer Institute Common Terminology Criteria for 
AEs (CTCAE) version 4.03. Safety data are summarized 
by counting every respective AE (SOC and lowest level 
term) that occurred in a patient only once. If the same 
AE occurred more than once, only the highest graded 
AE was counted. Details on trial methods are provided in 
Additional file 1.

Endpoints and assessments
Primary objective was safety of FLYSYN monotherapy 
at various dose levels. Primary endpoint was incidence 
and severity of AEs over 28 days (i.e., Visit 7, day 29) in 
cohorts 1–5 and over 35 days after last dosing (i.e., Visit 
9a, day 64) in cohort 6. Secondary safety endpoint was 
incidence and severity of AEs until day 180  days (Visit 
11) after first dosing. DLTs (detailed description in Addi-
tional file  1) were assessed until day 15 after first FLY-
SYN application in cohorts 1–5 and day 43 for cohort 6. 
Further, secondary objectives were preliminary activity 
of FLYSYN as per analysis of overall molecular response 
rate (per study protocol defined as any ≥ 1 log MRD 
reduction or negativity in BM), duration of response, and 
time to evidence of progressive disease (EPD). Time to 
EPD was defined as number of days from first study drug 
application to the earliest evidence of progress (MRD 
increase by ≥ 1 log, morphological relapse or death). In 
addition, MRD reduction defined as any reduction from 
MRD at baseline was assessed. In case of qPCR, copy 
numbers of mutated NPM1/10,000 ABL1 copies were 
determined, with the threshold to define MRD positiv-
ity being > 0 NPM1/10,000 ABL copies and sensitivity 
depending on ABL values (range  10−5 and  10−6). When 
NGS was used for detection of MRD, positivity was 
defined as any result above the threshold of 0.01% with 
sensitivity being  10−4. Immunogenicity was assessed as 
percentage of subjects who develop anti-drug antibodies 
(ADAs). Pharmacodynamics comprised analysis of B, T 
and NK cell populations and activation.

Statistical analysis
The clinical data cut-off date was February 2022. The 
number of patients in each cohort was based on toxicities 
observed as the trial progressed. Up to 31 patients were 
planned for enrolment. Safety, pharmacokinetics, and 
anti-leukemic activity analyses were done per protocol on 
all patients who received at least one dose of FLYSYN. All 
patients with drop-outs prior to end of study visit were 
assessed until last scheduled visit. Demographics were 
analyzed by descriptive statistics. Time to EPD between 
groups was compared using a logrank test. 95% CIs for 
median survival were calculated based on a log–log 
transform of the survival function estimate. All statistical 
analyses were done with SAS 9.4.

Results
Patient characteristics
From February 15, 2017, through March 18, 2020, 48 
patients underwent screening and 31 were included in 
the intention-to-treat population at five sites in Germany 
(Fig. 1). All 31 patients suffered from de novo AML. The 
age ranged from 21 to 80  years (median 59  years) with 
65% being female. A total of 55% of patients had received 
standard 3 + 7 induction therapy followed by consolida-
tion therapy (for details, see Additional file 1: Table S13), 
and at baseline, all patients had CR with at least one 
detectable MRD marker. Twenty-eight, two and one par-
ticipants were positive for mutated NPM1, mutated IDH2 
and RUNX1-RUNX1T1, respectively. For NPM1, MRD 
values ranged from 5 to 656,344 mutated NPM1 cop-
ies/10,000 ABL1 copies. FLT3 mutations were detected 
in nine (29%) patients comprising FLT3-ITD (n = 5, 16% 
of all patients) and FLT3-TKD (n = 4, 13% of all patients). 
The clinical characteristics are summarized in Table 1.

Safety and tolerability
No DLT was reported for FLYSYN at any dose cohort. 
For the primary safety endpoint, treatment-emergent 
AEs were observed in 25 (81%) of the 31 patients, of 
which in 15 (48.5%) patients AEs were considered related 
to FLYSYN (Table 2 and Additional file 1: Table S1). The 
most common any-grade treatment-emergent AEs in 
all cohorts were laboratory abnormalities and hemato-
logic events [neutrophil count decreased (22.6%), ane-
mia (19.4%) and white blood cell decreased (19.4%)], of 
which most were grade 1–2 (Table 2). The only grade 3 
treatment-emergent AEs was neutropenia (6.5%, one in 
cohort 4 and cohort 6, each) and back pain (3.2%, one 
in cohort 6) (Additional file  1: Tables S2 and S3). Only 
three patients (9.7%) developed fever after infusion, but 
none above grade 1 (Table 2). Most common treatment-
related AEs of any grade were decreased neutrophil 
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count (22.6%), anemia (19.4%) and decreased white 
blood cell count (19.4%, Additional file 1: Table S1). No 
support with G-CSF was required, and no neutropenic 
fever was observed. In the 18 patients receiving FLYSYN 
at ≤ 15  mg/m2 (cohorts 1–4), most common treatment-
emergent AEs were anemia (11.1%), constipation (11.1%), 
hypokalemia (11.1%), hypertension (11.1%), decrease in 
neutrophil (11.1%) and platelet (11.1%) count. Of those, 
anemia (11.1%), decreased neutrophil count (5.6%) and 
decreased platelet count (11.1%) were considered related 
to FLYSYN (Additional file  1: Tables S4 and S5). In the 
13 patients receiving > 15 mg/m2 of the drug (cohorts 5 
and 6), most common treatment-emergent AEs were 
decreased neutrophil (46.2%) and white blood cell count 
(46.2%), anemia (30.8%), fatigue (30.8%), decreased lym-
phocyte count (30.8%) and pain in extremity (30.8%). Of 
those, all hematologic events were assessed as related to 
FLYSYN (Additional file 1: Tables S4 and S5).

Overall, no grade 4 toxicity or serious AEs were 
observed (Table 2 and Additional file 1: Table S1). There 
was no dose interruption due to treatment-related AEs; 
one patient in cohort 6 showed disease progression dur-
ing study treatment and was discontinued after second 
dosing.

During long-term safety follow-up until visit 11, no 
additional safety issues were noticed (Additional file  1: 
Table S6).

Of the total of 31 patients, six patients (19.3%) had no 
disease progression at the end of study visit (day 545), 
whereas twenty-five patients (80.7%) discontinued study 
follow-up prior to the end of study visit (Additional file 1: 
Table S7). Median time to follow-up discontinuation for 
these 25 patients was 86 days (range 22–409) after study 
drug administration. The reasons for study follow-up dis-
continuation were evidence of disease progression (MRD 
progression or hematological relapse, n = 17), proceeding 

Fig. 1 Consort flow diagram. Seventeen patients did not meet the inclusion criteria at screening and accordingly were not enrolled in the trial. 
Three patients underwent screening procedures twice prior to enrollment. 31 enrolled patients received FLYSYN at the indicated dose level 
of the assigned cohort. Safety oversight to proceed to the next higher dose cohort was performed by an independent data and safety monitoring 
board after an interim safety analysis of the first three study patients included in a dose level, evaluated on day 15 (cohorts 1–5) or day 43 (cohort 
6) after FLYSYN application. Assessment of DLT could be done for all dose levels, whereas single patients of each cohort were not assessable 
at the primary safety endpoint, and 15 patients left follow‑up during the assessment of efficacy for the secondary endpoint analysis. In cohort 6, 
one patient (asterisk) dropped out prior to third application of FLYSYN due to hematologic relapse. One patient was lost to follow‑up. n number
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to allo-HCT (n = 6), lost to follow-up (n = 1) and pro-
ceeding to alternative treatment (n = 1; Additional file 1: 
Table  S7). The six patients proceeding to allo-HCT had 
a median time on study follow-up of 79  days (range 
56–246  days). No patient discontinued study treatment 
because of AEs related to study drug or death (Additional 
file 1: Table S7).

Pharmacokinetics
Pharmacokinetics were assessed in each dose cohort. 
Peak FLYSYN concentrations were documented 
6  h (median) post dose for dose levels ≤ 15  mg/m2 

(Additional file  1: Table  S8). Maximum FLYSYN lev-
els (Cmax) were dose proportional and reached 23.1  µg/
ml upon single dosing of 45  mg/m2. Half-life of FLY-
SYN was about 7.2  days. Average FLYSYN exposures 
[area under the curve (AUC)] was dose proportional and 
similar between dose cohorts 5 and 6 (Additional file 1: 
Table S8).

Efficacy
Efficacy was determined as best response until visit 10 
(day 90). In total, 20 (65%) of 31 patients experienced 
reduction in MRD in BM as defined as any reduc-
tion compared to baseline (Fig.  2 and Additional file  1: 
Table  S9). MRD reduction differed for each cohort and 
was 100%, 67%, 33%, 44%, 67% and 80% for cohorts 1, 
2, 3, 4, 5 and 6, respectively. In cohorts 1–4, MRD was 
reduced in 56% of patients compared to 77% in cohorts 5 
and 6. 11/31 (35%) patients achieved an overall molecular 
response (defined as any > 1 log MRD reduction or nega-
tivity in BM) to treatment, with 67%, 33%, 0%, 22%, 67% 
and 40% in cohorts 1, 2, 3, 4, 5 and 6, respectively. Occur-
rence of response appeared to be dose-dependent: 28% 
responses were seen with lower doses compared to 46% 
in patients receiving 45 mg/m2 FLYSYN (single or repeti-
tive dosing). MRD negativity was observed in 19% of all 
patients until visit 10, with slightly higher numbers in 
cohorts 1–4 compared to cohorts 5 and 6 (22% vs. 15%), 
and two patients maintaining documented MRD nega-
tivity at end of study (Additional file 1: Table S9). As our 
trial was designed prior to publication of the current ELN 
guidelines regarding MRD detection, we separated our 
patients into  MRDlow and  MRDhigh groups using the cut-
off of 200 NPM1 copies/10,000 ABL copies (2%) accord-
ing to ELN guidelines [2, 34]. A total of 32% (n = 10) of 
our patients had a NPM1 MRD level below 2%, the other 
68% displayed MRD levels above the ELN threshold. 
Response to treatment was observed more frequently in 
patients with MRD levels below the cut-off (60% vs. 22%). 
Of note, the difference in response at least partly leveled 
out when patients received higher FLYSYN doses, with 
60% versus 43% responders upon receiving a total dose 
of 45  mg/m2 compared to 60% vs 9% responders when 
receiving ≤ 15 mg/m2 FLYSYN. Of note, the patients that 
achieved MRD negativity had presented with median 
baseline values of 11 NPM1 copies/10,000 ABL copies 
(Additional file 1: Table S9).

Across the study, median time to MRD response was 
29  days (range 15–92). For cohorts 1–4, median time 
to MRD response was 29  days (range 15–43), whereas 
in cohorts 5 and 6, MRD response occurred 50.5  days 
(range 15–92) after FLYSYN treatment. Median time to 
progression for all treated patients was 6.9 months (95%, 

Table 1 Patients’ characteristics

A-ICE all-trans retinoic acid, idarubicine, cytarabine, etoposide, AML acute 
myeloid leukemia, ECOG Eastern Cooperative Oncology Group, FLT3 fms like 
tyrosine kinase 3, MRD minimal residual disease, n number, n.a. not applicable, 
NGS next generation sequencing, qPCR quantitative polymerase chain reaction
* Other prior treatments include treatment regimens with cytarabine, etoposide, 
all-trans retinoic acid, decitabine, gemtuzumab ozogamicin
‡ Induction therapy was followed by high dose cytarabine consolidation
⁑ qPCR is assessed in mutated NPM1 copies/10,000 ABL1 copies
† NGS is assessed in % of mutated/variant allele frequency
a DTA includes mutations in DNMT3A, TET2 and ASXL1

Characteristic Value (n = 31)

Median age—years (range) 59 (21–80)

ECOG score—n (%)

 0 22 (71)

 1 9 (29)

Gender—n (%)

 Female 20 (65)

 Male 11 (35)

AML type—n (%)

 De novo 31 (100)

 Secondary 0 (0)

Prior treatment—n (%)

 3 +  7‡ 17 (55)

 3 + 7 +  midostaurin‡ 3 (10)

 A‑ICE‡ 6 (19)

 Other* 5 (16)

Mutations—n (%)

 FLT3‑ITD 5 (15)

 FLT3‑TKD 4 (13)

MRD Marker—n (%)

 NPM1 28 (90)

 IDH2 2 (6)

 RUNX1-RUNX1T1 1 (3)

 DTA mutationsa 0 (0)

MRD baseline values

 NPM1 MRD median (range) (qPCR)⁑ 936 (5—656,344)

 IDH2 MRD median (range) (NGS)† 0.729 (0.2–1.258)

 RUNX1-RUNX1T1 MRD median (range) (NGS)† 0.06 (n.a.)
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Table 2 Treatment‑related adverse events for all cohorts

Adverse events (AEs) and serious AEs are classified according to CTCAE V4.03. Severity and relationship were judged by the investigator. AEs are reported until the 
primary safety endpoint, i.e., until Visit 7 or Visit 9a for cohorts 1–5 or cohort 6, respectively. For each patient, AEs occurring at least once were counted with the 
highest CTCAE grading

CTCAE common terminology criteria for adverse events, n number, SOC system organ class, WBC white blood cell

SOC CTCAE term All subjects (n = 31)

Grade 1 Grade 2 Grade 3 Any grade

Patients with events All terms 8 (25.8) 4 (12.9) 3 (9.7) 15 (48.4)

Blood and lymphatic system disorders Anemia, n (%) 5 (16.1) 1 (3.2) 0 6 (19.4)

Gastrointestinal disorders Nausea, n (%) 1 (3.2) 0 0 1 (3.2)

General disorders and administration site conditions Chills, n (%) 2 (6.5) 0 0 2 (6.5)

Edema limbs, n (%) 1 (3.2) 0 0 1 (3.2)

Fatigue, n (%) 3 (9.7) 0 0 3 (9.7)

Fever, n (%) 3 (9.7) 0 0 3 (9.7)

Flu like symptoms, n (%) 2 (6.5) 0 0 2 (6.5)

Non‑cardiac chest pain, n (%) 1 (3.2) 0 0 1 (3.2)

Investigations Blood bilirubin increased, n (%) 2 (6.5) 0 0 2 (6.5)

Investigations—Other, interleukin 2 
receptor increased, n (%)

1 (3.2) 0 0 1 (3.2)

Lymphocyte count decreased, n (%) 3 (9.7) 1 (3.2) 0 4 (12.9)

Neutrophil count decreased, n (%) 2 (6.5) 3 (9.7) 2 (6.5) 7 (22.6)

Platelet count decreased, n (%) 2 (6.5) 0 0 2 (6.5)

WBC decreased, n (%) 3 (9.7) 3 (9.7) 0 6 (19.4)

Musculoskeletal and connective tissue disorders Back pain, n (%) 0 0 1 (3.2) 1 (3.2)

Pain in extremity, n (%) 1 (3.2) 1 (3.2) 0 2 (6.5)

Nervous system disorders Dizziness, n (%) 1 (3.2) 1 (3.2) 0 2 (6.5)

Dysesthesia, n (%) 1 (3.2) 0 0 1 (3.2)

Headache, n (%) 1 (3.2) 0 0 1 (3.2)

Paresthesia, n (%) 2 (6.5) 0 0 2 (6.5)

Vascular disorders Hypertension, n (%) 0 1 (3.2) 0 1 (3.2)

Hypotension, n (%) 2 (6.5) 0 0 2 (6.5)

Fig. 2 Waterfall plot showing MRD change after FLYSYN treatment. Waterfall plot of the best response after baseline (maximum change of MRD 
level from baseline) until visit 10 (up to 90 days after first FYSYN application). All dose cohorts are displayed. Six patients were MRD negative, 
and five patients (asterisk) had a MRD reduction of ≥ 1 log compared to MRD levels prior to FLYSYN treatment. MRD was measured with qPCR 
or NGS, depending on MRD marker. Seven patients (dagger) did not respond to FLYSYN and had MRD increase > 100%. MRD, minimal residual 
disease
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CI 3  months–not reached; 0 deaths) (Additional file  1: 
Fig. S2 and Table  S10), with no significant difference 
observed between cohorts 1–4 and cohorts 5–6. Details 
are provided in Additional file 1: Appendix.

Pharmacodynamics
None of the patients developed ADAs (Additional file 1: 
Table S11). Analysis of potential effects of FLYSYN treat-
ment on stem cell reserve revealed no profound decrease 
in colony-forming units (Additional file  1: Fig. S3). 
There was no substantial difference in baseline  CD19+, 
 CD3+,  CD3+/CD4+,  CD3+/CD8+,  CD56+ and  CD14+ 
cell counts with regard to response (Additional file  1: 
Fig. S4a–f), and neither was there a relevant difference 
between responders and non-responders regarding per-
centage and absolute number of NK cells in PB and BM 
(Additional file  1: Fig. S4g–h). Examination of baseline 
surface FLT3 expression revealed expression on AML 
cells in all patients, with no substantial difference accord-
ing to response (Additional file  1: Fig. S5a–b). Patients 
not responding to treatment had substantially higher 
MRD levels at baseline (Additional file 1: Fig. S5c).

Discussion
This dose-escalation study demonstrates that the Fc-opti-
mized FLT3 antibody FLYSYN applied as monotherapy is 
very well-tolerated and shows promising clinical activity 
in terms of achieving MRD reduction or even MRD neg-
ativity in AML patients.

Tolerability and safety of FLYSYN was equally distrib-
uted over the various dose levels, with a tendency to 
more AEs at doses > 15 mg/m2. As expected, hematologic 
events constituted the most frequent treatment-related 
AEs (22·6%), in line with the reportedly low expression of 
FLT3 in healthy cells of the BM [21]. The mild and tran-
sient effect on hematopoiesis, especially neutropenia, 
was mirrored by the results of CFU assays conducted to 
monitor for potential BM toxicity showing only mild and 
transient reduction in colony-forming units. Likewise, 
most other reported AEs were mild to moderate and 
mainly comprised flu-like symptoms and fatigue, which 
may reflect the induced immune activation. No DLTs 
were recorded.

A major complication of mAb treatment is the devel-
opment of ADAs, which may neutralize the therapeu-
tic mAb upon repetitive dosing and thus limit efficacy 
[35]. In none of the patients in our study, development 
of ADAs against FLYSYN was detected, despite the fact 
that FLYSYN is a chimerized and not a fully human mAb 
[22]. Half-life was 7.2  days, which based on preclinical 
data is sufficient to maintain effective drug levels upon 
bi-weekly dosing [22, 36].

Molecular response to treatment, defined as ≥ 1 log 
MRD reduction or negativity in BM, was achieved in 
35% of patients, of which two maintained documented 
MRD negativity at last study visit. Even if efficacy was not 
the primary endpoint and these findings require further 
evaluation in consecutive trials, our results are promis-
ing, as MRD is associated with disease outcome in AML 
and also other hematologic malignancies [6, 30, 37–39]. 
This holds true despite potential technical issues with 
MRD determination [38, 39] and the fact that in AML, 
MRD negativity may also occur during the natural course 
of disease, especially at low MRD levels [2, 32, 34]. In 
our study, response to treatment was overall associated 
with lower MRD levels at baseline, and this was likewise 
observed when patients were grouped in  MRDlow and 
 MRDhigh patients according to ELN guidelines. Notably, 
this effect was less pronounced at higher FLYSYN doses, 
and overall, a clear trend to higher response rates (46% 
vs. 28%) was observed for patients treated with higher 
doses of FLYSYN (cumulative dose > 15  mg/m2), which 
provides important information for further clinical devel-
opment. Over all applied FLYSYN doses, cmax serum con-
centrations above that required for in vitro efficacy were 
observed [22]. The applied maximum dose of FLYSYN 
is by far lower than that of rituximab or obinutuzumab 
applied for B cell lymphoma especially in the mainte-
nance therapy, which mirrors the by far higher expres-
sion of CD20 in lymphoma compared to FLT3 in AML in 
CR with MRD and the accordingly lower required drug 
level [11, 12, 40].

Together, the favorable safety and preliminary efficacy 
data confirm the suitability of FLT3 as target antigen for 
immunotherapy in AML. Notably, activating mutations 
occurring in the FLT3 gene, which impact prognosis 
upon conventional systemic treatment [20], do not affect 
FLYSYN binding, allowing for application irrespective of 
FLT3 mutational status. Overall, there is an increasing 
interest in targeting FLT3 for immunotherapy not only 
for mAbs, but also for strategies to induce T cell immu-
nity, like CART cells and bispecific antibodies. Directed 
to B cell antigens, various CART products and bispe-
cific antibodies are meanwhile approved for lymphoma 
treatment, with Blinatumomab being first to become 
available in 2014 [41–46]. In this regard, our data are of 
interest as they further validate FLT3 as target antigen 
for myeloid malignancies [47]. Besides immunotherapeu-
tic approaches, hypomethylating agents with or without 
small molecule drugs are emerging as strategy for the 
elimination of MRD and are currently under investiga-
tion with promising results [48–50]. Limitations of our 
study include the small number of patients treated across 
the various FLYSYN dose-level cohorts, the broad range 
of MRD level at baseline and the fact that the trial was 
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designed before the current ELN guidelines regarding 
MRD detection were published. In addition, the number 
of patients who dropped out of the study was higher than 
anticipated, mainly caused by a stem cell donor becoming 
available during the study period. To obtain reliable data 
on efficacy and to identify patients that particularly ben-
efit from FLYSYN treatment, a larger and randomized 
trial is presently in preparation, which will among others 
evaluate longer drug exposure/cumulative higher dos-
ing. Nevertheless, our phase I trial documents promising 
anti-leukemic activity accompanied by a very favora-
ble toxicity profile of our Fc-optimized FLT3 antibody. 
Considering the beneficial effects reported for demeth-
ylating agents after achieving CR and available data that 
such drugs may boost ADCC induced by mAbs [10, 51, 
52], combinatorial application in an upcoming trial may 
reveal potential synergistic effects and serve to establish 
FLYSYN as novel immunotherapeutic strategy in AML.
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