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Abstract 

Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities dur-
ing the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied 
to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. 
Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to under-
stand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA 
sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biol-
ogy by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular 
genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor 
heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolu-
tion. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing 
applications in cancer research and clinical practice.
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Introduction
Cancer is a systemic disease and a major global chal-
lenge, that forms and progresses through a series of 
critical transitions—from premalignant to malignant 
states: from locally contained to metastatic disease, and 

from treatment-responsive tumors to treatment-resist-
ant tumors [1–3]. Cancer has been a major challenge 
because of its clonal heterogeneity and the compositional 
complexity of the tumor microenvironment (TME) [4]. 
Tumor heterogeneity and the TME play crucial roles in 
tumorigenesis, progression, invasion, metastasis, and 
drug resistance [5–7]. The development of sequencing 
technologies has allowed the generation of large amounts 
of molecular data from a single cancer specimen, bring-
ing about the era of precision medicine in clinical oncol-
ogy [8]. ‘Precision medicine’ requires detailed knowledge 
of the molecular profile of a patient [9, 10]. Bulk RNA 
sequencing (RNA-seq) provides limited insights into the 
clonal composition of tumors and the TME [11]. Several 
obvious advantages of scRNA-seq over bulk RNA-seq 
data have been noted, including its ability to character-
ize the subtypes of cells and the frequency of cell types 
in each sample, its ability to identify the genes and net-
works that are activated within each cell or cell type, and 
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the ability to study relationships among cells or cell types 
[12]. Single-cell RNA sequencing (scRNA-seq) was first 
reported in 2009 in a study profiling the transcriptome 
at single-cell resolution, and scRNA-seq is gradually 
becoming a popular tool used in human cancer research 
for elucidating disease heterogeneity [4, 13, 14]. ScRNA-
seq provides biological information at single-tumor-cell 
resolution, reveals the determinants of intratumor gene 
expression heterogeneity, and identifies the molecular 
bases for the formation of many oncological diseases 
[15]. Here, we describe the current state of and advances 
in scRNA-seq technology, summarize its applications in 
cancer biology research and clinical practice, and pro-
pose major avenues for future investigation, with a focus 
on how this technology can facilitate precision medicine 
treatment in clinical practice.

Advances in scRNA‑seq
A typical scRNA-seq protocol includes several steps: 
sample acquisition, single-cell isolation, lysis, reverse 
transcription (RT), complementary DNA (cDNA) ampli-
fication, library construction, sequencing, and data anal-
ysis [16] (Fig. 1). Although capturing single cells quickly 
and accurately with high efficiency may seem trivial, it 

is one of the main challenges of single-cell sequencing 
[17]. Currently, several methods are utilized to isolate 
single cells, including manual cell selection [13], limiting 
dilution [18], laser-capture microdissection (LCM) [19], 
fluorescence-activated cell sorting (FACS) [20], magnetic 
activated cell sorting (MACS) [21], and microfluidics 
[22]. Among these methods, microfluidics has become 
popular due to its low sample consumption, precise 
fluid control, and low operating costs [23]. In particular, 
droplet-based microfluidics (also called microdroplets) is 
currently the most popular high-throughput platform; in 
microdroplets, single cells are masked by nanoliter drop-
lets that contain a lysis buffer and barcoded beads using 
microfluidic and reverse emulsion devices [24].

In general, relevant protocols are classified into two 
categories: full-length transcript sequencing approaches 
and 3′/5′-end transcript sequencing approaches (tag-
based methods) [25]. Some protocols, such as Quartz-
seq [26], Smart-seq [27], Smart-seq2 [28], SUPeR-seq 
[29], and MATQ-seq [30], can produce full-length tran-
script sequencing data, while others only capture and 
sequence the 3′-end, such as CEL-seq [31], CEL-seq2 
[32], Drop-seq [33], inDrop [34], 10 × Genomics [35] 
and Quartz-seq2 [36] or the 5′-end, such as STRT-seq 

Fig. 1 Typical scRNA-seq protocol



Page 3 of 48Huang et al. Journal of Hematology & Oncology           (2023) 16:98  

[37]. Compared to 3′-end or 5′-end counting protocols, 
full-length scRNA-seq methods have incomparable 
advantages in isoform usage analysis, allelic expression 
detection, and the identification of RNA editing mark-
ers due to their superior transcript coverage [38]. How-
ever, full-length scRNA-seq methods are relatively more 
expensive than contemporaneous tag-based scRNA-seq 
technology. These methods had their own characteris-
tics and advantages/disadvantages (Table 1, Fig. 2). Next, 
we will elaborate on the latest advances in scRNA-seq 
technology by some classic or promising scRNA-seq 
methods.

Tag‑based methods
The main advantage of tag-based methods is that these 
can be combined with unique molecular identifiers 
(UMIs), which can reduce overall costs and labor, enable 
the multiplexing of more samples, and improve gene-
level quantification and throughput. However, tag-based 
methods have relatively low sensitivity as mappable 
reads are restricted to one end of the transcript. Thus, 
tag-based methods are mostly used for gene expression 
quantification and cannot be utilized for isoform identifi-
cation or splicing [39, 40].

CEL‑seq and CEL‑seq2
Linear amplification by in  vitro transcription (IVT) is 
preferable to exponential amplification by PCR. CEL-seq 
(cell expression by linear amplification and sequencing) 
is the first scRNA-seq protocol that uses IVT for linear 
amplification of RNA from single cells [31], which is a 
sensitive, accurate, and reproducible single-cell tran-
scriptomics method. However, the experiment procedure 
is complicated and time-consuming. The throughput is 
low and it has a 3′ bias. Four years later, the same team 
created CEL-seq2 by combining with Fluidigm’s C1 sys-
tem, which is the first single -cell, on-chip barcoding 
method with more time- and cost-efficient compared 
with CEL-seq [32]. Moreover, CEL-seq2 increases accu-
racy with the addition of 5-base UMI for labeling and sig-
nificantly improves RT efficiency, resulting in increased 
assay sensitivity.

MARS‑seq and MARS‑seq2
MARS-seq (massively parallel single-cell RNA-sequenc-
ing) is an automated high-throughput method of CEL-
seq and was developed to explore cellular heterogeneity 
within the immune system by assembling an automated 
experimental platform that enables RNA profiling of cells 
sorted from tissues using flow cytometry [41]. MARS-
seq utilizes IVT as the amplification method instead of 
PCR to quantify the mRNA levels with less amplification 
noise and reduce hands-on time with the ability to pool 

many samples before amplification. At the same time, the 
requirement for barcoding limits coverage to only the 3′ 
or 5′ ends of the transcripts [42, 43]. Shaul and colleagues 
developed a novel MARS-seq2.0 based on the MARS-
seq protocol, whose experimental improvements refer 
to lowering of RT volume, optimization of lysis buffer, 
reduction of RT primer concentration, optimization of 
RT primer composition, primer removal by exonucle-
ase I, optimization of second-strand-synthesis enzymes, 
and optimization of barcoded ligation adaptor [44]. 
Thus, MARS-seq2.0 has a comprehensive improvement 
including throughput, robustness, noise reduction, and 
cost reduction. Optimization of the conditions indicated 
above resulted in a sixfold reduction in the cost of library 
production (from $0.65 to $0.10 per cell) and reduced the 
background level (from 10–15% to 2%). MARS-seq2.0 
allows efficient sequencing of 8,000–10,000 cells in a 
single run and has a negligible amount of doublet cells 
(< 0.2%; 2 out of 1,041 cells) and provides high confidence 
in cell identity. MARS-seq2.0 only takes 2–3  days from 
cell sorting to a ready-to-sequence library. Sequencing 
and processing the data through the analytical pipeline 
take another 1–2  days. The drawback of this method is 
the premature termination of reverse transcription which 
significantly reduces transcript coverage at the 5′ end 
[23].

Drop‑seq, in Drop‑seq and 10 × Genomics
Currently, the most popular high-throughput platform 
is based on droplet-based microfluidics (microdroplets) 
[45]. In 2015, two blockbuster droplet-based scRNA-seq 
methods, known as Drop-seq and inDrop, were identi-
fied [33, 34]. Drop-seq and inDrop share similar strate-
gies in generating droplets, isolating single cells through 
on-bead primers with barcodes, and correcting bias by 
applying UMIs [46]. In 2017, the commercial sequenc-
ing platform 10 × Genomics was successfully developed 
based on the above techniques, enabling a significant 
increase in cell throughput and a considerable reduc-
tion in single-cell sequencing costs [14, 35]. Zhang et al. 
compared the three most widely used droplet-based 
high-throughput scRNA-seq systems using the same cell 
sample and a unified data processing pipeline to reduce 
bias in experimental design and data analyses [47]. The 
instrument of 10 × Genomics costs more than $50,000 
and the per-cell cost is about $0.50, even without con-
sidering the sequencing cost or instrument depreciation. 
Building up the whole system of Drop-seq costs less than 
$30,000 and the experimental cost is about $0.10 per cell. 
The instrument cost of inDrop is comparable to that of 
10 × Genomics, and the per-cell cost is about half that of 
10 × Genomics. Generally, all three systems offer satisfac-
tory transcript detection efficiency, and higher efficiency 
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is associated with higher experimental costs. When the 
sample is abundant, Drop-seq can be more cost-effi-
cient. In contrast, when the detection of low-abundance 
transcripts is optional, or a custom protocol is desired, 
inDrop becomes a better choice. As a more mature com-
mercialized system, 10 × Genomics generally requires less 
time, has higher molecular sensitivity and precision, and 
is accompanied by less technical noise. By rule of thumb, 
10 × Genomics is currently a safe choice for most applica-
tions and has been used in cancer research most widely. 
However, these techniques can only identify the 3′ or 5′ 
end sequence of transcripts and have a limited depth of 
sequencing.

Seq‑Well and Seq‑Well S3
Seq-Well resembles its predecessor Drop-seq but sur-
passes it. Using similar chemistry but without droplets, 
cells are efficiently loaded by gravity into picowells where 
single cells and uniquely barcoded poly(dT) mRNA beads 
are co-confined with a semipermeable membrane, which 
reduces the need for peripheral equipment, decreases 
dead volumes and facilitates parallelization [48, 49]. 
Seq-Well overcomes key cost, portability, and scalability 
limitations associated with reverse-emulsion droplets-
based cell capture and barcoding methods like Drop-seq 
by combining the throughput and cost-effectiveness of 
Drop-seq with the simplicity and sampling efficiency of 
picowells [49]. High-throughput scRNA-seq methodolo-
gies recover less information per cell than low-through-
put strategies. To achieve the goal of both high fidelity 
and high throughput, this research team created Seq-Well 

 S3 (‘‘Second-Strand Synthesis’’), which incorporates a 
second-strand-synthesis step after reverse transcription 
to add a second PCR priming site [50]. This modifica-
tion allows for the recovery of cDNA that is reverse tran-
scribed but for which the template switch reaction failed. 
Seq-Well  S3 increases the efficiency of transcript capture 
and gene detection compared with Seq-Well by up to 10- 
and fivefold, respectively. However, a limitation of Seq-
Well  S3 is that the size of the cDNAs after second-strand 
synthesis was shorter than that obtained in Seq-Well or 
Drop-seq, which decreases the utility of Seq-Well  S3 for 
certain downstream applications that seek information 
from full-length transcripts or their 5’ ends.

Microwell‑seq and Microwell‑seq2.0
Microwell-seq uses agarose microarray to trap individ-
ual cells and fabrication of the agarose microarray is a 
high-throughput, convenient, and low-cost scRNA-seq 
platform with advantages of low batch effects and high 
cell-type compatibility [51, 52]. It can capture 5–10 thou-
sand individual cells by agarose plates with  105 microw-
ells in a single experiment [45]. Microwell-seq produces 
high-fidelity single-cell libraries with no more than 1.2% 
cell doublets. Approximately 6,500 genes and 55,000 
transcripts can be detected by saturated sequencing [52]. 
Microwell-Seq contributes to cellular hierarchy construc-
tion and clonal heterogeneity deciphering in normal 
bone marrow and acute myeloid leukemia [7]. Combin-
ing in-cell RT and Microwell-seq, Chen et al. established 
Microwell-seq2.0 for cost-effective and high-throughput 
screening (HTS) with single-cell transcriptional profiling 

Fig. 2 Timeline and throughput of various scRNA-seq methods. Scatterplot depicts the published date and throughput of sequencing for each 
technology. The color indicates the different gene coverage. Size indicates the cost per sequenced cell of scRNA-seq methods
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[53]. Compared with Microwell-seq, Microwell-seq2.0 
has a higher sensitivity, speeds up the process, and dras-
tically reduces the cost. An agarose plate of Microw-
ell-seq2.0 with 70,000 wells can contain up to 700,000 
individual cells in a single experiment, which tremen-
dously improves the throughput. This method may pave 
the way for a more cost-effective multi-dimensional and 
high-throughput drug screening assay.

Series of sci‑RNA‑seq, SPLiT‑seq and sci‑Plex
Instead of isolating single cells within physical compart-
ments, single-cell combinational indexing RNA sequenc-
ing (sci-RNA-seq) in 2017 was successively developed 
using a two-step combinatorial indexing strategy, a 
method using split-pool barcoding of nucleic acids to 
uniquely label a large number of single molecules or 
single cells [54]. The sci-RNA-seq can generate ~ 4 ×  104 
single-cell transcriptomes in one experiment through 
a library construction completed by a single person in 
2 days, for $0.03 to $0.20 per cell. Later, a similar method, 
split-pool ligation-based transcriptome sequencing 
(SPLiT-seq), was developed, which requires four rounds 
of split-pool barcoding [55]. Like sci-RNA-seq, it does 
not require additional pretreatment and uses its cells 
as a compartment for subsequent sequencing opera-
tions. This method enables transcriptional profiling of 
hundreds of thousands of fixed cells or nuclei in a single 
experiment using only basic laboratory equipment with 
a library preparation cost of ~ $0.01 per cell. In addition, 
the quality of scRNA-seq data obtained was similar to 
that obtained with Drop-seq and inDrop [14]. In 2019, 
Cao et  al. [56] proposed sci-RNA-seq3 by optimizing 
their previously established sci-RNA-seq through four 
aspects of nuclei extraction, the third level of indexing, 
individual enzymatic reactions, and cell sorting. This 
method profiled the transcriptomes of around 2 mil-
lion cells derived from 61 embryos staged between 9.5 
and 13.5  days of gestation in a single experiment. The 
library preparation can be completed through the inten-
sive effort of a single researcher in one week at a cost 
of less than $0.01 per cell. In 2020, Srivatsan et  al. [57] 
introduced a new sample labeling (hashing) strategy that 
relied on labeling nuclei with unmodified single-stranded 
DNA oligos. They combined nuclear hashing and sci-
RNA-seq into a single workflow for multiplex transcrip-
tomics in a process called “sci-Plex.” They applied sci-Plex 
to screen three cancer cell lines exposed to 188 com-
pounds and profiled ~ 650,000 single-cell transcriptomes 
across ~ 5000 independent samples in one experiment. 
The ease and low cost of oligo hashing, coupled with the 
flexibility and exponential scalability of single-cell com-
binatorial indexing, would facilitate the goal of a com-
prehensive, high-resolution atlas of cellular responses to 

pharmacologic perturbations. In summary, these meth-
ods have high cell labeling efficiencies and can drastically 
reduce the cost of library preparation. However, the oper-
ations of these methods are tedious and cell fixation will 
result in the loss of transcripts and impaired sensitivity.

Full‑length methods
Compared to methods only capturing and sequenc-
ing the 3′ or 5′ ends of the cDNAs, protocols capable of 
full-length transcription are more suitable for alternative 
splicing pattern analyses, allelic expression detection, 
and RNA editing identification owing to their superior-
ity of transcript coverage [58]. The full-length scRNA-seq 
methods represented by Smart-seq2 are also widely used 
in tumor research.

Series of Smart‑seq and FLASH‑seq
The series of Smart-seq are full-length and plate-based 
scRNA-seq methods and evolve continually. Smart-seq 
published by Ramsköld et al. in 2012 became the first to 
apply to tumor cells to identify distinct gene expression 
patterns [27]. This method has been further refined to 
develop Smart-seq2, Smart-seq3, and Smart-seq3xpress 
techniques by the research group. Smart-seq2 improves 
throughput, sensitivity, accuracy, and full-length cover-
age, and reduces cost by refining reverse transcription, 
template switching, and preamplification [28]. With these 
improvements, Smart-seq2 is suitable for discovering 
variable splicing events and allele-specific expression. 
Smart-seq2 has been seen as the gold standard method of 
scRNA-seq and has been used in various cancer research. 
Smart-seq3 combines full-length transcriptome cover-
age with a 5’ UMI RNA counting strategy that enables in 
silico reconstruction of thousands of RNA molecules per 
cell [59]. Smart-seq3 greatly increases sensitivity com-
pared to Smart-seq2, typically detecting thousands more 
transcripts per cell. Moreover, this method costs about 
€0.5–€1 per sequencing-ready cell library in 384-well 
plates with moderate cellular throughput. In this way, 
Smart-seq3 can count RNAs at allele and isoform resolu-
tion for large-scale applications across cells. High cellu-
lar throughputs usually sacrifice full-transcript coverage 
and sensitivity. Smart-seq3xpress which miniaturizes and 
streamlines the Smart-seq3 protocol reduces the mate-
rial and resources needed to construct Smart-seq3xpress 
single-cell libraries by ten-fold and increases cellular 
throughput [60]. The sequencing-ready libraries can be 
generated in a single workday. Therefore, high-sensitivity 
Smart-seq3xpress with isoform-specific and allele-spe-
cific resolution can, for the first time, be performed at a 
scale suitable for large-scale cell atlas building. Building 
upon the existing Smart-seq2/3 workflows, Hahaut et al. 
developed FLASH-seq (FS), a new full-length scRNA-seq 
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method capable of detecting a significantly higher num-
ber of genes than previous versions, requiring limited 
hands-on time (~ 4.5 h) and with a great potential for cus-
tomization [61, 62]. Based on FS, this group constructed 
another two protocols: FLASH-seq low-amplification 
(FS-LA) and FLASH-seq with UMIs (FS-UMI). FS-LA 
protocol is cheaper than FS and requires < 1 h of hands-
on time without sacrificing performance. FS-UMI builds 
upon the same principle as Smart-seq3 and introduces 
UMIs for molecule counting and isoform reconstruction. 
The newly designed template-switching oligonucleotide 
(TSO) contains a 5-bp spacer, which allows the genera-
tion of high-quality data while minimizing the number 
of strand-invasion artifacts. The cost of per cell is lower 
than other commercial and noncommercial methods and 
comparable to Smart-seq3 (< $1). FS has the potential to 
become the tool of choice when looking for an efficient, 
robust, modular, affordable, and automation-friendly 
full-length scRNA-seq protocol. However, a common 
limitation shared among Smart-seq2/3 and FLASH-seq 
is that all use an oligo dT-based strategy for priming 
exclusively polyadenylated RNAs, thus neglecting other 
potentially relevant RNA species such as microRNAs 
(miRNAs), piwi-interacting RNAs (piRNAs), and non-
polyadenylated long non-coding RNAs (lncRNAs) [61].

Quartz‑seq and Quartz‑seq2
To comprehensively and quantitatively detect gene 
expression heterogeneity, another full-length scRNA-seq 
approach termed Quartz-Seq was developed immedi-
ately after Smart-seq in 2013 [26]. Quartz-Seq is a simple, 
sensitive, reproducible, and highly quantitative scRNA-
seq approach. By optimizing the five steps of single-cell 
collection, cell barcoding, the pooling of cell-barcoded 
cDNA, whole-transcript amplification, and library prepa-
ration, a higher throughput Quartz-Seq2 was developed 
[36]. It can analyze cells numbering up to 1536 that are 
pooled together in a single sample and effectively uses 
limited sequence reads. In a study, the researchers inves-
tigated the ability of the 13 scRNA-seq methods to draw 
cell maps from six aspects: genetic detection, marker 
expression, clusterability, mappability, clusterability 
(integrated), and mixability. The findings revealed that 
the Quartz Seq2 method outperformed other schemes, 
including 10 × Genomics and Smart-seq2, exhibiting the 
highest benchmarking score and thus demonstrating 
superior accuracy [63].

SCAN‑seq and SCAN‑seq2
There are still many questions that cannot be addressed 
by them due to the short read lengths of next-generation 
sequencing (NGS) platform-based scRNA-seq. Further 
development of long-read RNA sequencing, known as 

third-generation sequencing, can be used to generate 
full-length cDNA transcripts with a minimum number 
of false-positive splice sites and capture great diversity 
of transcript isoforms [64]. Fan et  al. [65] developed a 
novel scRNA-seq technology based on third-generation 
sequencing (TGS) platform (single-cell amplification and 
sequencing of full-length RNAs by Nanopore platform, 
SCAN-seq). SCAN-seq exhibits high sensitivity and 
accuracy comparable to NGS platform-based scRNA-
seq methods. Recently, the research group refine SCAN-
seq to develop SCAN-seq2, especially on throughput 
and cost [66]. SCAN-seq2 can sequence up to 3072 sin-
gle cells for one sequencing run and the cost of an indi-
vidual cell is reduced to about $3 for a sequencing run 
of 960 cells, which is 20 times cheaper than SCAN-seq 
(about $60 for each cell). Compared with other published 
scRNA-seq methods based on the TGS platform, SCAN-
seq2 also exhibits high throughput and high sensitivity 
simultaneously. SCAN-seq2 proves to be a new promis-
ing tool for single-cell full-length transcriptome research, 
which can be used to study different biological systems 
at single-cell and individual RNA isoform resolution 
and help understand the complex mechanisms of many 
diseases.

VASA‑seq
The majority of techniques used for single-cell tran-
scriptome sequencing focus on amplifying the termini 
of polyadenylated transcripts, resulting in a limited 
representation of the entire cellular transcriptome. 
This limitation poses challenges in detecting various 
types of transcripts, such as long non-coding, short 
non-coding, and non-polyadenylated protein-coding 
transcripts, and hinders alternative splicing analy-
sis. To address this issue, Salmen et al. [67] developed 
a full-length VASA-seq method that allows for the 
detection of complete transcriptomic atlases in single 
cells, including alternative splicing and non-coding 
transcripts in single cells, which is enabled by frag-
menting and tailing all RNA molecules subsequent to 
cell lysis. The method is compatible with both plate-
based formats and droplet microfluidics. Additionally, 
the reduction in reagent expenses resulting from the 
downsizing of droplets and the elimination of depend-
ence on commercially available kits in the VASA-drop 
methodology will facilitate cost-effective, extensive 
transcriptomic profiling on a large scale. This profil-
ing can be achieved at an approximate cost of $0.11 
per cell for libraries ready for sequencing. The VASA-
plate method incurs a library preparation cost of $0.98. 
However, the routine implementation of VASA-seq is 
impeded by various practical challenges. These chal-
lenges include the need to expand the coverage of 
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RNA molecules, such as miRNAs, achieving a balance 
between the length of poly(A) tails and RNA frag-
ments, optimizing steps for ribosomal RNA depletion, 
estimating splicing node inclusion rates in  situations 
of low coverage per cell, integrating with other data-
sets requiring batch corrections, and developing spe-
cialized data analysis pipelines [68]. In conclusion, it 
can be stated that VASA-seq remains the sole technol-
ogy that effectively integrates exceptional sensitivity, 
comprehensive coverage of total RNA, and efficient 
high throughput. Furthermore, it is anticipated that 
VASA-seq will offer further analytical perspectives 
by incorporating gene regulation and splicing pattern 
localizations across various tissues. [67, 68].

Spatially resolved transcriptomics
Recently, methods for spatially resolved transcrip-
tomics (SRT) are developed by integrating scRNA-
seq with cellular locations for generating tissue-wide 
landscapes of single-cell transcriptomes and identify-
ing cellular composition and molecular architecture 
within the tissues, which could overcome the limita-
tion of loss of spatial and morphologic information 
among the cataloged populations of cells [24, 48, 49]. It 
has also been applied to dissect the spatial heterogene-
ity of human liver cancer [50], breast cancer [51–53], 
glioblastoma [54], colorectal cancer (CRC) [55], and 
ovarian cancer [56].

Applications of scRNA‑seq in human cancer 
biology
In human cancer research, scRNA-seq has been widely 
used to study heterogeneity, the TME, gene expression 
profiles, transcriptome profiles, and cell‒cell interactions, 
and other biology related to cancer research (Fig.  3). 
The applications of scRNA-seq in cancer research are 
explored and discussed in this section.

Dissecting tumor heterogeneity
Tumor heterogeneity, including intertumor (tumor by 
tumor) and intratumor (within a tumor) heterogeneity 
(ITH), is a key characteristic of malignant tumors and a 
significant obstacle in cancer treatment and research [69, 
70]. Recognizing tumor heterogeneity is key for further 
understanding and treating cancers. Almost all single-cell 
studies of cancer have focused on or studied tumor het-
erogeneity. Dissecting tumor heterogeneity with scRNA-
seq has been used to facilitate cancer diagnosis [71] and 
prognosis prediction [72], increase the understanding 
of disease progression and cancer metastasis [73, 74], 
and guide therapy [75] (Table  2). Recently, to deepen 
the understanding of tumor heterogeneity, single-cell 
sequencing technologies are often combined with other 
technologies, such as single-cell genomics, single-cell 
proteomics, single-cell epigenomics, etc. Other spatial 
omics, such as spatial transcriptomics, spatial proteom-
ics, and spatial metabolomics have or will be combined 

Fig. 3 Applications of scRNA-seq in human cancer biology
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Table 2 Key findings related to tumor heterogeneity among various tumors using scRNA-seq

Tumor Year Species Protocol Accession number (custom 
database if available)

Key findings References

Lung cancer 2020 Human 10 × Genomics EGAD00001005054 Identified a cancer cell subtype 
deviating from the normal dif-
ferentiation trajectory and domi-
nating the metastatic stage, 
and revealed potential diag-
nostic and therapeutic targets 
in cancer-microenvironment 
interactions

[156]

2020 Human Smart-seq2 NCBI BioProject #PRJNA591860 Identified that individual 
tumors and cancer cells exhibit 
substantial molecular diversity 
and that tumor microenviron-
ment cells exhibit marked 
therapy-induced plasticity

[157]

2022 Human STRT-seq HRA000270 Provided novel insights 
into the tumor heterogeneity 
of NSCLC in terms of the identi-
fication of prevalent mixed-lin-
eage subpopulations of cancer 
cells with combined SCC, ADC, 
and NET signatures and offered 
clues for potential treatment 
strategies in these patients

[158]

Gastric cancer 2020 Human 10 × Genomics PRJEB40416 Highlighted response heteroge-
neity within MSI-H gastric can-
cer treated with pembrolizumab 
monotherapy; supported 
the potential of extended 
baseline and early on-treatment 
biomarker analyses to identify 
responders

[95]

2021 Human 10 × Genomics EGAS00001004443 The links between tumor cell 
lineage/state and ITH were 
illustrated at the transcriptome, 
genotype, molecular, and phe-
notype levels

[72]

2021 Human 10 × Genomics HRA000051 A panel of differentiation-related 
genes revealed large differ-
ences in differentiation degree 
within and between tumors

[80]

Liver cancer 2022 Human Seq-Well  S3 GSE186975 Identified five hepatoblastoma 
tumor signatures that may 
account for the tumor hetero-
geneity observed in this disease, 
and used patient-derived 
hepatoblastoma spheroid 
cultures to predict differential 
responses to treatment based 
on the transcriptomic signature 
of each tumor

[237]

Esophageal cancer 2022 Human 10 × Genomics GSE196756 Revealed intratumoral and inter-
tumoral epithelium heterogene-
ity and tremendous differences 
between the tumor and normal 
epithelium. Epithelium cells 
and myeloid cells had more fre-
quent cell‒cell communication 
than epithelium cells and T cells

[238]
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Table 2 (continued)

Tumor Year Species Protocol Accession number (custom 
database if available)

Key findings References

2021 Human 10 × Genomics PRJNA777911 Uncovered heterogeneity 
in most cell types of the ESCC 
stroma, particularly in the fibro-
blast and immune cell compart-
ments

[86]

Melanoma 2016 Human Smart-seq2 DUOS-000002; GSE72056 Malignant cells within the same 
tumor displayed heterogeneity 
in the transcription of proteins 
related to the cell cycle, spatial 
context, and drug resistance 
program

[239]

2020 Human 10 × Genomics GSE139829 Analysis of tumor cells revealed 
previously unappreciated 
subclonal genomic complexity 
and transcriptional states

[94]

2021 Human 10 × Genomics GSE138665 Uncovered intratumoral 
heterogeneity at the genome 
and transcriptome level

[81]

Acute lymphoblastic leukemia 2020 Human 10 × Genomics GSE132509 The predicted develop-
mental states of cancer cells 
were inversely correlated 
with the expression levels 
of ribosomal protein, which 
could be a common contributor 
to intraindividual heterogeneity 
in childhood ALL patients

[240]

Diffuse large B cell lymphoma 2022 Human 10 × Genomics CNGBdb: CNP0001940 High intratumor and intertumor 
heterogeneity was identified 
in DLBCL

[216]

2022 Human 10 × Genomics https:// heida ta. unihe idelb erg. de Provided an in-depth dissection 
of the transcriptional features 
of malignant B cells and the TME 
in DLBCL and new insights 
into DLBCL heterogeneity

[229]

Primary central nervous system 
lymphoma

2021 Human 10 × Genomics GEO: GSE181304 Different subtypes of T cells 
and DCs showed significant 
heterogeneity

[85]

B-cell lymphoma 2020 Human 10 × Genomics https:// heida ta. uni- heide lberg. 
de

Malignant subpopula-
tions from the same patient 
responded strikingly differently 
to anticancer drugs ex vivo, 
highlighting the relevance 
of intratumor heterogeneity 
for personalized cancer therapy

[241]

Cutaneous T cell lymphoma 2018 Human BD Precise assay Correspondence with authors Patients with SS displayed a high 
degree of single-cell heteroge-
neity within the malignant T-cell 
population, and the distinct 
subpopulation of malignant T 
cells exhibited HDACi resistance

[76]

2019 Human 10 × Genomics GSE128531 Provided an unprecedented 
view of lymphocyte heteroge-
neity and identifying tumor-
specific molecular signatures, 
with important implications 
for diagnosis and personalized 
disease treatment

[77]

https://heidata.uniheidelberg.de
https://heidata.uni-heidelberg.de
https://heidata.uni-heidelberg.de


Page 13 of 48Huang et al. Journal of Hematology & Oncology           (2023) 16:98  

with the scRNA-seq to deepen and broaden our under-
standing of tumor heterogeneity.

Buus et  al. [76] used scRNA-seq and multicolor flow 
cytometry to analyze samples from 7 patients with Sézary 
syndrome (SS) and showed that these patients displayed 
a high degree of single-cell heterogeneity within the 
malignant T-cell population. Malignant T cells could be 
divided into distinct subpopulations based on heteroge-
neous surface marker expression and mRNA expression, 
and when treated with a histone deacetylase inhibitor 
(HDACi), some specific subpopulations were significantly 
reduced; however, the remaining subpopulations were 
largely unaffected. Gaydosik et al. [77] not only revealed 
intertumor T lymphocyte heterogeneity in cutaneous 
T-cell lymphoma (CTCL) skin tumors but also found that 
tumor-infiltrating  CD8+ T lymphocytes exhibited het-
erogeneity in effector and exhaustion programs across 
patients, which provided an unprecedented view of lym-
phocyte heterogeneity in individual CTCL patients. Liu 
et al. [78] revealed intratumor and intertumor heteroge-
neity in the transcription and function of malignant T 
cells, and the activation/proliferation program profiles of 
malignant T cells in each patient identified with scRNA-
seq analysis and TCR profiling were associated with the 
intratumor and intertumor heterogeneity of CTCL.

Heo et  al. [79] employed scRNA-seq analysis in an 
in  vitro model of ceritinib-resistant non-small cell lung 
cancer (NSCLC) to identify upregulation of cytidine 
deaminase (CDA) as a primary characteristic of ana-
plastic lymphoma kinase (ALK) inhibitor resistance. 
Additionally, the authors utilized single-cell Assay for 
Transposase-Accessible Chromatin using sequencing 
(scATAC-seq) to demonstrate that cells with acquired 
resistance may exhibit an open chromatin structure 
in the promoter and enhancer regions of CDA, poten-
tially facilitated by DNA demethylation. Transcription 
factors such as TEAD1, SMAD3, and FOXM1 may be 
recruited to the regulatory region to induce overex-
pression of CDA, which promotes acquired resistance 
to ALK inhibitors. This study reveals the unexpected 
epigenetic heterogeneity and targeting CDA metabo-
lism using epigenome-related nucleosides represents a 
potential new therapeutic strategy for overcoming ALK 
inhibitor resistance in NSCLC. Zhang et  al. [80] per-
formed a scRNA-seq analysis of tumor cells and identi-
fied five cell subgroups with distinct expression profiles 
in primary gastric adenocarcinoma (GAC). A panel of 
differentiation-related genes reveals a high diversity of 
differentiation degrees within and between tumors, and 
low differentiation degrees can predict poor prognosis 

Table 2 (continued)

Tumor Year Species Protocol Accession number (custom 
database if available)

Key findings References

2021 Human 10 × Genomics GSE171811 Striking subclonal molecular 
heterogeneity was observed 
within clonal malignant 
T-cell populations in the skin 
and blood of patients 
with leukemic CTCL. The 
tissue microenvironment 
influenced the transcriptional 
state of malignant T cells, likely 
contributing to the evolution 
of malignant clones

[242]

2022 Human 10 × Genomics GSA-Human: HRA000166 Revealed the intratumor 
and interlesion diversity 
of CTCL patients, proposed 
a multistep tumor evolution 
model that further established 
a novel subtype, the  TCyEM 
group with a cytotoxic effector 
memory T-cell phenotype, 
and identified increased M2 
macrophage infiltration

[78]

Subcutaneous panniculitis-like T 
cell lymphoma

2021 Human 10 × Genomics GSA-Human: HRA000370 Provided insights into the het-
erogeneity of subcutaneous 
panniculitis-like T-cell lym-
phoma, as well as a better 
understanding of the transcrip-
tion characteristics and immune 
microenvironment of this rare 
tumor

[208]
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in GAC, which offers valuable resources for deciphering 
gastric tumor heterogeneity and will provide assistance 
for precision diagnosis and prognosis.

In multiscale analyses using scRNA-seq of six different 
primary uveal melanomas, Pandiani et  al. [81] uncov-
ered an intratumoral heterogeneity at the genomic and 
transcriptomic levels. They deciphered a gene regula-
tory network underlying an invasive and poor progno-
sis state driven in part by the transcription factor HES6, 
which is a valid target to stop uveal melanoma progres-
sion. To dissect the cellular and molecular basis underly-
ing hepatoblastoma (HB) oncogenesis and heterogeneity 
at the single-cell level, single-cell transcriptome profil-
ing of tumor and paired distal liver tissue samples from 
five patients with hepatoblastoma was performed [82]. 
Seven distinct tumor cell subpopulations were annotated, 
and an effective three-level hepatoblastoma subtyping 
method was established based on their compositions. 
Facilitates chromatin transcription (FACT) inhibition 
could be a promising epigenetic-targeted therapeutic 
strategy against the CSC-like HB1-Pro-like1 subpopula-
tion and its related high-risk “Pro-like1” subtype of HB.

In addition to the heterogeneity of tumor cells in can-
cers, nontumor cells also exhibit high heterogeneity. 
Presumably, tumor immune microenvironment (TIME) 
heterogeneity is largely derived from tumor heteroge-
neity and, in turn, influences cancer cell behaviors and 
clinical outcomes [83, 84]. Chen et al. [83] compared the 
TIME heterogeneity between gastric signet-ring cell car-
cinoma (GSRCC) and non-GSRCC by scRNA-seq. They 
found that compared to non-GSRCC, the GSRCC TIME 
appears to be quiescent, where Treg-FOXP3 and CD8-
Tex are difficult to be mobilized, which further impairs 
the proper functions of B cells. Validated by the cytom-
etry by time of flight (CyTOF) results, the decrease of 
CD8-Tex in GSRCC conflicted with the anticipation that 
the enrichment of this dysfunctional population would 
contribute to the worse prognosis of GSRCC. In a study 
of primary central nervous system lymphoma (PCNSL), 
different subtypes of T cells and dendritic cells (DCs) also 
showed significant heterogeneity [85]. Based on specific 
gene signatures, the T cells could be reclustered into 
four distinct subclusters, the T helper cell group, natural 
killer T (NKT)- cell group, MPC cell group, and classical 
T-cell group, and the DCs could be redivided into three 
subgroups: conventional dendritic cells (cDCs), myeloid 
dendritic cells (mDCs), and plasmacytoid dendritic cells 
(pDCs). Another scRNA-seq study about esophageal 
squamous cell carcinoma (ESCC) uncovered heteroge-
neity in most cell types of the ESCC stroma, particularly 
in the fibroblast and immune cell compartments. The 
authors revealed that tumor-specific CSTl+ myofibro-
blasts were associated with poor prognosis in ESCC [86]. 

To investigate the stromal heterogeneity of the TME in 
ovarian cancer, a research team used SRT to generate 
spatially resolved transcript profiles in treatment-naive 
advanced high-grade serous ovarian cancer (HGSOC) 
from long-term survivors (LTS) and short-term survi-
vors (STS) [87]. They revealed high levels of intertumor 
and intratumor CAF heterogeneity, and novel spatially 
resolved CAF-tumor cross-talk signaling networks in 
the ovarian TME that are associated with LTS in patients 
with advanced HGSOC.

Characterizing the TME
The TME, which comprises cellular and noncellular com-
ponents, plays crucial roles in tumorigenesis, progres-
sion, invasion, metastasis, and drug resistance [7, 88]. 
Researchers have proposed that the TME might func-
tion as a double-edged sword in promoting or inhibit-
ing tumor growth, which depends on the phase of tumor 
progression [89, 90]. Understanding the characteristics of 
the TME may help to understand the crosstalk between 
the TME and cancer cells and aid the development of 
novel strategies for tumor treatment [91]. Hallmark fea-
tures of the TME include immune cells, stromal cells, 
blood vessels, and extracellular matrix. Among these 
components, immune cells are a critical factor in the 
TME and play a key role in tumorigenesis and treatment 
response [90, 92]. Characterizing the TME has attracted 
more and more researchers and many scRNA-seq studies 
have conducted in-depth studies of the TME (Table 3).

Immune cells
Of the immune cells, T cells are most studied by scRNA-
seq analysis. According to gene expression signature 
profiling, diverse novel functional subgroups of clas-
sic T cells have been characterized, such as exhausted, 
cytotoxic, and immunosuppressive T cells. Aoki et  al. 
[93] and Durante et al. [94] identified a novel regulatory 
T-cell-like immunosuppressive subset of lymphocyte 
activation gene 3 (LAG3)+ T cells that contribute to the 
immune-escape phenotype in classic Hodgkin lymphoma 
(CHL) and uveal melanoma (UM), respectively, that may 
be a target for immune checkpoint blockade (ICB). Kwon 
et  al. [95] found that an increase in programmed death 
1 (PD-1)+CD8+ T cells correlated with durable clini-
cal benefit. In NSCLC, a special “preexhausted” T-cell 
cluster was successfully identified, and a high ratio of 
preexhausted to exhausted T cells was associated with a 
better prognosis [96]. In addition, the study also identi-
fied TNFRSF9+ regulatory T cells (Tregs) represented 
antigen-specific Tregs. Overall, tumor-infiltrating T cells 
might be much more complex than current knowledge 
suggests, and exploring functional T-cell clusters might 
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provide new insight into the design of immunotherapy 
strategies.

Relatively speaking, B cells have been less studied than 
T cells. Hu et al. demonstrated that compared with those 
in peripheral blood, tumor-infiltrating B-cells have more 
mature and memory B-cell-like characteristics, higher 
clonality, a higher rate of class switch recombination, and 
more somatic hypermutations in breast cancer. Com-
bined analyses suggested local differentiation of infil-
trating memory B cells within breast tumors, and B-cell 
subgroups might contribute to immunosurveillance 
through various pathways [97].

Tumor-associated macrophages (TAMs), a specific 
subpopulation of macrophages, represent a large fraction 
of infiltrating immune cells within the TME in human 
cancers [98, 99]. An increasing number of scRNA-seq 
studies have found that macrophages are transcription-
ally heterogeneous and do not conform to the tradi-
tional binary M1/M2 paradigm in many types of cancers 
[100–103]. Tan et al. revealed that TAMs expressed high 
levels of TREM2 in following transarterial chemoemboli-
zation (TACE), which played an important role in limit-
ing the functions of  CD8+ T cells and was associated with 
a worse clinical prognosis in hepatocellular carcinoma 
(HCC) [104]. You et  al. [105] employed scRNA-seq to 
construct a single-cell atlas for a total of 23,010 individual 
cells from 6 patients with primary or recurrent malignant 
glioma and identified 5 cell types, including TAMs and 
malignant cells. M2-like TAMs were found to increase in 
recurrent malignant glioma significantly and the M2-like 
TAMs could activate the PI3K/Akt/HIF-1α/CA9 pathway 
in the malignant glioma cells via SPP1-CD44-mediated 
intercellular interaction.

Though granulocytes are a major component of the 
TME, their function in immunotherapy is still unclear. 
In an scRNA-seq study of CRC liver metastasis, IL-17 
and the ferroptosis signaling pathway were significantly 
enriched in granulocytes, suggesting a potential role 
of the IL-17 signaling pathway in CRC liver metastasis. 
Abnormal ferroptosis-mediated cell death and Wnt sign-
aling activation-induced neutrophil recruitment were 
proposed as causes of the higher levels of tumor-infiltrat-
ing granulocytes in CRC metastasis samples [106].

Stromal cells
Cancer-associated fibroblasts (CAFs) are a major com-
ponent of the tumor stroma and play a critical role 
in facilitating crosstalk between cancer cells and the 
TME [92]. Increasing evidence has demonstrated that 
CAFs do not always exert a tumor-supportive role in 
oncogenesis, they may also play a tumor-suppressive 
effect that is context-dependent, namely phenotypic 
heterogeneity and functional diversity [107]. Many 

scRNA-seq studies have focused on the role of CAFs in 
tumor metastasis [108, 109], and their effect on prog-
nosis [86, 110], and CAFs may be potential therapeu-
tic targets. Li et al. [98] found that inflammatory CAFs 
(iCAFs) and extracellular matrix CAFs (eCAFs) not 
only exhibited enhanced pro-invasive activities but also 
mobilized the surrounding immune cells to construct 
a tumor-favorable microenvironment in gastric can-
cer. In particular, eCAFs were associated with a shorter 
overall survival (OS) time of patients with gastric can-
cer. Another study revealed that matrix cancer-associ-
ated fibroblasts (mCAFs) expressing α-SMA, vimentin, 
COL3A, COL10A, and MMP11 could enhance can-
cer cell invasion in HGSOC [97]. In another scRNA 
study, several types of stromal cells were identified in 
high-grade serous tubo-ovarian cancer (HGSTOC). 
The study showed that the high relative frequency of 
myofibroblasts, TGF-β-driven CAFs, mesothelial cells, 
and lymphatic endothelial cells could predict poor out-
comes, while high levels of plasma cells correlated with 
more favorable outcomes [100]. Guo et  al. [101] used 
multimodal intersection analysis (MIA) to integrate 
scRNA-seq and SRT, and the exact cellular components 
of the tumor and stromal regions were annotated in 
the three ESCC samples. The results indicated that the 
various stromal cell subpopulations were heterogene-
ous. Compared with immune cells, non-immune stro-
mal cells were significantly enriched in the TME. Most 
subsets of epithelial cells were enriched in the cancer 
regions, while inflammatory CAFs were correlated with 
the stromal regions.

Nonhematopoietic cells (NHCs) are closely correlated 
with B cells in neoplastic follicles and play a major role 
in supporting follicular lymphoma (FL) [111]. Abe et al. 
[112] constructed a single-cell transcriptome atlas of 
more than 100,000 NHCs collected from 27 human sam-
ples, including 10 FL samples, and revealed 30 distinct 
subclusters, including some that were previously unrec-
ognized. The 30 subclusters were composed of 10 sub-
clusters of blood endothelial cells (BECs), 8 subclusters of 
lymphatic endothelial cells (LECs), and 12 subclusters of 
nonendothelial stromal cells (NESCs). This study identi-
fied that human lymph nodes (LNs) harbor unique NHC 
subpopulations that have not been detected in murine 
LNs. The authors observed the remodeling of NHC pro-
portions in FL. The proportion of BECs was markedly 
increased in FL relative to metastasis-free LNs (MFLNs), 
whereas the proportion of LECs was decreased. Moreo-
ver, the proportion of arterial subclusters was increased 
in FL BECs. In FL NESCs, the proportion of follicular 
dendritic cells (FDCs) was substantially increased. Nota-
bly, the proportion of marginal reticular cells (MRCs) was 
also greatly increased in FL, whereas the proportions of 
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adventitia stromal cells (SCs), SFRP4-SCs, SFRP2-SCs, 
and TNF-SCs were decreased.

Somatic mutations as well as somatic copy number 
alterations (SCNAs) are found in normal colorectal epi-
thelial cells by whole-genome bulk sequencing of normal 
colorectal crypts and are considered to be a precancer-
ous phenomenon [113]. However, few studies have been 
published on SCNAs of TME cells. Zhou et al. [114] per-
formed scRNA-seq-plus-genomics of 21 patients with 
microsatellite-stable CRCs and 6 cancer-free, elderly 
individuals. SCNAs are prevalent in immune cells, fibro-
blasts, and endothelial cells in both the TME and the nor-
mal tissues of each individual. Moreover, the proportions 
of fibroblasts with SCNAs in tumors are much higher 
than those in adjacent normal tissues.

CTCs
Circulating tumor cells (CTCs) are vital components of 
liquid biopsies for the diagnosis of residual cancer, moni-
toring of therapy response, and prediction of recurrence 
[115]. Transcriptomics of CTCs represents an attractive 
opportunity to bridge the knowledge gap and develop 
novel biomarkers, and analysis of CTCs collected from 
patient blood may provide a new perspective for under-
standing the drug resistance of tumors and reveal a broad 
range of targets for use in the field of precision oncol-
ogy [116–118]. Kozuka et al. [119] conducted a study in 
which CTCs were collected from metastatic colorectal 
cancer (mCRC) patients without relying on any tradi-
tional CTC markers, such as epithelial and mesenchymal 
cell antigens, and were subjected to scRNA-seq using 
SMART-seq v4. The results showed that mCRC patients 
receiving second or later-line treatment who had epi-
thelial–mesenchymal transition (EMT) gene-expressing 
CTCs had significantly shorter progression-free survival 
(PFS) and OS. Another scRNA-seq study also proposed 
that CTC enumeration and scRNA-seq analysis might 
predict response to therapy in the treatment of mela-
noma patients [120].

CSCs and LSCs
Cancer stem cells (CSCs) have a slow growth rate and are 
resistant to chemotherapy and radiotherapy which lead 
to the failure of traditional current therapy and have been 
recognized as promising therapeutic targets for cancer 
therapy [121, 122]. Zheng et al. found that distinct genes 
within different CSC subpopulations were independently 
associated with HCC prognosis, suggesting that the 
diverse hepatic CSC transcriptome is related to intratu-
mor heterogeneity and tumor progression [123]. Another 
scRNA-seq study revealed that Yes-associated protein 
1 (YAP1) was highly upregulated in peritoneal carcino-
matosis (PC) tumor cells, conferred CSC properties, and 

appeared to function as a metastasis driver. Pharmaco-
logic inhibition of YAP1 specifically reduced CSC-like 
properties and suppressed tumor growth in  YAP1high PC 
cells, especially in combination with cytotoxic agents in 
an in vivo patient-derived xenograft (PDX) model [124].

The inevitable chemotherapy resistance and high 
relapse rate of acute myeloid leukemia (AML) are 
mainly caused by the persistence of leukemia stem cells 
(LSCs). [125]. The identification of the main features of 
LSCs may improve diagnosis and treatment [126]. Nal-
dini et  al. [127] discriminated LSCs from regenerat-
ing hematopoietic cells and assessed their longitudinal 
response to chemotherapy by detecting nucleophosmin 1 
(NPM1) mutation or chromosomal monosomy by single-
cell transcriptomic analyses. The researchers provided 
evidence for a classical LSC model in  NPM1mut AML, 
where nonresponse/relapse was strongly correlated with 
a high proportion of quiescent miR-126high LSCs at diag-
nosis. This research provides a framework for stratify-
ing patients based on the presence of miR-126high LSC 
scRNA-seq data and to identify therapeutic targets for 
LSC eradication.

Tumorigenesis and clonal evolution
Tumorigenesis and cancer progression are multistage, 
complex, and dynamic evolutionary processes, that result 
from diverse gene changes [128]. Genes or cell subclus-
ters that play crucial roles in tumorigenesis and the devel-
opment of tumors have been identified using single-cell 
sequencing [91, 129]. By performing an scRNA-seq anal-
ysis of individual patients and potential heat diffusion for 
affinity-based trajectory embedding (PHATE) analysis 
in combination with scTCRseq and CTCL clonotyping, 
Ren et al. [130] identified putative precancerous circulat-
ing populations characterized by an intermediate stage 
of gene expression and a mutation level between that of 
normal  CD4+ T cells and malignant CTCL cells. Song 
et  al. [131] performed scRNA-seq on 16 transformed 
CTCL (tCTCL) skin biopsies and identified a core onco-
genic program that malignant T cells exploited to acquire 
aggressive behaviors and a survival advantage with trans-
formation. Oxidative phosphorylation (OXPHOS) and 
MYC were the top enriched pathways, and their activity 
progressively increased as the disease evolved, followed 
by EMT/stemness and E2F target genes; downregulation 
of MHC I was suggestive of immune escape.

Recent genetic and epigenetic studies of the disease 
course of leukemia and other hematological neopla-
sias have provided important insights into the role of 
clonal evolution as a driver of tumor initiation, disease 
progression, and relapse [132]. Clonal mutations are 
shared by all cancer cells, whereas subclonal mutations 
are present only in a subset [133]. An scRNA-seq study 
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revealed marked expansion of abnormal germinal center 
B-cell-like (GCB)-related clusters simultaneously exhib-
iting a cell activation profile like that of light zone (LZ)-
GCB cells and a cell proliferation profile like that of dark 
zone (DZ)-GCB cells in both mouse and human angio-
immunoblastic T-cell lymphoma (AITL) samples [134]. 
These age-related clonal hematopoiesis (ACH)-derived 
GCB cells harboring TET2 mutations can independently 
undergo clonal evolution and function as microenviron-
mental cells to support AITL tumorigenesis. Tan et  al. 
[135] cross-analyzed healthy donors, asymptomatic car-
riers, and patients with adult T-cell leukemia/lymphoma 
(ATLL) using scRNA-seq and T-cell receptor (TCR)-
seq to determine the seamless transition of naive T cells 
into activated T cells and fully understand how HTLV-1 
infection controls physiological pathways in T cells and 
transforms them into ATLL cells; HTLV-1-infected cells 
in an activated state further transformed into ATLL cells, 
which were characterized as clonally expanded, highly 
activated T cells. The expression of HLA class II genes 
in HTLV-1-infected cells was uniquely induced by the 
viral protein Tax and further upregulated in ATLL cells. 
Functional assays revealed that HTLV-1-infected cells 
upregulated HLA class II molecule expression and acted 
as tolerogenic antigen-presenting cells to induce anergy 
of antigen-specific T cells.

Cell‒cell interactions
Tumors are complex ecosystems defined by the interac-
tion between heterogeneous cell types (including malig-
nant, immune, and stromal cells) that communicate by 
ligand‒receptor interactions, which may play a key role 
in the development of cancer and maybe therapy targets 
[136, 137]. Cell‒cell interactions focus on interactions 
between malignant cells and the TME or cells from the 
TME [78, 138]. In addition to interactions between tumor 
cells and stromal cells, interactions among stromal cells 
have also received attention. Abe et al. [112] found that 
medullary and adventitial stromal cells had significant 
interactions with malignant B cells through CD70-CD27 
interaction in FL and proposed stroma-derived CD70 as 
a potential biomarker and therapeutic target for FL. In 
gastric cancer samples, Li et al. [139] observed enhanced 
interactions between endothelial cells and multiple cell 
types, including fibroblasts, monocytes, macrophages, 
and DCs. The strong interaction between endothelial 
cells and fibroblasts implies that fibroblasts are closely 
related to tumor angiogenesis and maintenance of the 
tumor vasculature.

Immunosurveillance and immune evasion
Immune evasion is a hallmark of cancer [140]. Accord-
ing to the immunosurveillance theory, neoplastic cells 

can progress to generate clinically obvious cancer only if 
they escape from the control of immunological effector 
cells [141]. One study leveraged scRNA-seq data from 33 
melanoma tumors and computational analyses to reveal 
malignant cell states that promote immune evasion. The 
researchers identified a resistance program expressed by 
malignant cells that was associated with T-cell exclusion 
and immune evasion. The program was expressed prior 
to immunotherapy and was enhanced following immu-
notherapy in resistant lesions, and the expression of this 
program could predict clinical responses to anti-PD-1 
therapy in melanoma patients [142]. Zhou et  al. [143] 
performed scRNA-seq on normal mucosa tissue, differ-
entiated gastric cancer (DGC) tissue, poorly differenti-
ated gastric cancer (PDGC) tissue, and neuroendocrine 
carcinoma (NEC) tissue from gastric cancer patients. 
Interestingly, they found that along the trans-differen-
tiation path from DGC to NEC, immune evasion was 
gradually increased with decreasing interferon pathway 
response activity in malignant cells, though this finding 
needs further functional investigation.

Metabolic reprogramming
Metabolic reprogramming, also known as deregulated 
cellular metabolism, is one of the emerging hallmarks 
of cancer that occurs as a result of the metabolic plas-
ticity of cancer cells [144]. Metabolic reprogramming in 
tumor cells is dynamic and variable, dependent on the 
tumor type and microenvironment, and reprogramming 
involves multiple metabolic pathways, which is consid-
ered a promising therapeutic target against tumors [145, 
146]. Fernández-García et  al. [147] used scRNA-seq to 
define the metabolic reprogramming of  CD8+ T cells 
that were becoming activated and/or differentiating. 
They identified a differential time-dependent reliance of 
activating T cells on the synthesis versus the uptake of 
various nonessential amino acids. Further research pro-
posed that the expression of ASNS affects the outcome 
of  CD8+ T-cell differentiation and that ASNS overexpres-
sion enhances  CD8+ T-cell effector function and antitu-
mor responses. Xu et  al. [148] established a systematic 
landscape of metabolic heterogeneity and its relation-
ship with immunity in the AML microenvironment at 
single-cell resolution for the first time. They focused on 
the metabolic preference of AML progenitor cells and 
diverse immune cells and proposed potential targets for 
AML metabolic therapy, including ENO1, GSTP1, MT-
ND4L and UQCR11.

Transcription factors and transcriptional programs
Dysregulation of transcription factor activity unsurpris-
ingly drives tumorigenesis and oncogenic transforma-
tion [149]. Targeting transcription is a highly promising 
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anticancer strategy [150]. Before a transcription factor 
can become a bona fide drug target, the underlying bio-
logical properties of that protein must be understood 
[151]. Rastogi et al. [152] demonstrated that nuclear fac-
tor I-C (NFIC) overexpressing monocytes had increased 
expression of growth and survival genes. NFIC knock-
down in an ex  vivo mouse MLL::AF9 preleukemic stem 
cell model decreased the growth and colony formation 
of the cells and increased their expression of the myeloid 
differentiation markers Gr1 and Mac1. These results 
indicate that NFIC is an important transcription factor 
involved in myeloid differentiation as well as AML cell 
survival and is a potential therapeutic target in AML.

Transcription factors do not generally function alone 
and rather cooperate to control gene expression [153]. 
Sun et  al. [154] comprehensively mapped malignancy-
related transcription factor regulatory networks activated 
in different AML subtypes by analyzing scRNA-seq data 
from AML patients and healthy donors. They identified 
six modules of regulatory networks that were prevalently 
dysregulated in all AML patients. AML subtypes fea-
turing different malignant cell compositions possessed 
subtype-specific regulatory transcription factors asso-
ciated with suppression of differentiation or immune 
modulation. Collectively, this study thoroughly revealed 
the abnormal spectrum of transcriptional regulatory net-
works in AML and revealed that dysregulation was sub-
type-specific, providing insights into AML pathogenesis 
and potential targets for both diagnosis and therapy.

Clinical applications of scRNA‑seq in solid tumors
Solid tumors account for the vast majority of cancer inci-
dence and death. ScRNA-seq has been used in the study 
and application of various solid tumors (Table 4).

Lung cancer
Cancer metastasis
Previous scRNA-seq studies related to lung cancer have 
been limited to early-stage primary tumors and nor-
mal tissues resected from a small number of samples of 
mixed histological types [96, 155]. In a recent scRNA-seq 
study, the authors identified a cancer cell subtype that 
deviated from the normal differentiation trajectory from 
208,506 cells populating the normal tissues and early to 
metastatic cancer tissues of 44 patients, and this sub-
type was specifically associated with cancer progression 
and metastasis in lung adenocarcinoma (LUAD) patients 
[156]. Analysis of stromal and immune cell dynamics 
revealed ontological and functional changes that created 
a protumoral and immunosuppressive microenviron-
ment. Normal resident myeloid cell populations were 
gradually replaced with monocyte-derived macrophages 
and DCs, accompanied by T-cell exhaustion.

Disease monitoring
Obtaining high-quality samples of metastatic human 
tumors, particularly at multiple treatment time points, 
is difficult. A paucity of previous single-cell studies that 
sample metastatic malignancies and prior scRNA-seq 
studies of metastatic disease only focused on single treat-
ment time points or before treatment [155, 156]. May-
nard et  al. [157] performed scRNA-seq on 49 clinical 
biopsies obtained from 30 patients before and during tar-
geted therapy. The results revealed that cancer cells sur-
viving therapy in residual disease (RD) samples expressed 
an alveolar-regenerative cell signature suggesting a ther-
apy-induced primitive cell-state transition, whereas those 
present in progressive disease (PD) samples had upregu-
lated kynurenine, plasminogen, and gap-junction path-
ways. Active T-lymphocytes and decreased macrophages 
were present in RD samples, and immunosuppressive cell 
states characterized PD samples. This research provided 
a foundation to develop strategies for the elimination or 
neutralization of RD to induce more durable responses 
for patients with advanced-stage NSCLC and potentially 
other solid malignancies treated with various therapeutic 
modalities.

Treatment
The molecular heterogeneity of NSCLC has not been 
comprehensively analyzed. Li et al. [158] performed high-
precision scRNA-seq analyses on 7364 individual cells 
from tumor tissues and matched normal tissues from 19 
primary lung cancer patients and 1 pulmonary chondroid 
hamartoma patient. They identified a significant propor-
tion of cancer cells simultaneously expressing classical 
marker genes for two or even three histologic subtypes 
of NSCLC—adenocarcinoma (ADC), squamous cell car-
cinoma (SCC), and neuroendocrine tumor (NET). These 
cells were defined as mixed-lineage tumor cells, and 
genes specific to mixed-lineage tumor cells were identi-
fied, including AKR1B1. Further experiments showed 
that gene knockdown and small molecule inhibition of 
AKR1B1 significantly decreased cell proliferation and 
promoted cell apoptosis, suggesting that AKR1B1 plays 
an important role in tumorigenesis and could be a target 
for tumor therapy in NSCLC patients with mixed-lineage 
tumor features. A previous scRNA-seq study only charac-
terized the T-cell landscape and neglected the dynamics 
and molecular features of the immune landscape in lung 
cancer at single-cell resolution [96]. Wang et  al. [101] 
performed scRNA-seq on 72,475 immune cells from 40 
samples of tumor and matched adjacent normal tissues 
from19 NSCLC patients and identified a novel lympho-
cyte-related subcluster named SELENOP-macrophages 
(Mφ), which highly expressed FOLR2, IL32, CD3D, and 
LTC4S. Survival analyses based on established TCGA 
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data showed that the SELENOP-Mφ cluster might play 
an antitumor role in LUAD. Another scRNA-seq study 
revealed that ectopic expression of intercellular adhesion 
molecule-1 (ICAM1) in liver kinase B1 (LKB1) -deficient 
tumors increases the homing and activation of adoptively 
transferred SIINFEKL-specific  CD8+ T cells, reactivates 
tumor-effector cell interactions and resensitizes tumors 
to ICB [159]. The results revealed that ICAM1 on tumor 
cells orchestrates the antitumor immune response, espe-
cially in adaptive immunity.

Drug resistance
Most patients are refractory to immunotherapy or acquir-
ing resistance. Hu et al. [160] characterized the transcrip-
tomes of ~ 92,000 single cells from 3 pretreatment and 
12 posttreatment samples from patients with NSCLC 
who received neoadjuvant PD-1 blockade combined with 
chemotherapy. They identified increased serum estradiol 
and two cell types in the TME  (FCRL4+FCRL5+ memory 
B cells and  CD16+CX3CR1+ monocytes) that could serve 
as biomarkers for a “positive feedback” immune response 
and a “negative feedback” response, respectively.

Colorectal cancer
Tumorigenesis and metastasis
Metastasis of CRC remains a major problem after cura-
tive treatment and is an important cause of CRC-related 
death [161]. Wang et al. [162] performed whole genome 
sequencing (WGS), multiregion whole exome sequencing 
(WES), simultaneous scRNA-seq, and single-cell targeted 
cDNA Sanger sequencing on matched adjacent normal, 
primary tumor, and metastatic tumor tissues from 12 
mCRC patients. The results indicated that aberrant acti-
vation of the PPAR signaling pathway plays a critical role 
in CRC tumorigenesis. By analyzing matched samples 
from the same patient, distinct origins of tumors that had 
metastasized to the lymph nodes versus the liver were 
revealed, which somewhat contradicts with traditional 
ideas that distant organ metastasis is seeded through the 
lymph nodes. These findings offer novel insights regard-
ing metastasis mechanisms as well as potential markers 
and therapeutic targets for CRC diagnosis and therapy.

Treatment
Few studies have applied scRNA-seq to dissect the 
mechanisms underlying immune-modulating thera-
pies. Zhang et  al. [163] performed scRNA-seq analy-
ses on immune and stromal populations from CRC 
patients. Treatment with anti-CSF1R monotherapy 
preferentially depleted C1QC+ TAMs with an inflam-
matory signature but spared SPP1+ TAMs expressed 
pro-angiogenic/tumorigenic genes in mice and humans, 
and specific depletion of SPP1+ TAMs might ultimately 

lead to improved outcomes of myeloid-targeted immu-
notherapy or enhance ICB combination therapies. In 
addition, treatment with a CD40 agonist antibody pref-
erentially activated the Ccl22+ cDC population and 
increased Bhlhe40+  T helper 1 (Th1)-like cells and 
 CD8+  memory T cells.  The previous studies found that 
the BHLHE40 + Th1-like cell population is significantly 
enriched in tumor samples from CRC patients with high 
microsatellite instability (MSI), who respond to ICB [164, 
165]. Another scRNA-seq study of mice determined 
that AB680, a selective inhibitor of the CD73 ectoen-
zyme improved the anticancer functions of immunosup-
pressive cells such as Tregs and exhausted T cells, while 
PD-1 blockade reduced the number of Malat1high Tregs 
and M2 macrophages [166]. Their intratumoral immu-
nomodulation was distinct, and AB680 might be a novel 
treatment for patients with refractory CRC who do not 
respond to existing anticancer chemotherapy drugs and 
PD-1 antagonists. Wu et al. [167] sequenced 97 matched 
samples using scRNA-seq and spatial transcriptom-
ics analysis, and found that suppressive MRC1+CCL18+ 
macrophages displayed the highest metabolic activity 
and underwent remarkable spatial reprogramming. Neo-
adjuvant chemotherapy (NAC) could block this activity 
and restore the antitumor immune balance in responsive 
patients, whereas nonresponsive patients showed a more 
suppressive state.

Gastric cancer
Cancer metastasis
The mechanism of gastric cancer lymph node metastasis 
remains unknown, partly because data from metastasis 
studies were generated with the bulk approach, which 
was likely to mask the roles of subpopulations. Wang 
et  al. [168] performed scRNA-seq on samples from the 
primary tumors and metastatic lymph nodes (MLNs) of 
three gastric cancer patients. The authors found a sub-
group of cells between the metastatic group and primary 
group and discovered some gastric cancer lymph node 
metastasis marker genes (ERBB2, CLDN11, and CDK12), 
as well as potential gastric cancer evolution-driving genes 
(FOS and JUN). Another scRNA-seq study of gastric can-
cer organ-specific metastasis (liver, peritoneum, ovary, 
lymph node) revealed that immune and stromal cells 
exhibited cellular heterogeneity and created a protumor 
and immunosuppressive microenvironment. In addi-
tion, a 20-gene signature of LN-derived exhausted  CD8+ 
T cells might predict LN metastasis. Recently, Qian et al. 
[169] performed scRNA-seq on tissues from primary 
tumors and MLNs of gastric cancer patients to explore 
the differences in tumor cells and the TME between gas-
tric cancer primary tumors and MLNs. The authors iden-
tified a malignant subpopulation showing the potential 
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for LN metastasis, which displayed high translation ini-
tiation and protein activity. In addition to malignant cells, 
abnormal neutrophil polarization and maturation and 
activation of the immune checkpoint SPP1 might con-
tribute to LN metastasis of gastric cancer.

Disease monitoring
Kwon and colleagues used WES and scRNA-seq on serial 
and multi-region tissue samples in addition to serial 
peripheral blood analyses with samples from advanced 
microsatellite instability-high (MSI-H) gastric cancer 
patients in a phase II trial of pembrolizumab [95]. The 
results supported clear differences in both baseline and 
adaptive TME composition between responders and 
nonresponders. Nonresponders had frequent mutations 
and upregulation of the Wnt/β-catenin pathway and 
increased CAF abundance. It is interesting to note that 
decreased T-cell infiltration and lower NK-cell numbers 
were observed in nonresponders.

Treatment
Early-stage gastric cancer is mainly treated with surgery, 
while for advanced gastric cancer, the current treat-
ment options remain insufficient [170]. Li et  al. [139] 
performed scRNA-seq on nine untreated nonmetastatic 
gastric cancer patients and found that ACKR1 was specif-
ically expressed in tumor endothelial cells. This gene was 
associated with poor prognosis in the cohort data and 
was thus reported to be a potential novel target for gas-
tric cancer treatment. Another study found that activa-
tion of the SPP1-CD44 interaction in MLNs was related 
to the suppression of T-cell activation in the MLN, which 
might be a therapeutic target in gastric cancer patients 
with lymph node metastasis [169]. Moreover, selective 
inhibitors of the Wnt/β-catenin pathway could be prom-
ising in combination with immune checkpoint inhibitors 
(ICIs) in gastric cancer [95].

Prognosis
ITH is a fundamental property of cancer; however, the 
origins of ITH remain poorly understood. Wang et  al. 
[72] performed scRNA-seq of PC samples from 15 
patients with GAC, explored the ITH of malignant PC 
cells and identified factors significantly correlated with 
patient survival. Single-cell analysis of ITH was used to 
classify PC specimens into two subtypes: gastric-dom-
inant (mainly gastric cell lineages) and GI-mixed (with 
mixed gastric and colorectal-like cells), and both had 
prognostic values independent of clinical variables. Fur-
ther analyses found that patients with GI-mixed molecu-
lar features in their PC tumor cells survived significantly 
longer than those with gastric-dominant features prob-
ably because of intestinal metaplasia. In addition, all 

patients whose tumors had 17q gain were short-term sur-
vivors. Last, the authors discovered a 12-gene signature 
that appeared to be fundamental to GAC carcinogenesis/
progression as it was not only highly prognostic in the 
GAC-PC validation cohort but performed just as robustly 
in several large-scale localized GAC cohorts. Kang et al. 
revealed that activated fibroblasts and endothelial cells 
together with immunosuppressive myeloid cells and 
Tregs established an immunosuppressive microenvi-
ronment that correlated with worse prognosis and lack 
of response in anti–PD-1-treated patients. In contrast, 
a subset of IFNγ activated T cells and HLA-II express-
ing macrophages was found to be linked to treatment 
response and increased OS [171]. Kumar et  al. gener-
ated a comprehensive single-cell atlas of gastric cancer 
(> 200,000 cells) based on data from 48 samples from 31 
patients with various clinical stages and histologic sub-
types [110]. They uncovered distinct CAF subtypes, and 
INHBA–FAP-high cell populations were predictors of 
poor clinical prognosis.

Liver cancer
Tumorigenesis
Despite the strong association between cirrhosis and 
HCC and its high medical relevance, the causal relation-
ship between fibrosis and HCC development remains 
poorly understood and therapeutically underexplored 
[172]. Nearly all in  vivo evidence and findings on the 
role of HSCs remain controversial. Filliol et  al. [173] 
performed scRNA-seq of hepatic stellate cells (HSCs) 
from fibrotic mouse liver and snRNA-seq of HSCs 
from normal cirrhotic human livers to reveal the func-
tions of HSCs during hepatocarcinogenesis. Signatures 
based on the differentially expressed genes (DEGs) were 
able to reliably identify more quiescent and activated 
mouse and human HSC subpopulations. Quiescent 
and cytokine-producing HSCs enriched for hepatocyte 
growth factor protected against hepatocyte death and 
HCC development. In contrast, activated myofibroblas-
tic HSCs enriched for type I collagen, promoted pro-
liferation and tumor development. An increased HSC 
imbalance between cytokine-producing HSCs and myofi-
broblastic HSCs during liver disease progression was 
associated with increased HCC risk in patients [173].

Treatment
The relationships between the immune phenotypic char-
acteristics of innate lymphoid cells (ILCs) and HCC 
remain unclear. He et al. performed scRNA-seq on sorted 
hepatic ILCs from human patients with HCC and found 
that targeting inducible T-cell costimulator (ICOS) and 
its downstream effector HSP70 in ILC2s suppressed 
tumor growth and remodeled the immunosuppressive 
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tumor microenvironment [174]. Liu et  al. performed 
scRNA-seq on HCC tumors and adjacent normal tis-
sues obtained from six ICB nonresponders. They discov-
ered that the hypoxic microenvironment promoted SPP1 
expression, and SPP1+ macrophages interacted with 
CAFs to stimulate extracellular matrix remodeling and 
promoted tumor immune barrier (TIB) structure forma-
tion, thereby limiting immune infiltration into the tumor 
core. Preclinically, blockade of SPP1 or macrophage-
specific deletion of Spp1 in mice led to enhanced efficacy 
of anti-PD-1 treatment in mouse liver cancer, accompa-
nied by reduced CAF infiltration and increased cytotoxic 
T-cell infiltration [102]. Yuen et  al. analyzed tumor-
infiltrating T cells by flow cytometry and scRNA-seq. 
Based on the  CD8+ T-cell infiltration level, they char-
acterized tumors with different genotypes into cold and 
hot tumors. The single anti-PD-1 treatment appeared to 
be effective in HCCs with genetic mutations driving hot 
tumors, while combined anti-PD-1 and sorafenib treat-
ment may be more appropriate for HCCs with genetic 
mutations driving cold tumors [175].

Prognosis
Song et  al. performed scRNA-seq on 41,698 immune 
cells from seven pairs of HBV/HCV-related HCC tumor 
and nontumor liver tissues and identified one subset of 
 CD8+ T cells with the high secretion of XCL1 that corre-
lated with better prognosis [176]. He and colleagues used 
k-means clustering based on normalized abundances and 
identified seven distinct TME subtypes of HCC (TME1–
7). Tumors of the TME2 and TME5 subtypes exhibited 
a macrophage-dominated and lymphocyte-depleted 
microenvironment and conferred the worst prognosis. In 
contrast, the TME7 subtype conferred the most favorable 
prognosis on their constituent tumors and exhibited high 
proportions of cytotoxic T lymphocytes, central memory 
T cells, and  CD20+ B cells and low macrophage content 
[177]. Zhou et al. carried out scRNA-seq to analyze the 
transcriptomic profile of traced  Prom1+ cells. By reveal-
ing the genetic profile of the Prom1 lineage, they found 
that the signature-high group had a significantly worse 
prognosis than the signature-low group in patients with 
HCC [178]. Another study revealed that high levels of 
COL1A1, ITGA2 and YAP were associated with poor 
prognosis in liver cancer patients [179].

Breast cancer
Tumorigenesis, progression, and metastasis
The cell of origin (COO) in BRCA1 mutant breast cancer 
is not clear, and the process of BRCA1 mutant breast can-
cer development has not been fully elucidated. Based on 
RNA-seq and WES, Hu et al. identified that the impaired 
differentiation process of normal luminal cells in BRCA1 

mutation carriers might contribute to tumorigen-
esis. Moreover, the expression of TP53 and BRCA1 was 
decreased in luminal progenitor cells from normal breast 
tissue in BRCA1 mutation carriers, which might trigger 
the basal/mesenchymal transition of luminal progeni-
tors and might result in basal-like tumor development 
[180]. As the mechanisms governing seeding in distal 
tissues are poorly understood, Davis et  al. established a 
robust method for the identification of global transcrip-
tomic changes in rare metastatic cells during seeding 
using scRNA-seq and PDX models of breast cancer. The 
authors identified mitochondrial OXPHOS as the top 
pathway upregulated in micrometastases and found that 
pharmacological inhibition of OXPHOS substantially 
attenuated lung metastasis, showing that OXPHOS was 
functionally critical for metastatic spread [74]. Sun et al. 
conducted bulk RNA sequencing and scRNA-seq on both 
mammary gland cells and mammary tumor cells isolated 
from Brca1 knockout mice. Of the candidate markers 
for BRCA1 mutant tumors, we discovered and validated 
one oncogene Mrc2, whose loss could reduce mammary 
tumor growth in vitro and in vivo [181].

Treatment
It remains unclear how stromal p38 signaling shapes the 
metastatic TME and affects tumor immunity in meta-
static breast cancer. Faget et al. utilized a stromal labeling 
approach and scRNA-seq to identify targets that further 
increased the efficacy of p38MAPKα inhibitors (p38is). 
The combination of a p38i, anti-OX40, and cytotoxic 
T-cell engagement cured mice with metastatic disease 
and produced long-term immunologic memory [182].

Drug resistance
Triple-negative breast cancer (TNBC) is an aggressive 
subtype that frequently develops resistance to chemo-
therapy. Regardless of whether the resistance is caused 
by the selection of rare preexisting clones or through the 
acquisition of new genomic aberrations, Kim et al. [183] 
applied single-cell DNA and RNA sequencing in addi-
tion to bulk exome sequencing to profile longitudinal 
samples from 20 TNBC patients during NAC. The results 
indicated that resistant genotypes were preexisting and 
adaptively selected by NAC, while transcriptional profiles 
were acquired by reprogramming in response to chemo-
therapy in TNBC patients. The preexistence of chemore-
sistant genotypes in the tumor mass indicates that there 
may be diagnostic opportunities for detecting chemore-
sistant clones in TNBC patients prior to the administra-
tion of NAC to predict which patients are likely to benefit 
from chemotherapy and even raise the possibility of ther-
apeutic strategies to overcome chemoresistance.
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Esophageal cancer
Treatment
Esophageal cancer is one of the most lethal cancers 
worldwide for human health because of its high mor-
bidity and poor prognosis [184, 185]. Immunotherapy, 
the strategy to enhance the efficacy and specificity of the 
immune cells to suppress cancer progression, is a hot 
research area in cancer therapy including esophageal 
cancer [185]. Chen et  al. [186] performed scRNA-seq 
analysis on five tumor samples and five corresponding 
nonmalignant samples from ESCC patients. The results 
revealed the potential role of LAG3 and HAVCR2 as 
checkpoint molecules for immunotherapy in ESCC.

Prognosis
Zhang et al. [187] investigated the composition of ESCC 
tumors based on 208,659 single-cell transcriptomes 
derived from 60 individuals. They found that high expres-
sion levels of the mucosal immunity-like (Mucosal) pro-
gram in the tumor were strongly associated with the 
amount of effective infiltrating immune cells such as T 
follicular helper type 1  (TFH1), GC-B cells, and cDCs, 
and the researchers found that patients with high expres-
sion of the Mucosal program may have higher antitumor 
immunity and thus a better prognosis. The authors fur-
ther identified that CXCL17, AGR2, and MUC20 within 
the program were the markers that were best associated 
with ESCC survival.

Ovarian cancer
Treatment
Malignant abdominal fluid (ascites) frequently devel-
ops in women with advanced HGSOC and is associated 
with drug resistance and a poor prognosis. Izar et al. used 
scRNA-seq to profile ~ 11,000 cells from 22 ascites speci-
mens from 11 patients with HGSOC and found the JAK/
STAT pathway was activated in both malignant cells and 
CAFs. The JAK/STAT inhibitor JSI-124 had potent anti-
tumor activity in primary short-term cultures and PDX 
models of HGSOC [188]. Another study further sug-
gested that EMT or JAK/STAT inhibitor combination 
therapy might enhance the treatment of HGSOCs [189]. 
Xu et al. [108] found that the immune coinhibitory recep-
tor TIGIT was highly expressed on exhausted cytotoxic 
 CD8+ T cells  (CD8+  TEX) and that TIGIT blockade could 
significantly reduce ovarian cancer tumor growth in 
mouse models.

Prognosis
Previous bulk gene expression analysis on HGSTOC 
identified 4 molecular subtypes: the mesenchymal, 
immunoreactive, differentiated, and proliferative 
HGSTOCs. Stratification of patients according to these 

molecular subtypes failed to demonstrate differences 
in response rates to various therapies in clinical trials 
[190]. Schwede1 et al. [191] found cell admixture affects 
the interpretation and reproduction of ovarian cancer 
molecular subtypes and gene signatures derived from 
bulk tissue. As various factors in the stroma profoundly 
affect the prognostic impact of molecular subtypes, elu-
cidating the role of stroma in the TME and prognosis is 
important and necessary by single-cell analysis or micro-
dissection of tumor samples. Olbrecht et  al. [192] per-
formed scRNA-seq of 18,403 cells unbiasedly collected 
from 7 treatment-naive HGSTOC tumors and identi-
fied 6 prognostic subclusters. Of them, mesothelial cells 
(FB_CALB2), myofibroblasts (FB_MYH11), transforming 
growth factor ß-driven cancer-associated fibroblasts (FB_
COMP), tumor subcluster Tum_BAMBI and lymphatic 
endothelial cells (EC_PROX1), predicted poor outcome, 
while plasma cells  (BC_IGHG1_PRDM1high) were associ-
ated with improved OS. Sumitani et al. [193] performed 
scRNA-seq of serous ovarian cancer cells from four dif-
ferent patients to determine the association of each 
tumor population with poor prognosis. Two of the four 
identified tumor cell populations (a cancer-initiating cell 
population and a population expressing CA125) survived 
the initial treatment and suppressed antitumor immunity 
and were associated with poor prognosis. High levels of 
EMT and cell cycle signatures were significantly related 
to poor OS in ovarian cancer [189]. Xu et  al. [108] fur-
ther found that tumor cells were characterized by a set 
of EMT-associated gene signatures, from which the com-
bination of NOTCH1, SNAI2, TGFBR1, and WNT11 was 
further selected as a gene panel to predict the outcomes 
of patients with HGSOC.

Melanoma
Cancer metastasis
In multiscale analyses using scRNA-seq data from six dif-
ferent primary uveal melanomas, Pandiani et al. assessed 
ITH at the genome and transcriptome levels. Their find-
ings identified that HES6 increases the aggressive poten-
tial and motile capacity of primary uveal melanoma both 
in  vitro and in  vivo. Further experiments indicated that 
HES6 might be a valid target to limit uveal melanoma cell 
proliferation and migration [81].

Disease monitoring
Relatlimab plus nivolumab (anti-LAG3 + anti-PD-1) 
has been approved by the FDA as a first-line therapy 
for stage III/IV melanoma, but its specific effects on the 
immune system are unknown. Huuhtanen et  al. [194] 
evaluated blood samples from 40 immunotherapy-naive 
or prior immunotherapy-refractory patients with meta-
static melanoma treated with anti-LAG3 + anti-PD-1 
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using single-cell RNA and T-cell receptor sequencing 
(scRNA + TCRαβ-seq) combined with other multiom-
ics profiling. They revealed that adaptive NK cells and 
 CD8+ T cells have the highest LAG3 expression and were 
more numerous in responders. Anti-LAG3 + anti-PD-1 
treatment expanded  LAG3+ NK cells,  CD8+ T cells, and 
 CD4+ T cells in responding patients. Tregs expand in the 
periphery following anti-LAG3 + anti-PD1 therapy but 
become metabolically silent during treatment.

Treatment
Many patients derive no clinical benefit from ICIs, and 
the molecular underpinnings of such resistance remain 
elusive [142]. However, a previous scRNA-seq analysis 
provided a glimpse into primary and metastatic uveal 
melanomas ecosystems, and disclosed a regulatory 
T-cell phenotype, highlighting LAG3 as a potential can-
didate for immune checkpoint blockade [94]. Recently, 
Li et  al. performed scRNA-seq on nine clinical speci-
mens (five primary tumor and four metastasis samples) 
of a rare subtype of melanoma named acral melanoma. 
Immune cells associated with acral melanoma exhibit 
the expression of multiple checkpoints including PD-1, 
LAG-3, CTLA-4, V-domain immunoglobin suppressor 
of T-cell activation (VISTA), TIGIT, and the adenosine 
A2A receptor (ADORA2). VISTA was expressed in 58.3% 
of myeloid cells and TIGIT was expressed in 22.3% of T/
NK cells. These findings provide targets for future clini-
cal immunotherapies for acral melanoma [195]. These 
scRNA-seq studies demonstrate the promising therapeu-
tic role of ICIs in melanoma.

Clinical applications of scRNA‑seq in leukemia
ScRNA-seq assists us evaluate how combinatorial pat-
terns of gene mutations change transcriptomic signatures 
and cellular behaviors, and provides a unique opportu-
nity to identify novel tumor-specific targets in leukemia 
[196]. It is mainly used in AML and acute lymphoblastic 
leukemia (ALL) (Table 5).

AML
Treatment and therapeutic monitoring
The cause of relapse is thought to be the persistence 
of leukemia-initiating cells (LICs) following treat-
ment in AML. Stetson et  al. [197] assessed RNA-based 
changes in LICs from matched samples taken at diag-
nosis and relapse using scRNA-seq. They demonstrated 
that targeting both BCL2 and CXCR4 signaling might 
help overcome therapeutic challenges related to AML 
heterogeneity.

The molecular mechanisms underlying decitabine 
response remain incompletely understood in myelod-
ysplastic syndrome (MDS) and AML. Upadhyaya et  al. 

[198] performed scRNA-seq on total bone marrow aspi-
rate cells from 10 patients collected on days 0 and 10 of 
decitabine treatment. They found that decitabine induced 
global, reversible hypomethylation after 10 days of ther-
apy in all patients, which was associated with induction 
of interferon-inducible pathways, expression of endog-
enous retroviral elements, and inhibition of erythroid-
related transcript expression. Erythroid-related pathways 
were inhibited by therapy, which was reversed at relapse.

Drug resis0tance
Chemoresistance and relapse are the leading causes of 
AML-related deaths. Cheng et al. [199] used scRNA-seq 
to analyze the genetic profiles of 28,950 AML cells from 
13 AML patients and found that chemoresistant AML 
cells prematurely accumulated during early hematopoie-
sis. Hematopoietic stem cell‐like cells from the non‐com-
plete response (CR) group expressed more LSC markers 
(CD9, CD82, IL3RA, and IL1RAP) than those from the 
CR group. Chemoresistant progenitor cells had impaired 
myeloid differentiation owing to the early arrest of 
hematopoiesis.

A study revealed uncovered that miR-126high LSCs were 
enriched at diagnosis and at relapse in chemotherapy-
refractory AML and displayed enforced stemness and 
quiescence features, and these cells promoted chemo-
therapy resistance [127]. Another study produced similar 
results by dissecting the cellular states in bone marrow 
samples from primary refractory AML patients or those 
who relapsed soon after therapy through scRNA-seq. A 
subpopulation of quiescent stem-like cells (QSCs) was 
found to be involved in the chemoresistance and poor 
outcomes of AML [200].

ALL
Treatment and therapeutic monitoring
The understanding of the resistance elicited in minimal 
residual disease (MRD) is limited due to the rarity and 
heterogeneity of the residual cells. Zhang et  al. [201] 
assessed 161,986 single-cell transcriptomes to analyze 
the dynamic changes in B-cell acute lymphoblastic leu-
kemia (B-ALL) at diagnosis, the development of residual, 
and relapse. In contrast to those at diagnosis, the leuke-
mic cells at relapse tended to shift to poorly differentiated 
states, whereas the changes that occurred in the residual 
cells were more complicated. Both in  vitro and in  vivo 
models demonstrated that inhibition of the hypoxia path-
way sensitized leukemic cells to chemotherapy. Another 
study revealed that the CD19 ex2part splice variant is a 
new biomarker for predicting blinatumomab therapy fail-
ure [202].
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Table 5 Clinical significance of scRNA-seq in various liquid tumors

Tumor Year Species Protocol Accession number (custom 
database if available)

Clinical significance References

Acute myeloid leukemia 2019 Human Seq-Well GSE116256 Primitive AML cells exhibited dysregu-
lated transcriptional programs with co-
expression of stemness and myeloid 
priming genes and had prognostic 
significance

[261]

2021 Human Smart-seq2 GSE126068 Targeting both BCL2 and CXCR4 signal-
ing might be a therapeutic strategy

[197]

2022 Human 10 × Genomics phs000159 Erythroid-related pathways were 
inhibited by decitabine, and this 
was reversed at relapse

[198]

2023 Human 10 × Genomics Correspondence with authors Revealed premature accumula-
tion of chemoresistant AML cells 
during early hematopoiesis. The 
hematopoietic stem cell-like cells 
from the non-CR group expressed 
more LSC markers (CD9, CD82, IL3RA, 
and IL1RAP) than those from the CR 
group. Chemoresistant progenitor cells 
had impaired myeloid differentiation 
owing to the early arrest of hemat-
opoiesis

[199]

2023 Human 10 × Genomics HRA001240 QSCs were involved in the chem-
oresistance and poor outcomes 
of AML. The CD52-SIGLEC10 interac-
tion between QSCs and monocytes 
might contribute to immune evasion 
and poor outcomes. LGALS1 was iden-
tified as a promising target for chem-
oresistant AML, and an LGALS1 inhibi-
tor could help eliminate QSCs

[200]

2023 Human 10 × Genomics GSE196045 NFIC was identified as a transcription 
factor that was important for myeloid 
differentiation as well as AML cell 
survival and as a potential therapeutic 
target in AML

[152]

2023 Human 10 × Genomics GSE185993 Chemotherapy induced a general-
ized inflammatory and senescence-
associated response. Some progenitor 
AML cells proliferated and differenti-
ated with an expression of OXPHOS 
expression signature, while others were 
OXPHOS (low) miR-126 (high) and dis-
played high stemness and quiescence 
features

[127]

2023 Human 10 × Genomics Correspondence with authors Identified a distinct LSC-like cluster 
with possible biomarkers in NK-AML 
(M4/M5). Provided an atlas of NK-AML 
(M4/M5) cell heterogeneity, composi-
tion, and biomarkers with implications 
for precision medicine and targeted 
therapies

[262]

2023 Human 10 × Genomics GSE213584 Identified unique  C1Q+ macrophage-
like leukemia cells. C1Q was identified 
as a marker for AML with adverse prog-
nosis, orchestrated cancer infiltration 
pathway activity by communication 
with fibroblasts, and represents a com-
pelling therapeutic target for EMI

[263]
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Drug resistance
The resistance mechanisms in relapsed/refractory early 
T-cell progenitor acute lymphoblastic leukemia (ETP-
ALL) carrying activating NOTCH1 mutations are 
unclear. Anand et  al. [203] performed scRNA-seq on 
malignant and microenvironmental cells and identified 
2 highly distinct stem cell-like states that were critically 
different in terms of cell cycle and oncogenic signaling. 
The fast-cycling stem cell-like leukemia cells demon-
strated Notch activation and were effectively eliminated 
in patients by Notch inhibition, whereas the slow-cycling 
stem-cell like cells were Notch-independent and relied 
on PI3K signaling. These cells promoted an immunosup-
pressive leukemia ecosystem, accompanied by the clonal 
accumulation of dysfunctional  CD8+ T cells.

Prognosis
Based on scRNA-seq and protein-based data of human 
B-ALL bone marrow and peripheral blood, Witkowski 
et  al. found that  CD16+ nonclassical monocytes may 
represent the majority of circulating and bone marrow 
monocytes, and they were found to be associated with 
inferior treatment outcomes [204]. Another study found 
a relapse-enriched B-cell subset was associated with poor 
prognosis, implicating the transcriptomic evolution dur-
ing disease progression [205].

Clinical utilities of scRNA‑seq in lymphoma
Lymphoma has its own characteristics that differ from 
those of solid tumors and leukemia. In addition to the 
same clinical applications as other tumors, scRNA-seq 
can also aid in subtyping lymphoma (Table 6).

Diagnosis
Cancers are traditionally diagnosed by their tissue of ori-
gin and histologic features [206]. ScRNA-seq, as the earli-
est and best-established single-cell sequencing technique, 
has been used to identify diagnostic biomarkers [206]. 
Gaydosik et  al. [77] identified a 17-gene expression sig-
nature (ANP32, BPPIA, ATP5C1, PSMB2, DUT, RAN, 
HMGN1, RANBP1, HN1, SET, NPM1, SMC4, NUSAP1, 
STMN1, and PCNA) common to all five tumors tested. 
The authors validated the protein coexpression of three 
of the genes (PCNA, ATP5C1, and NUSPA1) with TOX 
in multiple patients with advanced-stage CTCL. Thus, 
these genes have the potential to be diagnostic mark-
ers for CTCL. Jonak et  al. [207] performed scRNA-seq 
on two 6-mm skin punch biopsies from a 33-year-old 
patient with concurrent mycosis fungoides (MF) and pri-
mary cutaneous follicle center lymphoma (PCFCL) and 
revealed a type-2 immune skewing in MF, while PCFCL 
lesions generally exhibited a more type-1 immune phe-
notype, consistent with its indolent behavior. This result 

Table 5 (continued)

Tumor Year Species Protocol Accession number (custom 
database if available)

Clinical significance References

Acute lymphoblastic leukemia 2020 Human 10 × Genomics GSE134759 Monocyte abundance was predictive 
of pediatric and adult B-ALL patient 
survival. Human B-ALL cells promoted 
the emergence of  CD16+ nonclassical 
monocytes ex vivo. Anti-CSF1R therapy 
enhanced the targeted treatment 
of  Ph+ B-ALL models in vivo

[204]

2021 Human Smart-seq2 GSE161901 Combination therapies target-
ing diverse oncogenic states 
and the immune ecosystem seem 
most promising to successfully elimi-
nate tumor cells that escape treatment 
through coexisting transcriptional 
programs

[203]

2021 Human 10 × Genomics EGAS00001004027 Multiple mechanisms leading 
to acquired CD19 mutations contrib-
uted to CD19 loss and relapse on bli-
natumomab treatment. CD19 ex2part 
alternative splicing levels were found 
to be a new biomarker predictive 
of blinatumomab resistance or failure

[202]

2022 Human 10 × Genomics HRA000489 The leukemic cells at relapse tended 
to take on poorly differentiated states, 
whereas the changes in the residual 
cells were more complicated. Inhibi-
tion of the hypoxia pathway sensitized 
leukemic cells to chemotherapy

[201]
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indicated the existence of two clonal malignancies in the 
skin of a single patient that occurred at the same time, 
but developed in distinct skin lesions in a nonoverlap-
ping manner; these features were most consistent with 
the diagnosis of discordant lymphoma, and the case pro-
vides proof of concept that scRNA-seq can be applied to 
diagnose primary cutaneous lymphomas. Li et  al. [208] 
identified four genes (CYTOR, CXCL13, VCAM1, and 
TIMD4) that were explicitly expressed in malignant T 
cells that may be novel markers for subcutaneous pan-
niculitis-like T-cell lymphoma (SPTCL). Ren et al. [130] 
performed integrative paired scRNA-seq and single-cell 
TCRαβ sequencing (scTCRseq) analyses of  CD4+ T cells 
from 11 MF/SS patients. They found that 7 genes (i.e., 
AC133644.2, UBXN11, and ADTRP) were upregulated 
while 28 genes (i.e., TRBC1, AIRE, and TPO) were down-
regulated in SS relative to MF, suggesting that these genes 
could be biomarkers for diagnosis and predicting prog-
nosis. However, another study identified that the AIRE 
gene was expressed in 58% of malignant cells versus 8.7% 
of nonmalignant cells across samples and was the most 
highly upregulated gene in SS [209].

Subtyping
The COO classification has identified two subtypes 
of diffuse large B-cell lymphoma (DLBCL): GCB and 
activated B-cell-like (ABC) DLBCL, with GCB cases 
characterized by a better prognosis than ABC cases 
[210–212]. As the COO classification represents an 
oversimplification of the complex dynamics of the 
proliferation, trafficking, and differentiation of B cells 
within the germinal center, Holmes et al. [213] applied 
genome-wide single-cell (sc) RNA profiling to further 
dissect the heterogeneity of germinal center B cells. 
The authors explored the dynamics of germinal center 
B-cell development beyond the known DZ and LZ com-
partments and identified five stages: DZ cells (CXCR4, 
AICDA), intermediate cells (CXCR4 and CD83), LZ 
cells (CD83 and BCL2A1), plasmablasts (PBL; PRD-
M1and IRF4), or precursor memory B (PreM; CCR6) 
cells. Based on the five stages, 13 sc-COO subtypes (DZ 
a, DZ b, DZ c, INT a, INT b, INT c, INT d, INT e, LZ a, 
LZ b, PreM, PBL a and PBL b) were identified, and they 
provided sc-COO for ∼80% of DLBCLs. In addition to 
DLBCL typing based on B cells, a novel DLBCL typing 
using scRNA-seq has also emerged beyond COO and 
genotypic classes. For a further step, survival analysis 
indicated Groups II and IV had the worst and best sur-
vival outcomes, respectively while the remaining three 
groups had an intermediate prognosis in a merged data-
set containing National Cancer Institute [NCI]-DLBCL 
data and (British Columbia Cancer Agency [BCCA]-
DLBCL data. The results indicated that the sc-COO 

classification can identify clinically relevant subgroups 
within GCB- and ABC-DLBCLs, as well as DHITsig-
positive cases. In another study, the authors identified 
44 distinct cellular states from all 12 cell types, rang-
ing from two to five states per cell type. Then, they 
applied EcoTyper to reveal nine multicellular ecosys-
tems in DLBCL based on the 44 cellular states, namely, 
lymphoma ecotypes (LEs). Although the results of this 
study reclassified DLBCL based on cell states and eco-
systems, future studies will be needed to further char-
acterize the spatial topology and interactions within 
LEs and the molecular switches that mediate therapeu-
tic responsiveness and resistance in DLBCL [214].

In addition to DLBCL, Liu et  al. also established a 
binary subtyping scheme for CTCL based on the molecu-
lar features of malignant T cells and their protumorigenic 
microenvironments [78]. The cytotoxic effector memory 
T-cell  (TCyEM) group, which displayed a cytotoxic effec-
tor memory T-cell phenotype, showed more M2 mac-
rophage infiltration, while the  TCM group, featuring a 
central memory T-cell phenotype and worse patient out-
comes, was infiltrated by highly exhausted  CD8+ reactive 
T cells, B cells and Tregs with suppressive activities.

Disease monitoring
Noninvasive monitoring of disease status, prognosis and 
treatment response, and early detection of relapse are 
preferred in clinical practice, as biopsy is unfortunately 
impractical at times [215]. Ye et  al. [216] compared the 
malignant cell compartment in one pair of samples col-
lected at diagnosis and relapse. The scRNA-seq data 
suggested that selective outgrowth of cells with an acti-
vated MAPK signaling program might be associated 
with relapse in the DLBCL patient. Borcherding et  al. 
[209] extensively mapped the transcriptomic variations 
in approximately 50 000 T cells of both malignant and 
nonmalignant origins using single-cell mRNA and TCR 
sequencing of peripheral blood immune cells in patients 
with SS. New cellular clusters identified after progression 
on therapy notably exhibited increased expression of the 
transcription factor FOXP3, a master regulator of Treg 
function, suggesting the potential of an evolving mech-
anism of immune evasion. Rindler and his colleagues 
[217] revealed a specific panel of biomarkers that might 
be used for monitoring MF disease progression. Despite 
considerable interindividual variability, lesion progres-
sion was uniformly associated with the downregulation 
of the tissue residency markers CXCR4 and CD69, the 
heat shock protein HSPA1A, the tumor suppressors and 
immunoregulatory mediators ZFP36 and TXNIP, and 
interleukin 7 receptor (IL7R) within the malignant clone 
but not in benign T cells.
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Treatment
Traditional treatments for lymphoma include chemo-
therapy with or without radiotherapy, surgery, and bone 
marrow transplantation [218, 219]. In recent years, 
targeted therapy and immunotherapy have gradually 
emerged as options and have been applied in clinical tri-
als, with encouraging achievements against malignant 
lymphoma [218, 220–222].

Some studies have explored the application of scRNA-
seq to develop targeted therapy. Targeted therapies can 
be divided into two categories. Some targeted thera-
pies target specific molecules, and others target distinct 
cell populations or subpopulations. Fujisawa et  al. [134] 
performed scRNA-seq of 5 human AITL tumors and 
3 homeostatic lymph node (HLN) samples, and an in 
silico network analysis using the scRNA-seq data iden-
tified CD40-CD40LG as a possible mediator of GCB 
and tumor cell cluster interactions. Therefore, blockade 
of the CD40-CD40LG axis by administering an anti-
Cd40lg antibody suppressed tumor growth. Ren et  al. 
[130] found that CD82 regulates CTCL proliferation and 
apoptosis through the JAK/STAT and AKT/PI3K path-
ways and revealed the therapeutic potential of targeting 
CD82 and JAK, which endow malignant CTCL cells with 
survival and proliferation advantages. A DLBCL study 
identified the CD74-MIF interaction as the most sig-
nificant interaction between B cells and the other three 
types of immune cells (T cells, macrophages, and DCs) 
[85]. This same ligand‒receptor interaction also resulted 
in significant upregulation of MIF in malignant T cells 
and interactions of malignant T cells expressing MIF 
with macrophages and B cells expressing CD74 in CTCL 
[131]. These findings suggest the utility of targeting the 
CD74-MIF interaction with therapies for tCTCL.

Targeting macrophages in hematological malignan-
cies is a promising approach since these cells either 
support or inhibit tumor growth depending on their 
phenotypes and functions [98, 223]. In one study, Cao 
et  al. [75] used paclitaxel to substantially increase the 
anticancer efficacy of CD47-targeted therapy in late-
stage non-Hodgkin lymphoma (NHL) by activating 
Src family tyrosine kinase signaling in macrophages. 
Paclitaxel re-enabled programmed cell removal (PrCR) 
by not only directly stimulating the phagocytic capac-
ity of bone marrow macrophages but also reversing the 
phagocytosis-inhibitory TME through the suppression 
of TAM populations directly linked to NHL progres-
sion. In addition to TAMs,  CD8+ T cells are another 
target population. Steen et  al. [214] divided  CD8+ T 
cells into five state (S1-S5) subpopulations. The tran-
scriptomic and spatial characterization linked  CD8+ T 
cells in the S1 subpopulation to a previously described 
 CXCR5+  CD8+ T cell state. Patients harboring large 

numbers of  CD8+ T cells in the S1 subpopulation expe-
rienced significantly longer survival in the RB-CHOP 
arm (bortezomib added to standard R-CHOP therapy) 
than those in the R-CHOP arm in terms of both OS and 
PFS.

Immunotherapies are divided into two categories 
based on the mechanism of action. Some are designed 
to block the immune evasion of tumor cells, and these 
therapies are represented by ICIs, most of which target 
PD-1, PD-L1, cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4), and other related checkpoints. Other 
immunotherapies are designed to enhance the ability 
of immune cells to attack tumor cells, and these thera-
pies are represented by cellular treatment with chimeric 
antigen receptor (CAR)-T cells [218]. Su et  al. [224] 
found that responses to pembrolizumab were asso-
ciated with lower expression of KIR3DL2 within the 
Sézary cell population, suggesting that treatment with 
anti-KIR3DL2 drugs such as lacutamuab synergized 
with pembrolizumab therapy. Another study found that 
both PD-1/PD-L1 and CD73/A2aR signaling mediated 
the immunosuppressive microenvironment in DLBCL. 
A combination of treatments targeting the immunosup-
pressive PD-1/PD-L1 axis with CD73/A2aR inhibitors 
may provide additional clinical benefits and may over-
come primary and secondary resistance to PD-1/PD-1L1 
blockade.

Jackson et  al. [225] performed a sequential analysis 
of manufactured and infused CAR-T cells using sin-
gle-cell RNA and protein expression data for the first 
time to investigate the mechanisms linked to patient 
response to CAR-T-cell therapy. CAR-T cells exhib-
ited significant heterogeneity across time points (prod-
uct, Day 14, and Day 30), cell-cycle phases, cell types, 
and patients. The authors noted that the CAR-T cells 
evolved toward a nonproliferative, highly differentiated, 
and exhausted state, with an enriched exhaustion profile 
marked by high TIGIT expression observed in CAR-T 
cells from patients with a poor response; that is, there 
was a shift in the predominant profiles of  CD8+ CAR-T 
cells from  CD45RAhiCCR7hiCD127hiCD62LhiCD25hi 
cells to  CD45ROhiCD28hiCD69hiCD27hiPD-1hi and 
 CD45RAhiCD57hiCD69hiPD-1hi cells upon infusion. 
 CD8+  TIGIT+ CAR-T cells had greater dysfunctional 
scores than  TIGIT− cells, upregulated TOX expres-
sion and upregulation of many of the same exhaustion-
related genes that were differentially expressed between 
response groups and had a higher surface expression of 
all exhaustion markers tested, including PD-1. These 
findings revealed for the first time that TIGIT inhibition 
alone could improve CAR-T-cell efficacy in mouse mod-
els, as well as in models treated with a clinically relevant 
monoclonal blocking antibody.
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Drug resistance
Drug resistance is one of the principal reasons for the 
failure of anti-infection drugs and cancer chemotherapy 
[226]. Tumor heterogeneity is the main driving force of 
drug resistance [136].

Wang et al. [226] performed scRNA-seq on bone mar-
row samples from a patient with relapsed mantle cell 
lymphoma (MCL). The results indicated that the major 
immune escape mechanisms of MCL included inhibi-
tion of perforin activity, decreased immunogenicity, 
and direct inhibition of apoptosis and cell killing medi-
ated by type I  (CCND1+CD79A+TNFRSF13C+) and II 
B  (CCND1+CD79A+) cells. However, type I B cells dis-
played greater proliferation and differentiation potential 
than other clusters, thus indicating that these cells had 
greater potential for immune escape and the activation 
of drug resistance mechanisms and might be useful drug 
targets in the future.

The TME, which comprises cellular and noncellular 
components, plays a crucial role in drug resistance [7]. 
Zhang et al. [227] performed sequential scRNA-seq of 21 
specimens collected at baseline, during treatment, and/
or at disease remission/progression from three ibruti-
nib-responsive patients and 2 nonresponsive patients 
to further explore the molecular heterogeneity and the 
mechanism of drug resistance in refractory MCL. A 
cell-to-cell communication analysis revealed that com-
plex interactions between MCL cells and the TME might 
largely influence therapeutic resistance, warranting the 
development of strategies to promote the anti-lymphoma 
activity of the TME. Lossos et al. [228] established PDXs 
of double-hit lymphoma (DHL) to more faithfully model 
human aggressive lymphomas. According to the study, 
rituximab resistance within the bone marrow was not 
present upon early engraftment but developed dur-
ing lymphoma progression. Furthermore, this resist-
ance required a high tumor cell:macrophage ratio and 
was overcome by multiple, high-dose alkylating agents. 
ScRNA-seq of the macrophages identified a “superphago-
cytic” subset that expressed CD36/FCGR4, suggesting 
that these cells were the primary effectors that mediated 
the activity of the single agent cyclophosphamide. These 
findings revealed a novel mechanism by which high-dose 
alkylating agents promoted macrophage-dependent lym-
phoma clearance.

Prognosis
An accurate evaluation of the prognosis of cancer 
patients is important [129]. Currently, three types of 
prognostic factors identified by scRNA-seq have been 
reported in lymphoma. The first is gene markers. Abe 
et  al. utilized multistep DEG analyses and revealed 
LY6H expression which was first described in mouse and 

human endothelial cells in FL. Increased expression of 
the markers LY6H and LOX, as well as TDO2 and REM1, 
was associated with an unfavorable prognosis [112]. Zhao 
et al. [229] constructed prognostic models based on dif-
ferentially expressed genes associated with  CD8+  TEX 
subpopulations, and six prognosis-related genes were 
obtained for model construction using multivariate Cox 
regression analysis (GABRA3, HOXC8, RTN4R, CRLF1, 
BIRC3, and REXO5). The prognostic model could iden-
tify high-risk DLBCL patients and aid clinical decision 
making. Borcherding et al. [73] showed the involvement 
of FOXP3+ malignant T cells in clonal evolution using 
scRNA-seq and the machine-learning reverse graph 
embedding approach: FOXP3+ T cells transitioned into 
GATA3+ or IKZF2+ (HELIOS) tumor cells in a patient 
with stage IVA SS. FOXP3 was identified as the most 
important factor for the early prediction of disease in 
patients with CTCL; it and 19 other genes could predict 
the CTCL stage with approximately 80% accuracy.

The second type of prognostic factor is cell subpopu-
lations. The sc-COO classification of DLBCL has been 
reported in the section of subtyping [213]. Another 
scRNA-seq analysis showed that DNMT3A mutations 
defined a cytotoxic subset associated with a significantly 
worse prognosis of PTCL-TBX21, this result can be used 
to further refine pathological heterogeneity in PTCL-
NOS and suggests alternative treatment strategies for 
this subset of tumors [230].

The third prognostic factor is gene signatures, which 
usually consist of tens to hundreds of genes [231]. Liu 
et  al. [78] conducted a hierarchical clustering analy-
sis of 65 gene signatures and revealed four main meta-
programs, which indicated that malignant T cells have 
similar behaviors across the heterogeneous transcrip-
tional spectrum of CTCL tumors. Annotation of the 
top-ranking genes of the four meta-programs identified 
distinct functional signatures, including T-cell signaling 
and activation (meta-program 1: HLA-DRB1, CD69, and 
MYC; and meta-program 4: ITK, FYN, and CBLB), cell 
cycle (meta-program 2: MCM7, PCNA, and BIRC5) and 
cell metabolism (meta-program 3: GAPDH, BUA52, and 
RPS3). Notably, a high T-cell activation signature (meta-
program 1 and meta-program 4) was associated with a 
favorable prognosis, while a high proliferation signature 
(meta-program 2) predicted a poor patient outcome.

Conclusions
ScRNA-seq provides unprecedented mapping data for 
cancer analyses because it provides high-resolution tran-
script sequencing; it can be used for the discovery of 
new cell subsets and markers, the analysis of intratumor 
and intertumor heterogeneity, and studies of the tumor 
microenvironment, intercellular crosstalk, and lineage 
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trajectories, and such studies have resulted in great pro-
gress in our understanding of cancer pathogenesis, diag-
nosis, prognosis, treatment, and drug resistance.

However, scRNA-seq has many disadvantages that 
limit its widespread application. First, although scRNA-
seq has been the most mature and widely-used single-
cell omics in cancer research, it can’t completely reflect 
cancer biology, such as the level of genomics, proteom-
ics, epigenomics, etc. Second, scRNA-seq has high 
requirements for specimens, and can only use live cells as 
detection objects; specimens analyzed at different times 
will have associated batch effects. Third, enzymatically 
digesting cells to obtain single-cell suspensions is likely to 
kill cells and degrade RNA. This will also result in the loss 
of spatial and morphologic information. Fourth, not all 
nucleated cells are detected, the sequencing depth may 
be limited, and scRNA-seq data do not fully reflect the 
entire transcriptional landscape and genetic information 
of cancer samples. The heterogeneity of patient tumors 
and differences in detection platforms also increase the 
difficulty of result interpretation and decrease data uni-
formity. In addition, scRNA-seq is expensive and time-
consuming, and data processing is complex.

Therefore, scRNA-seq technology still has much 
room for improvement in cancer research. In the 
future, researchers should focus on reducing the price, 
further improving single-cell isolation technology, 
improving throughput and sequencing depth, enhanc-
ing bioinformatics analysis pipelines, and expanding 
applications to utilize frozen and formalin-fixed par-
affin-embedded (FFPE) tissues to improve the ease of 
use and accessibility. In addition to advances in scRNA-
seq technology, scRNA-seq should also be combined 
with other omics technologies and artificial intelli-
gence technology. ScRNA-seq-plus-genomics records 
the dynamics between gene mutations and expression; 
scRNA-seq-plus-proteomics reveals the relationship 
between transcript abundance and resulting protein con-
tent; scRNA-seq-plus-epigenomics helps understand the 
regulation of gene expression by chromatin structure or 
methylation; scRNA-seq-plus-metabolomics map and 
quantify the in sufficient detail to provide useful infor-
mation about cellular function in highly heterogeneous 
cancers [66, 67]. Apart from the single-cell multi-omics, 
spatial multi-omics also should be paid attention to and 
be combined with scRNA-seq or other single-cell omics, 
which will help us deepen our understanding of the cell 
location and its various functions. Other cell-labeling 
technologies such as CRISPR/Cas9 [232] and nuclear 
hashing [57] have been combined with scRNA-seq. They 
can identify and characterize the effects of thousands of 
independent genetic perturbations in  vivo on tissues or 
cells with different functions at single-cell resolution. Of 

course, the combination of more omics requires more 
samples, which is also a serious challenge in terms of 
money and ethics. The application of more technolo-
gies generates more data, which also raises the require-
ments for researchers or clinicians to analyze and apply 
the data, and puts higher demands on bioinformatics. As 
a result, scRNA-seq with various other omics and tech-
nologies needs to be more tightly integrated to reduce 
the cost and sample volumes. Moreover, artificial intel-
ligence-based machine learning and data processing 
analyses should keep up with the scRNA-seq technol-
ogy to provide researchers with more useful information 
that will improve the understanding of cancer. Lastly and 
most importantly, scRNA-seq should be combined with 
clinical needs to provide patients with better personal-
ized and precise treatment options. As a relatively new 
technology that has not yet been widely used in clinical 
practice, in addition to the norms that need to be devel-
oped for the technology itself, the ethical norms for its 
use in clinical implementation also need to be formulated 
and standardized by experts.
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CEL-seq  Cell expression by linear amplification and sequencing
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CSC  Cancer stem cell
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HSCs  Hepatic stellate cells
HTS  High-throughput screening
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ICB  Immune checkpoint blockade
ICIs  Immune checkpoint inhibitors
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IL7R  Interleukin 7 receptor
ILCs  Innate lymphoid cells
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IVT  In vitro transcription
LCM  Taser-capture microdissection
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LTS  Long-term survivors
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MACS  Magnetic-activated cell sorting
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mCAFs  Matrix cancer-associated fibroblasts
MCL  Mantle cell lymphoma
mCRC   Metastatic colorectal cancer
mDC  Myeloid dendritic cell
MDS  Myelodysplastic syndrome
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MFLNs  Metastasis-free lymph nodes
MHC  Major histocompatibility complex
MIA  Multimodal intersection analysis
miRNAs  MicroRNAs
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MRCs  Marginal reticular cells
MRD  Minimal residual disease
MSI  Microsatellite instability
Mφ  Macrophages
NAC  Neoadjuvant chemotherapy
NCI  National Cancer Institute
NEC  Neuroendocrine carcinoma
NESCs  Nonendothelial stromal cells
NET  Neuroendocrine tumor
NFIC  Nuclear factor I-C
NGS  Next-generation sequencing
NHCs  Nonhematopoietic cells
NHL  Non-Hodgkin lymphoma
NPM1  Nucleophosmin 1
NSCLC  Non-small cell lung cancer
OS  Overall survival
p38is  P38MAPKα inhibitors
PBL  Plasmablast
PC  Peritoneal carcinomatosis

PCFCL  Primary cutaneous follicle center lymphoma
PCNSL  Primary central nervous system lymphoma
PD  Progressive disease
PD-1  Programmed cell death protein 1
pDC  Plasmacytoid dendritic cell
PDGC  Poorly differentiated gastric cancer
PD-L1  Programmed cell death-ligand 1
PDX  Patient-derived xenograft
PEL  Primary effusion lymphoma
PFS  Progression-free survival
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embedding
piRNAs  Piwi-interacting RNAs
PrCR  Programmed cell removal
PreM  Precursor memory B
PTCL  Peripheral T cell lymphoma
QSCs  Quiescent stem-like cells
RD  Residual disease
RNA-seq  RNA sequencing
RT  Reverse transcription
sc  Single-cell
scATAC-seq  Single-cell Assay for Transposase-Accessible Chromatin using 

sequencing
SCC  Squamous cell carcinoma
scDNA-seq  Single-cell DNA sequencing
Sci-RNA-seq  Single-cell combinational indexing RNA sequencing
SCNAs  Somatic mutations as well as somatic copy number 

alterations
scRNA-Seq  Single-cell RNA sequencing
SCs  Stromal cells
scTCRseq  Single-cell TCRαβ sequencing
SPLiT-seq  Split-pool ligation-based transcriptome sequencing
SPTCL  Subcutaneous panniculitis-like T cell lymphoma
SRT  Spatially resolved transcriptomics
SS  Sézary syndrome
TACE  Transarterial chemoembolization
TAMs  Tumor-associated macrophages
TCR   T-cell receptor
tCTCL  Transformed CTCL
TCyEM  Cytotoxic effector memory T cell
TEX  Exhausted cytotoxic CD8 + T cells
TGS  Third-generation sequencing
Th1  T helper 1
TIB  Tumor immune barrier
TIME  Tumor immune microenvironment
TME  Tumor microenvironment
TNBC  Triple-negative breast cancer
Tregs  Regulatory T cells
TSO  Template-switching oligonucleotide
UM  Uveal melanoma
UMI  Unique molecular identifier
VISTA  V-domain immunoglobin suppressor of T cell activation
WES  Whole exome sequencing
WGS  Whole genome sequencing
YAP1  Yes-associated protein 1
yCRC   Young-onset colorectal cancer
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