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Abstract

Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities dur-

ing the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied
to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain.
Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to under-
stand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA
sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biol-

ogy by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular
genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor
heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolu-
tion. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing

applications in cancer research and clinical practice.
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Introduction

Cancer is a systemic disease and a major global chal-
lenge, that forms and progresses through a series of
critical transitions—from premalignant to malignant
states: from locally contained to metastatic disease, and
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from treatment-responsive tumors to treatment-resist-
ant tumors [1-3]. Cancer has been a major challenge
because of its clonal heterogeneity and the compositional
complexity of the tumor microenvironment (TME) [4].
Tumor heterogeneity and the TME play crucial roles in
tumorigenesis, progression, invasion, metastasis, and
drug resistance [5-7]. The development of sequencing
technologies has allowed the generation of large amounts
of molecular data from a single cancer specimen, bring-
ing about the era of precision medicine in clinical oncol-
ogy [8]. ‘Precision medicine’ requires detailed knowledge
of the molecular profile of a patient [9, 10]. Bulk RNA
sequencing (RNA-seq) provides limited insights into the
clonal composition of tumors and the TME [11]. Several
obvious advantages of scRNA-seq over bulk RNA-seq
data have been noted, including its ability to character-
ize the subtypes of cells and the frequency of cell types
in each sample, its ability to identify the genes and net-
works that are activated within each cell or cell type, and
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the ability to study relationships among cells or cell types
[12]. Single-cell RNA sequencing (scRNA-seq) was first
reported in 2009 in a study profiling the transcriptome
at single-cell resolution, and scRNA-seq is gradually
becoming a popular tool used in human cancer research
for elucidating disease heterogeneity [4, 13, 14]. SCRNA-
seq provides biological information at single-tumor-cell
resolution, reveals the determinants of intratumor gene
expression heterogeneity, and identifies the molecular
bases for the formation of many oncological diseases
[15]. Here, we describe the current state of and advances
in scRNA-seq technology, summarize its applications in
cancer biology research and clinical practice, and pro-
pose major avenues for future investigation, with a focus
on how this technology can facilitate precision medicine
treatment in clinical practice.

Advances in scRNA-seq

A typical scRNA-seq protocol includes several steps:
sample acquisition, single-cell isolation, lysis, reverse
transcription (RT), complementary DNA (cDNA) ampli-
fication, library construction, sequencing, and data anal-
ysis [16] (Fig. 1). Although capturing single cells quickly
and accurately with high efficiency may seem trivial, it
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is one of the main challenges of single-cell sequencing
[17]. Currently, several methods are utilized to isolate
single cells, including manual cell selection [13], limiting
dilution [18], laser-capture microdissection (LCM) [19],
fluorescence-activated cell sorting (FACS) [20], magnetic
activated cell sorting (MACS) [21], and microfluidics
[22]. Among these methods, microfluidics has become
popular due to its low sample consumption, precise
fluid control, and low operating costs [23]. In particular,
droplet-based microfluidics (also called microdroplets) is
currently the most popular high-throughput platform; in
microdroplets, single cells are masked by nanoliter drop-
lets that contain a lysis buffer and barcoded beads using
microfluidic and reverse emulsion devices [24].

In general, relevant protocols are classified into two
categories: full-length transcript sequencing approaches
and 3'/5'-end transcript sequencing approaches (tag-
based methods) [25]. Some protocols, such as Quartz-
seq [26], Smart-seq [27], Smart-seq2 [28], SUPeR-seq
[29], and MATQ-seq [30], can produce full-length tran-
script sequencing data, while others only capture and
sequence the 3'-end, such as CEL-seq [31], CEL-seq2
[32], Drop-seq [33], inDrop [34], 10X Genomics [35]
and Quartz-seq2 [36] or the 5'-end, such as STRT-seq
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Fig. 1 Typical scRNA-seq protocol
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[37]. Compared to 3'-end or 5'-end counting protocols,
full-length scRNA-seq methods have incomparable
advantages in isoform usage analysis, allelic expression
detection, and the identification of RNA editing mark-
ers due to their superior transcript coverage [38]. How-
ever, full-length scRNA-seq methods are relatively more
expensive than contemporaneous tag-based scRNA-seq
technology. These methods had their own characteris-
tics and advantages/disadvantages (Table 1, Fig. 2). Next,
we will elaborate on the latest advances in scRNA-seq
technology by some classic or promising scRNA-seq
methods.

Tag-based methods

The main advantage of tag-based methods is that these
can be combined with unique molecular identifiers
(UMIs), which can reduce overall costs and labor, enable
the multiplexing of more samples, and improve gene-
level quantification and throughput. However, tag-based
methods have relatively low sensitivity as mappable
reads are restricted to one end of the transcript. Thus,
tag-based methods are mostly used for gene expression
quantification and cannot be utilized for isoform identifi-
cation or splicing [39, 40].

CEL-seq and CEL-seq2

Linear amplification by in vitro transcription (IVT) is
preferable to exponential amplification by PCR. CEL-seq
(cell expression by linear amplification and sequencing)
is the first scRNA-seq protocol that uses IVT for linear
amplification of RNA from single cells [31], which is a
sensitive, accurate, and reproducible single-cell tran-
scriptomics method. However, the experiment procedure
is complicated and time-consuming. The throughput is
low and it has a 3’ bias. Four years later, the same team
created CEL-seq2 by combining with Fluidigm’s C1 sys-
tem, which is the first single -cell, on-chip barcoding
method with more time- and cost-efficient compared
with CEL-seq [32]. Moreover, CEL-seq2 increases accu-
racy with the addition of 5-base UMI for labeling and sig-
nificantly improves RT efficiency, resulting in increased
assay sensitivity.

MARS-seq and MARS-seq2

MARS-seq (massively parallel single-cell RNA-sequenc-
ing) is an automated high-throughput method of CEL-
seq and was developed to explore cellular heterogeneity
within the immune system by assembling an automated
experimental platform that enables RNA profiling of cells
sorted from tissues using flow cytometry [41]. MARS-
seq utilizes IVT as the amplification method instead of
PCR to quantify the mRNA levels with less amplification
noise and reduce hands-on time with the ability to pool
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many samples before amplification. At the same time, the
requirement for barcoding limits coverage to only the 3’
or 5' ends of the transcripts [42, 43]. Shaul and colleagues
developed a novel MARS-seq2.0 based on the MARS-
seq protocol, whose experimental improvements refer
to lowering of RT volume, optimization of lysis buffer,
reduction of RT primer concentration, optimization of
RT primer composition, primer removal by exonucle-
ase I, optimization of second-strand-synthesis enzymes,
and optimization of barcoded ligation adaptor [44].
Thus, MARS-seq2.0 has a comprehensive improvement
including throughput, robustness, noise reduction, and
cost reduction. Optimization of the conditions indicated
above resulted in a sixfold reduction in the cost of library
production (from $0.65 to $0.10 per cell) and reduced the
background level (from 10-15% to 2%). MARS-seq2.0
allows efficient sequencing of 8,000-10,000 cells in a
single run and has a negligible amount of doublet cells
(<0.2%; 2 out of 1,041 cells) and provides high confidence
in cell identity. MARS-seq2.0 only takes 2-3 days from
cell sorting to a ready-to-sequence library. Sequencing
and processing the data through the analytical pipeline
take another 1-2 days. The drawback of this method is
the premature termination of reverse transcription which
significantly reduces transcript coverage at the 5 end
[23].

Drop-seq, in Drop-seq and 10 x Genomics

Currently, the most popular high-throughput platform
is based on droplet-based microfluidics (microdroplets)
[45]. In 2015, two blockbuster droplet-based scRNA-seq
methods, known as Drop-seq and inDrop, were identi-
fied [33, 34]. Drop-seq and inDrop share similar strate-
gies in generating droplets, isolating single cells through
on-bead primers with barcodes, and correcting bias by
applying UMIs [46]. In 2017, the commercial sequenc-
ing platform 10X Genomics was successfully developed
based on the above techniques, enabling a significant
increase in cell throughput and a considerable reduc-
tion in single-cell sequencing costs [14, 35]. Zhang et al.
compared the three most widely used droplet-based
high-throughput scRNA-seq systems using the same cell
sample and a unified data processing pipeline to reduce
bias in experimental design and data analyses [47]. The
instrument of 10X Genomics costs more than $50,000
and the per-cell cost is about $0.50, even without con-
sidering the sequencing cost or instrument depreciation.
Building up the whole system of Drop-seq costs less than
$30,000 and the experimental cost is about $0.10 per cell.
The instrument cost of inDrop is comparable to that of
10X Genomics, and the per-cell cost is about half that of
10X Genomics. Generally, all three systems offer satisfac-
tory transcript detection efficiency, and higher efficiency



Page 4 of 48

(2023) 16:98

Huang et al. Journal of Hematology & Oncology

S1uaW Aoeindoe ybiy Aiqgl

[9€]  -aunbaijedsiuyda) [enuew ybiy - -onpoudal ybiy Al (00001-0001) YBIH YDd tpbuay |in4 19doig 810t Zbas-z11enp
SUE Aujgnp

[o7]  -aunbaijediuyoa) fenuew ybiy - -oidai ybiy pue Ayanisuss ybiy (00Z-1) MmO 4Dd yibusy N4 SOV4 €£10¢ bas-z1enp
AJjiqels pue Ay
-AIISUSS Ybiy bas-|lamoniy ueyy
sio1esado pa||s ndybnoiyi Jaybly pue sai

(€G] saunbai SOV 'seiq € JOo 9dusald -odouiw o uoneziiin JaybiH - (00001-0001) Y6IH d0d £ SOv4 020C  ¢bas-|emoniny
si01e1ado pa)||s Aujenb Bupuanbas

(¢S] saunbaisov4iseiq g joadussald  ybiy 150> moj indybnoiy ybiH  (00001-0001) YBIH 4Dd £ SOV4 810¢ bas-|lemonIN
a1es ainyded 1dudsuely ybiy

ez '0¢] SISA 192 1UBIPYaU| “Aseindoe pue Ayaisuss ybiH (00Z-001) MmO YDd ybua| |In4 uone|ndiuewonIN  /10¢ bas-01vIN
sdais sayid
-Wis pue seiq bujidwes sazjwiuiw
usw  bas-syyN yum patedwod ssiou

[v¥] -auinbai [es1uyday [enuew ybiH punoibyoeq paonpai Apeasn  (00001-0001) YPIH  uondudsues) oiA U £ SOV4 610¢ Zbas-SyyiN
Aupgpnp
usw -oudas yby ‘siouss buljsge| pue

[1¥] -aJinbai [ed1uYd3) [enuew YbIH seiq uopedyljduwe pasnpay uelpaly  uondudsuesy OIlA Ul < SOV #1027 bas-gywIN
ssadold
Aouspuyye  pauldwis sanjigeded aunyded |9

7€) 21mded |92 moj ApWwaix3  Buois 1502 mol andybnoiyy ybiH  (00001-0001) YybiH  uondudsuesy o1iA Uj £ 19idoig sloz doiqui
¢bas-1ews 01
SIENY] paJeduwlod awil} uo-spuey

[co]  -aunbaijediuyda) enuew YbiH  pasnpai pue ANARIsuSs paseaidul  (00001-0001) Y6IH ¥Dd yibuay (In4 SOV4  Ceot bas-HSv 14
paulelqo
AUADISUSS MO| pue  Ajisea s| uswdinba ‘uonedyidule

le€] Adusidyye ainided yNYw Mo 15y 11500 mo| andybnoayi ybiH - (00001-0001) YBIH ¥2d £ 19|doig §10¢ bas-doig
so|dwes

g7l Bulwnsuod-auwl} pue aAisuadx3y x3dwo2 Jo siskjeue 10211 (00001L—-0001) YbIH YOd Ks wiiope|d ||PMODIN - §10T bas-01/)

payiduse Ajjen

-uaJayaid aie sydudsuer) aduep 1ndul uo-spuey

[ce]  -unge-ybiy‘aduaispid ¢ buong MOJ 150D MO| !AAIISUSS UYBIH (00Z-1) mo7  uondudsuel} oA U £ SOV4 9l0C ¢bas13D
uonedy
syduosuely uolssaidxa moj 1oy A -jjdwie 8yl 4oy | A 95N 01 poLIaW

[LE]  -AIISUSS padnpal /AduadLyyd Mo 1siy ‘Adeindde pue Apypads ybiy (00Z—1) MO uondudsuen OIA U K uonejndiuewoniyy 71027 bas13H

uolewlojul

y1bus|-j|ny uou uswdinba Aouapyya ainded ybiy-eiyn
[eruRWIIRdXD Pazieads ‘syusw 9]2A2 UoPNIISUOD Alelq]| 1oYS
-alinbai aidwes ybiy ‘uononiis XN[4 {192 YbIy 93N JO 35e3 ‘||om

[sg]  -uod Aeiqi YNQ 4oy sdaas Auepy 5|19 saynuapl andybnoiyl ybiH (00001 <) Ybiy A1sp 4Dd Glo ¢ 1doig /107 SOIUIOUSD) -X( |

S3DUIRYBY sabejueapesiq sabejuenpy indybnouy] uonedyidwe Aieiqr] abessnod susn  uone|osi [|93-3]6ulS  JeIA ABojouydal

swojie|d pue saibojouydal bas-yNyIs Juenodull Jo Alewuuns | ajqeL



Page 5 of 48

(2023) 16:98

Huang et al. Journal of Hematology & Oncology

19PNU PaXy pue
5|19 paxy 10} 3|ge1NS ‘UOIIL|oS|
|92 104 Pa3U OU ‘syusWIRIIND3Y

[s] sauab ybnoua JoN  1uswidinbs [ewiulw pue 150> MOT  (000°01 <) Ybiy A1ap YOd < Buipooieg nus uj 8107 bas-11ds
1ndybnoiyy Jejnj|ad asealoul pue
sjusw 95N 1usbeas adnpai Ajjernuels
-a1inbai jeojuyday jenuewl ybly  -gns 03 |0d010id £bas-1ews ayy
[09]  Apwanxa Buixadinw Ajies oN SOUI|UWBIIS PUB SUSLOYS  (00001—0001) YbIH YOd yibusy N4 SOV4 20z ssaldxgbas-1ews
UOIIN|0S3J WIOJOS! 18 SIS
SusW  -Ajeue yYNY 9A1103}49-150D sapiaoid
-a1inbai jed1uyay jenuew ybiy 7bas-1YyINS ueyi indybnoayy
[65]  APpwanxe Buixsidinw Aies oN - J2ybly pue SAIISUSS 310w YN (000L-001) UBIPSA 4Dd ybua| |in4 SOV4 020 €bas- 1 4vING
suonejndod |92 aiel JO SisAjeue
'35]0U MO| pue AlljIgelieA Moy ‘seiq
SyUsWaliNbal [eD1UYd3) uopedyldwe moj ‘uopnezijensia
|enuew ybiy Alpwaiixs ‘Aljignp ainided ||92 'abesanod uonduos
[87] -oidas moj Buixardninwi Aies oN - -ueir1aybiy pue Auanisuss 1oybiH - (0001-001) UBIPIN ¥2d yibuay |In4 SOV4 €107 Zbas-14vINS
sbeIaM0D peal
pue ndybnoliyy payiu|
Va4 SERIITEN ey abesan0d Y1bual-|ng (00Z-1) Mo 40d yibuay n4 SOvd4 ¢loc bas-1YVING
[05]  seiq, € 4o 9duasaid lyNJD Hoys Anapy-yby andybnoiyi-ybiH  (000'0L <) ybiy A1sp ¥Dd £ wJofied [|PmODIN - 00T ¢S [19M-bas
a1nided awoy
-dudsues) pue SISA| |92 Jua1dL
8] Aoua1pyya ainyded (195 Mo 1502-M0| ‘9|qeniod ‘asn-01-Ase3  (00001-0001) YPIH 40d € wilopeld ||PmoIN - /10T [I9M-b3as
SOIWOUSD X 0| YHM
paJeduwod a1el uo1da19p duUab JUSWIea.] dlewW
padnpail ‘a|ge|leA. A|eIIsw  -AZUS INOYIM SINSSI YSS4) WOy
-Wod J0U SI s06110 dy1Dads yum AD31Ip Pa10eIIXS BJP [3PNU
[9€7 ‘95] papeo| swosodsuel} Gu| 1502 Jamo| andybnoiyy .sybiH  (000°01 <) ybiy A1ap 4Dd Ks Bulpodleq nis Ul 6102 €bas-yNY-12S
pauyap Abaul
[¥S] 9 10uURd sadAy |92 aWOS  YNY 4O uoieginuad paziWiulA- (00001 <) Ybiy Ao ¥Dd £ Buipodieq nus u /107 bas-¥Ny-1>S
uon
-njosal ybiy ‘buiusaids bnip 1oy
‘el K19 1ndybnoiya ybiy A1da9-150d
[S€7'/G]  -AOD31 ||92 MOJ /|12 Jad S|NN MO ‘wiopield xadiinw A|RAISseN - (000°0L <) YbIy A1ap YDd £ Buipodieg Nis Ul 6107 X3|d-12S
bas-yNY2s paseq-doip yim
paJjeduwlod 1ndybnoiyy Jamo| pue bas-NvDS ueyi sadesayd yonw
[99] SAIsUSdxa 210w APAneRY  AuAISUSS pue Indybnoiyi ybiH - (0000L—-0001) YOIH ¥Dd yibuay |In4 SOV4 €20 Zbas-NvDS
‘Bul
-duanbas a1odoue Jo a1eJ JouD
[59]  ubiy 150> ybiy Indybnoiyy moT Aseindoe pue Ay (00Z-1) MO ¥d ybuay |In4 uonniia  0coz bas-NvDS
S3DUIDYDY sabejueapesiq sabejuenpy indybnoay] uonedyidwe Aieiqi] abeissnodausn  uonejos [|93-9|6uls  Jes) ABojouydal

(panunuod) L ajqey



Page 6 of 48

(2023) 16:98

Huang et al. Journal of Hematology & Oncology

sauljadid sisAjeue eyep
paz||e1>ads JO uoileald pue ‘(suol
-D3110D Y21 $31R1ISSII3U YDIYM)

sadA1 ajdwies jje yum ajqned
-W0D '9A1129)9-1502 Indybnouyy
ybiy yum ‘abeianod awoiduds
-uesy Yibus|-|ny ‘AUARISUSS

yb1y sauiquiod 1eyi Abojouydal

soipiny
-o101w 13|dolp pue

[89 /9] $195e1ep 13410 Yim uoneibaiu| Buipuanbas |93-6uls Aluo 2yl (00001-0001) Y6IH d0d yibuay (In4 Sieullo) paseq-aleld  ¢cOC bas-ySvA
UO[RUIWLIRIUOD
-SS0.4D PaDONPaI ‘DWW B 18 S||90
uonedy 9|buls JualayIp Auew Apnis o}
[£€]  -lidwe yDd Jeauljuou ‘saseiq YDd pasn oq ued ojgexa(diniy- (0001-001) UeIPIW 4Dd .S SOv4 LL0T bas-141S
S3dUIRYBY sabejueapesiq sabejuenpy indybnouay] uonedyidwe Aieiqr] abessnod suan  uone|osi [|9>-3]6ulIS  JeI) ABojouydal

(PanuNUOd) | 3jqey



Huang et al. Journal of Hematology & Oncology (2023) 16:98

Page 7 of 48

10"
scifRN‘\fseq3
% 106' sci—Plex
—_ L]
g
- SPLiT-seq Microwell-seq2.0
3 10° ° 9 Gene coverage
(é SC|—RN.A—seq § VASA-seq e Full-length
o o SERRES L4 ® Tag-based
2 Drop=seq 1xGenomics MARS-seq2 ST BT 9
o 10% Cyto-seq @ ° o GRgER
2 inDrop Seq-Well Microwell-seq SCAN-seq2 Cost
c
8 MARS-seq @ PS PY e e $
£ 10°4 Quartz-seq2 P FLASH-seq ® §$
E Smart-seq3 . $$$
8 STRT-seq Smart-seq2 MATQ-seq @ 9553
E 10 @ 55353
E Quartz CEL 2
uartz-seq -seq
>_“§ CEL-seq . SCAN-seq
= 101
Tang protocol SOE(-EE]
0
10

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Date of publication

Fig. 2 Timeline and throughput of various scRNA-seq methods. Scatterplot depicts the published date and throughput of sequencing for each
technology. The color indicates the different gene coverage. Size indicates the cost per sequenced cell of scRNA-seq methods

is associated with higher experimental costs. When the
sample is abundant, Drop-seq can be more cost-effi-
cient. In contrast, when the detection of low-abundance
transcripts is optional, or a custom protocol is desired,
inDrop becomes a better choice. As a more mature com-
mercialized system, 10 X Genomics generally requires less
time, has higher molecular sensitivity and precision, and
is accompanied by less technical noise. By rule of thumb,
10X Genomics is currently a safe choice for most applica-
tions and has been used in cancer research most widely.
However, these techniques can only identify the 3" or 5'
end sequence of transcripts and have a limited depth of
sequencing.

Seq-Well and Seq-Well S3

Seq-Well resembles its predecessor Drop-seq but sur-
passes it. Using similar chemistry but without droplets,
cells are efficiently loaded by gravity into picowells where
single cells and uniquely barcoded poly(dT) mRNA beads
are co-confined with a semipermeable membrane, which
reduces the need for peripheral equipment, decreases
dead volumes and facilitates parallelization [48, 49].
Seq-Well overcomes key cost, portability, and scalability
limitations associated with reverse-emulsion droplets-
based cell capture and barcoding methods like Drop-seq
by combining the throughput and cost-effectiveness of
Drop-seq with the simplicity and sampling efficiency of
picowells [49]. High-throughput scRNA-seq methodolo-
gies recover less information per cell than low-through-
put strategies. To achieve the goal of both high fidelity
and high throughput, this research team created Seq-Well

S3 (“Second-Strand Synthesis”), which incorporates a
second-strand-synthesis step after reverse transcription
to add a second PCR priming site [50]. This modifica-
tion allows for the recovery of cDNA that is reverse tran-
scribed but for which the template switch reaction failed.
Seq-Well S? increases the efficiency of transcript capture
and gene detection compared with Seq-Well by up to 10-
and fivefold, respectively. However, a limitation of Seq-
Well S? is that the size of the cDNAs after second-strand
synthesis was shorter than that obtained in Seq-Well or
Drop-seq, which decreases the utility of Seq-Well S* for
certain downstream applications that seek information
from full-length transcripts or their 5" ends.

Microwell-seq and Microwell-seq2.0

Microwell-seq uses agarose microarray to trap individ-
ual cells and fabrication of the agarose microarray is a
high-throughput, convenient, and low-cost scRNA-seq
platform with advantages of low batch effects and high
cell-type compatibility [51, 52]. It can capture 5-10 thou-
sand individual cells by agarose plates with 10° microw-
ells in a single experiment [45]. Microwell-seq produces
high-fidelity single-cell libraries with no more than 1.2%
cell doublets. Approximately 6,500 genes and 55,000
transcripts can be detected by saturated sequencing [52].
Microwell-Seq contributes to cellular hierarchy construc-
tion and clonal heterogeneity deciphering in normal
bone marrow and acute myeloid leukemia [7]. Combin-
ing in-cell RT and Microwell-seq, Chen et al. established
Microwell-seq2.0 for cost-effective and high-throughput
screening (HTS) with single-cell transcriptional profiling
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[53]. Compared with Microwell-seq, Microwell-seq2.0
has a higher sensitivity, speeds up the process, and dras-
tically reduces the cost. An agarose plate of Microw-
ell-seq2.0 with 70,000 wells can contain up to 700,000
individual cells in a single experiment, which tremen-
dously improves the throughput. This method may pave
the way for a more cost-effective multi-dimensional and
high-throughput drug screening assay.

Series of sci-RNA-seq, SPLiT-seq and sci-Plex

Instead of isolating single cells within physical compart-
ments, single-cell combinational indexing RNA sequenc-
ing (sci-RNA-seq) in 2017 was successively developed
using a two-step combinatorial indexing strategy, a
method using split-pool barcoding of nucleic acids to
uniquely label a large number of single molecules or
single cells [54]. The sci-RNA-seq can generate ~4x 10*
single-cell transcriptomes in one experiment through
a library construction completed by a single person in
2 days, for $0.03 to $0.20 per cell. Later, a similar method,
split-pool ligation-based transcriptome sequencing
(SPLiT-seq), was developed, which requires four rounds
of split-pool barcoding [55]. Like sci-RNA-seq, it does
not require additional pretreatment and uses its cells
as a compartment for subsequent sequencing opera-
tions. This method enables transcriptional profiling of
hundreds of thousands of fixed cells or nuclei in a single
experiment using only basic laboratory equipment with
a library preparation cost of ~$0.01 per cell. In addition,
the quality of scRNA-seq data obtained was similar to
that obtained with Drop-seq and inDrop [14]. In 2019,
Cao et al. [56] proposed sci-RNA-seq3 by optimizing
their previously established sci-RNA-seq through four
aspects of nuclei extraction, the third level of indexing,
individual enzymatic reactions, and cell sorting. This
method profiled the transcriptomes of around 2 mil-
lion cells derived from 61 embryos staged between 9.5
and 13.5 days of gestation in a single experiment. The
library preparation can be completed through the inten-
sive effort of a single researcher in one week at a cost
of less than $0.01 per cell. In 2020, Srivatsan et al. [57]
introduced a new sample labeling (hashing) strategy that
relied on labeling nuclei with unmodified single-stranded
DNA oligos. They combined nuclear hashing and sci-
RNA-seq into a single workflow for multiplex transcrip-
tomics in a process called “sci-Plex” They applied sci-Plex
to screen three cancer cell lines exposed to 188 com-
pounds and profiled ~ 650,000 single-cell transcriptomes
across ~5000 independent samples in one experiment.
The ease and low cost of oligo hashing, coupled with the
flexibility and exponential scalability of single-cell com-
binatorial indexing, would facilitate the goal of a com-
prehensive, high-resolution atlas of cellular responses to
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pharmacologic perturbations. In summary, these meth-
ods have high cell labeling efficiencies and can drastically
reduce the cost of library preparation. However, the oper-
ations of these methods are tedious and cell fixation will
result in the loss of transcripts and impaired sensitivity.

Full-length methods

Compared to methods only capturing and sequenc-
ing the 3' or 5' ends of the cDNAs, protocols capable of
full-length transcription are more suitable for alternative
splicing pattern analyses, allelic expression detection,
and RNA editing identification owing to their superior-
ity of transcript coverage [58]. The full-length scRNA-seq
methods represented by Smart-seq2 are also widely used
in tumor research.

Series of Smart-seq and FLASH-seq

The series of Smart-seq are full-length and plate-based
scRNA-seq methods and evolve continually. Smart-seq
published by Ramskold et al. in 2012 became the first to
apply to tumor cells to identify distinct gene expression
patterns [27]. This method has been further refined to
develop Smart-seq2, Smart-seq3, and Smart-seq3xpress
techniques by the research group. Smart-seq2 improves
throughput, sensitivity, accuracy, and full-length cover-
age, and reduces cost by refining reverse transcription,
template switching, and preamplification [28]. With these
improvements, Smart-seq2 is suitable for discovering
variable splicing events and allele-specific expression.
Smart-seq2 has been seen as the gold standard method of
scRNA-seq and has been used in various cancer research.
Smart-seq3 combines full-length transcriptome cover-
age with a 5 UMI RNA counting strategy that enables in
silico reconstruction of thousands of RNA molecules per
cell [59]. Smart-seq3 greatly increases sensitivity com-
pared to Smart-seq2, typically detecting thousands more
transcripts per cell. Moreover, this method costs about
€0.5—€1 per sequencing-ready cell library in 384-well
plates with moderate cellular throughput. In this way,
Smart-seq3 can count RNAs at allele and isoform resolu-
tion for large-scale applications across cells. High cellu-
lar throughputs usually sacrifice full-transcript coverage
and sensitivity. Smart-seq3xpress which miniaturizes and
streamlines the Smart-seq3 protocol reduces the mate-
rial and resources needed to construct Smart-seq3xpress
single-cell libraries by ten-fold and increases cellular
throughput [60]. The sequencing-ready libraries can be
generated in a single workday. Therefore, high-sensitivity
Smart-seq3xpress with isoform-specific and allele-spe-
cific resolution can, for the first time, be performed at a
scale suitable for large-scale cell atlas building. Building
upon the existing Smart-seq2/3 workflows, Hahaut et al.
developed FLASH-seq (FS), a new full-length scRNA-seq
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method capable of detecting a significantly higher num-
ber of genes than previous versions, requiring limited
hands-on time (~ 4.5 h) and with a great potential for cus-
tomization [61, 62]. Based on FS, this group constructed
another two protocols: FLASH-seq low-amplification
(FS-LA) and FLASH-seq with UMIs (FS-UMI). FS-LA
protocol is cheaper than FS and requires<1 h of hands-
on time without sacrificing performance. FS-UMI builds
upon the same principle as Smart-seq3 and introduces
UMISs for molecule counting and isoform reconstruction.
The newly designed template-switching oligonucleotide
(TSO) contains a 5-bp spacer, which allows the genera-
tion of high-quality data while minimizing the number
of strand-invasion artifacts. The cost of per cell is lower
than other commercial and noncommercial methods and
comparable to Smart-seq3 (<$1). FS has the potential to
become the tool of choice when looking for an efficient,
robust, modular, affordable, and automation-friendly
full-length scRNA-seq protocol. However, a common
limitation shared among Smart-seq2/3 and FLASH-seq
is that all use an oligo dT-based strategy for priming
exclusively polyadenylated RNAs, thus neglecting other
potentially relevant RNA species such as microRNAs
(miRNAs), piwi-interacting RNAs (piRNAs), and non-
polyadenylated long non-coding RNAs (IncRNAs) [61].

Quartz-seq and Quartz-seq2

To comprehensively and quantitatively detect gene
expression heterogeneity, another full-length scRNA-seq
approach termed Quartz-Seq was developed immedi-
ately after Smart-seq in 2013 [26]. Quartz-Seq is a simple,
sensitive, reproducible, and highly quantitative scRNA-
seq approach. By optimizing the five steps of single-cell
collection, cell barcoding, the pooling of cell-barcoded
c¢DNA, whole-transcript amplification, and library prepa-
ration, a higher throughput Quartz-Seq2 was developed
[36]. It can analyze cells numbering up to 1536 that are
pooled together in a single sample and effectively uses
limited sequence reads. In a study, the researchers inves-
tigated the ability of the 13 scRNA-seq methods to draw
cell maps from six aspects: genetic detection, marker
expression, clusterability, mappability, clusterability
(integrated), and mixability. The findings revealed that
the Quartz Seq2 method outperformed other schemes,
including 10X Genomics and Smart-seq2, exhibiting the
highest benchmarking score and thus demonstrating
superior accuracy [63].

SCAN-seq and SCAN-seq2

There are still many questions that cannot be addressed
by them due to the short read lengths of next-generation
sequencing (NGS) platform-based scRNA-seq. Further
development of long-read RNA sequencing, known as
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third-generation sequencing, can be used to generate
full-length ¢cDNA transcripts with a minimum number
of false-positive splice sites and capture great diversity
of transcript isoforms [64]. Fan et al. [65] developed a
novel scRNA-seq technology based on third-generation
sequencing (TGS) platform (single-cell amplification and
sequencing of full-length RNAs by Nanopore platform,
SCAN-seq). SCAN-seq exhibits high sensitivity and
accuracy comparable to NGS platform-based scRNA-
seq methods. Recently, the research group refine SCAN-
seq to develop SCAN-seq2, especially on throughput
and cost [66]. SCAN-seq2 can sequence up to 3072 sin-
gle cells for one sequencing run and the cost of an indi-
vidual cell is reduced to about $3 for a sequencing run
of 960 cells, which is 20 times cheaper than SCAN-seq
(about $60 for each cell). Compared with other published
scRNA-seq methods based on the TGS platform, SCAN-
seq2 also exhibits high throughput and high sensitivity
simultaneously. SCAN-seq2 proves to be a new promis-
ing tool for single-cell full-length transcriptome research,
which can be used to study different biological systems
at single-cell and individual RNA isoform resolution
and help understand the complex mechanisms of many
diseases.

VASA-seq

The majority of techniques used for single-cell tran-
scriptome sequencing focus on amplifying the termini
of polyadenylated transcripts, resulting in a limited
representation of the entire cellular transcriptome.
This limitation poses challenges in detecting various
types of transcripts, such as long non-coding, short
non-coding, and non-polyadenylated protein-coding
transcripts, and hinders alternative splicing analy-
sis. To address this issue, Salmen et al. [67] developed
a full-length VASA-seq method that allows for the
detection of complete transcriptomic atlases in single
cells, including alternative splicing and non-coding
transcripts in single cells, which is enabled by frag-
menting and tailing all RNA molecules subsequent to
cell lysis. The method is compatible with both plate-
based formats and droplet microfluidics. Additionally,
the reduction in reagent expenses resulting from the
downsizing of droplets and the elimination of depend-
ence on commercially available kits in the VASA-drop
methodology will facilitate cost-effective, extensive
transcriptomic profiling on a large scale. This profil-
ing can be achieved at an approximate cost of $0.11
per cell for libraries ready for sequencing. The VASA-
plate method incurs a library preparation cost of $0.98.
However, the routine implementation of VASA-seq is
impeded by various practical challenges. These chal-
lenges include the need to expand the coverage of
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RNA molecules, such as miRNAs, achieving a balance
between the length of poly(A) tails and RNA frag-
ments, optimizing steps for ribosomal RNA depletion,
estimating splicing node inclusion rates in situations
of low coverage per cell, integrating with other data-
sets requiring batch corrections, and developing spe-
cialized data analysis pipelines [68]. In conclusion, it
can be stated that VASA-seq remains the sole technol-
ogy that effectively integrates exceptional sensitivity,
comprehensive coverage of total RNA, and efficient
high throughput. Furthermore, it is anticipated that
VASA-seq will offer further analytical perspectives
by incorporating gene regulation and splicing pattern
localizations across various tissues. [67, 68].

Spatially resolved transcriptomics

Recently, methods for spatially resolved transcrip-
tomics (SRT) are developed by integrating scRNA-
seq with cellular locations for generating tissue-wide
landscapes of single-cell transcriptomes and identify-
ing cellular composition and molecular architecture
within the tissues, which could overcome the limita-
tion of loss of spatial and morphologic information
among the cataloged populations of cells [24, 48, 49]. It
has also been applied to dissect the spatial heterogene-
ity of human liver cancer [50], breast cancer [51-53],
glioblastoma [54], colorectal cancer (CRC) [55], and
ovarian cancer [56].
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Applications of scRNA-seq in human cancer
biology

In human cancer research, scRNA-seq has been widely
used to study heterogeneity, the TME, gene expression
profiles, transcriptome profiles, and cell-cell interactions,
and other biology related to cancer research (Fig. 3).
The applications of scRNA-seq in cancer research are
explored and discussed in this section.

Dissecting tumor heterogeneity

Tumor heterogeneity, including intertumor (tumor by
tumor) and intratumor (within a tumor) heterogeneity
(ITH), is a key characteristic of malignant tumors and a
significant obstacle in cancer treatment and research [69,
70]. Recognizing tumor heterogeneity is key for further
understanding and treating cancers. Almost all single-cell
studies of cancer have focused on or studied tumor het-
erogeneity. Dissecting tumor heterogeneity with scRNA-
seq has been used to facilitate cancer diagnosis [71] and
prognosis prediction [72], increase the understanding
of disease progression and cancer metastasis [73, 74],
and guide therapy [75] (Table 2). Recently, to deepen
the understanding of tumor heterogeneity, single-cell
sequencing technologies are often combined with other
technologies, such as single-cell genomics, single-cell
proteomics, single-cell epigenomics, etc. Other spatial
omics, such as spatial transcriptomics, spatial proteom-
ics, and spatial metabolomics have or will be combined
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Table 2 Key findings related to tumor heterogeneity among various tumors using scRNA-seq
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Tumor

Year Species Protocol

Accession number (custom
database if available)

Key findings

References

Lung cancer

Gastric cancer

Liver cancer

Esophageal cancer

2020 Human 10xGenomics

2020 Human  Smart-seq2

2022 Human STRT-seq

2020 Human 10xGenomics

2021 Human 10xGenomics

2021 Human 10xGenomics

2022 Human Seg-Well $3

2022 Human 10xGenomics

EGADO00001005054

NCBI BioProject #PRINA591860

HRA000270

PRJEB40416

EGAS00001004443

HRA000051

GSE186975

GSE196756

Identified a cancer cell subtype
deviating from the normal dif-
ferentiation trajectory and domi-
nating the metastatic stage,

and revealed potential diag-
nostic and therapeutic targets

in cancer-microenvironment
interactions

Identified that individual
tumors and cancer cells exhibit
substantial molecular diversity
and that tumor microenviron-
ment cells exhibit marked
therapy-induced plasticity

Provided novel insights

into the tumor heterogeneity
of NSCLC in terms of the identi-
fication of prevalent mixed-lin-
eage subpopulations of cancer
cells with combined SCC, ADC,
and NET signatures and offered
clues for potential treatment
strategies in these patients

Highlighted response heteroge-
neity within MSI-H gastric can-
cer treated with pembrolizumab
monotherapy; supported

the potential of extended
baseline and early on-treatment
biomarker analyses to identify
responders

The links between tumor cell
lineage/state and ITH were
illustrated at the transcriptome,
genotype, molecular, and phe-
notype levels

A panel of differentiation-related
genes revealed large differ-
ences in differentiation degree
within and between tumors

Identified five hepatoblastoma
tumor signatures that may
account for the tumor hetero-
geneity observed in this disease,
and used patient-derived
hepatoblastoma spheroid
cultures to predict differential
responses to treatment based
on the transcriptomic signature
of each tumor

Revealed intratumoral and inter-
tumoral epithelium heterogene-
ity and tremendous differences
between the tumor and normal
epithelium. Epithelium cells

and myeloid cells had more fre-
quent cell-cell communication
than epithelium cells and T cells

[156]

[157]

[158]

[237]

[238]
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Tumor

Year

Species

Protocol

Accession number (custom
database if available)

Key findings

References

Melanoma

Acute lymphoblastic leukemia

Diffuse large B cell lymphoma

Primary central nervous system
lymphoma

B-cell ymphoma

Cutaneous T cell ymphoma

2021

2016

2020

2021

2020

2022

2022

2021

2020

2018

2019

Human

Human

Human

Human

Human

Human

Human

Human

Human

Human

Human

10x Genomics

Smart-seq?2

10x Genomics

10x Genomics

10x Genomics

10x Genomics

10x Genomics

10x Genomics

10x Genomics

BD Precise assay

10x Genomics

PRINA777911

DUOS-000002; GSE72056

GSE139829

GSE138665

GSE132509

CNGBdb: CNP0001940

https://heidata.uniheidelberg.de

GEO: GSE181304

https://heidata.uni-heidelberg.
de

Correspondence with authors

GSE128531

Uncovered heterogeneity

in most cell types of the ESCC
stroma, particularly in the fibro-
blast and immune cell compart-
ments

Malignant cells within the same
tumor displayed heterogeneity
in the transcription of proteins
related to the cell cycle, spatial
context, and drug resistance
program

Analysis of tumor cells revealed
previously unappreciated
subclonal genomic complexity
and transcriptional states

Uncovered intratumoral
heterogeneity at the genome
and transcriptome level

The predicted develop-

mental states of cancer cells
were inversely correlated

with the expression levels

of ribosomal protein, which
could be a common contributor
to intraindividual heterogeneity
in childhood ALL patients

High intratumor and intertumor
heterogeneity was identified
in DLBCL

Provided an in-depth dissection
of the transcriptional features

of malignant B cells and the TME
in DLBCL and new insights

into DLBCL heterogeneity

Different subtypes of T cells
and DCs showed significant
heterogeneity

Malignant subpopula-

tions from the same patient
responded strikingly differently
to anticancer drugs ex vivo,
highlighting the relevance

of intratumor heterogeneity
for personalized cancer therapy

Patients with SS displayed a high
degree of single-cell heteroge-
neity within the malignant T-cell
population, and the distinct
subpopulation of malignant T
cells exhibited HDACi resistance

Provided an unprecedented
view of lymphocyte heteroge-
neity and identifying tumor-
specific molecular signatures,
with important implications
for diagnosis and personalized
disease treatment

(86]

[239]

(85]

[241]

[76]
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Tumor Year Species Protocol

Accession number (custom

Key findings References

database if available)

2021 Human 10xGenomics

2022 Human 10xGenomics

Subcutaneous panniculitis-like T 2021 Human 10X Genomics

cell lymphoma

GSE171811

GSA-Human: HRA000166

GSA-Human: HRA000370

Striking subclonal molecular [242]
heterogeneity was observed
within clonal malignant

T-cell populations in the skin
and blood of patients

with leukemic CTCL. The
tissue microenvironment
influenced the transcriptional
state of malignant T cells, likely
contributing to the evolution
of malignant clones

Revealed the intratumor [78]
and interlesion diversity

of CTCL patients, proposed

a multistep tumor evolution

model that further established

anovel subtype, the Teygy

group with a cytotoxic effector
memory T-cell phenotype,

and identified increased M2
macrophage infiltration

Provided insights into the het-
erogeneity of subcutaneous
panniculitis-like T-cell lym-
phoma, as well as a better
understanding of the transcrip-
tion characteristics and immune
microenvironment of this rare
tumor

[208]

with the scRNA-seq to deepen and broaden our under-
standing of tumor heterogeneity.

Buus et al. [76] used scRNA-seq and multicolor flow
cytometry to analyze samples from 7 patients with Sézary
syndrome (SS) and showed that these patients displayed
a high degree of single-cell heterogeneity within the
malignant T-cell population. Malignant T cells could be
divided into distinct subpopulations based on heteroge-
neous surface marker expression and mRNA expression,
and when treated with a histone deacetylase inhibitor
(HDAC:), some specific subpopulations were significantly
reduced; however, the remaining subpopulations were
largely unaffected. Gaydosik et al. [77] not only revealed
intertumor T lymphocyte heterogeneity in cutaneous
T-cell lymphoma (CTCL) skin tumors but also found that
tumor-infiltrating CD8" T lymphocytes exhibited het-
erogeneity in effector and exhaustion programs across
patients, which provided an unprecedented view of lym-
phocyte heterogeneity in individual CTCL patients. Liu
et al. [78] revealed intratumor and intertumor heteroge-
neity in the transcription and function of malignant T
cells, and the activation/proliferation program profiles of
malignant T cells in each patient identified with scRNA-
seq analysis and TCR profiling were associated with the
intratumor and intertumor heterogeneity of CTCL.

Heo et al. [79] employed scRNA-seq analysis in an
in vitro model of ceritinib-resistant non-small cell lung
cancer (NSCLC) to identify upregulation of cytidine
deaminase (CDA) as a primary characteristic of ana-
plastic lymphoma kinase (ALK) inhibitor resistance.
Additionally, the authors utilized single-cell Assay for
Transposase-Accessible Chromatin using sequencing
(scATAC-seq) to demonstrate that cells with acquired
resistance may exhibit an open chromatin structure
in the promoter and enhancer regions of CDA, poten-
tially facilitated by DNA demethylation. Transcription
factors such as TEAD1, SMAD3, and FOXM1 may be
recruited to the regulatory region to induce overex-
pression of CDA, which promotes acquired resistance
to ALK inhibitors. This study reveals the unexpected
epigenetic heterogeneity and targeting CDA metabo-
lism using epigenome-related nucleosides represents a
potential new therapeutic strategy for overcoming ALK
inhibitor resistance in NSCLC. Zhang et al. [80] per-
formed a scRNA-seq analysis of tumor cells and identi-
fied five cell subgroups with distinct expression profiles
in primary gastric adenocarcinoma (GAC). A panel of
differentiation-related genes reveals a high diversity of
differentiation degrees within and between tumors, and
low differentiation degrees can predict poor prognosis
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in GAC, which offers valuable resources for deciphering
gastric tumor heterogeneity and will provide assistance
for precision diagnosis and prognosis.

In multiscale analyses using scRNA-seq of six different
primary uveal melanomas, Pandiani et al. [81] uncov-
ered an intratumoral heterogeneity at the genomic and
transcriptomic levels. They deciphered a gene regula-
tory network underlying an invasive and poor progno-
sis state driven in part by the transcription factor HES6,
which is a valid target to stop uveal melanoma progres-
sion. To dissect the cellular and molecular basis underly-
ing hepatoblastoma (HB) oncogenesis and heterogeneity
at the single-cell level, single-cell transcriptome profil-
ing of tumor and paired distal liver tissue samples from
five patients with hepatoblastoma was performed [82].
Seven distinct tumor cell subpopulations were annotated,
and an effective three-level hepatoblastoma subtyping
method was established based on their compositions.
Facilitates chromatin transcription (FACT) inhibition
could be a promising epigenetic-targeted therapeutic
strategy against the CSC-like HB1-Pro-likel subpopula-
tion and its related high-risk “Pro-likel” subtype of HB.

In addition to the heterogeneity of tumor cells in can-
cers, nontumor cells also exhibit high heterogeneity.
Presumably, tumor immune microenvironment (TIME)
heterogeneity is largely derived from tumor heteroge-
neity and, in turn, influences cancer cell behaviors and
clinical outcomes [83, 84]. Chen et al. [83] compared the
TIME heterogeneity between gastric signet-ring cell car-
cinoma (GSRCC) and non-GSRCC by scRNA-seq. They
found that compared to non-GSRCC, the GSRCC TIME
appears to be quiescent, where Treg-FOXP3 and CD8-
Tex are difficult to be mobilized, which further impairs
the proper functions of B cells. Validated by the cytom-
etry by time of flight (CyTOF) results, the decrease of
CD8-Tex in GSRCC conflicted with the anticipation that
the enrichment of this dysfunctional population would
contribute to the worse prognosis of GSRCC. In a study
of primary central nervous system lymphoma (PCNSL),
different subtypes of T cells and dendritic cells (DCs) also
showed significant heterogeneity [85]. Based on specific
gene signatures, the T cells could be reclustered into
four distinct subclusters, the T helper cell group, natural
killer T (NKT)- cell group, MPC cell group, and classical
T-cell group, and the DCs could be redivided into three
subgroups: conventional dendritic cells (cDCs), myeloid
dendritic cells (mDCs), and plasmacytoid dendritic cells
(pDCs). Another scRNA-seq study about esophageal
squamous cell carcinoma (ESCC) uncovered heteroge-
neity in most cell types of the ESCC stroma, particularly
in the fibroblast and immune cell compartments. The
authors revealed that tumor-specific CSTI* myofibro-
blasts were associated with poor prognosis in ESCC [86].
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To investigate the stromal heterogeneity of the TME in
ovarian cancer, a research team used SRT to generate
spatially resolved transcript profiles in treatment-naive
advanced high-grade serous ovarian cancer (HGSOC)
from long-term survivors (LTS) and short-term survi-
vors (STS) [87]. They revealed high levels of intertumor
and intratumor CAF heterogeneity, and novel spatially
resolved CAF-tumor cross-talk signaling networks in
the ovarian TME that are associated with LTS in patients
with advanced HGSOC.

Characterizing the TME

The TME, which comprises cellular and noncellular com-
ponents, plays crucial roles in tumorigenesis, progres-
sion, invasion, metastasis, and drug resistance [7, 88].
Researchers have proposed that the TME might func-
tion as a double-edged sword in promoting or inhibit-
ing tumor growth, which depends on the phase of tumor
progression [89, 90]. Understanding the characteristics of
the TME may help to understand the crosstalk between
the TME and cancer cells and aid the development of
novel strategies for tumor treatment [91]. Hallmark fea-
tures of the TME include immune cells, stromal cells,
blood vessels, and extracellular matrix. Among these
components, immune cells are a critical factor in the
TME and play a key role in tumorigenesis and treatment
response [90, 92]. Characterizing the TME has attracted
more and more researchers and many scRNA-seq studies
have conducted in-depth studies of the TME (Table 3).

Immune cells

Of the immune cells, T cells are most studied by scRNA-
seq analysis. According to gene expression signature
profiling, diverse novel functional subgroups of clas-
sic T cells have been characterized, such as exhausted,
cytotoxic, and immunosuppressive T cells. Aoki et al.
[93] and Durante et al. [94] identified a novel regulatory
T-cell-like immunosuppressive subset of lymphocyte
activation gene 3 (LAG3)* T cells that contribute to the
immune-escape phenotype in classic Hodgkin lymphoma
(CHL) and uveal melanoma (UM), respectively, that may
be a target for immune checkpoint blockade (ICB). Kwon
et al. [95] found that an increase in programmed death
1 (PD-1)TCD8* T cells correlated with durable clini-
cal benefit. In NSCLC, a special “preexhausted” T-cell
cluster was successfully identified, and a high ratio of
preexhausted to exhausted T cells was associated with a
better prognosis [96]. In addition, the study also identi-
fied TNFRSF9' regulatory T cells (Tregs) represented
antigen-specific Tregs. Overall, tumor-infiltrating T cells
might be much more complex than current knowledge
suggests, and exploring functional T-cell clusters might
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provide new insight into the design of immunotherapy
strategies.

Relatively speaking, B cells have been less studied than
T cells. Hu et al. demonstrated that compared with those
in peripheral blood, tumor-infiltrating B-cells have more
mature and memory B-cell-like characteristics, higher
clonality, a higher rate of class switch recombination, and
more somatic hypermutations in breast cancer. Com-
bined analyses suggested local differentiation of infil-
trating memory B cells within breast tumors, and B-cell
subgroups might contribute to immunosurveillance
through various pathways [97].

Tumor-associated macrophages (TAMs), a specific
subpopulation of macrophages, represent a large fraction
of infiltrating immune cells within the TME in human
cancers [98, 99]. An increasing number of scRNA-seq
studies have found that macrophages are transcription-
ally heterogeneous and do not conform to the tradi-
tional binary M1/M2 paradigm in many types of cancers
[100—103]. Tan et al. revealed that TAMs expressed high
levels of TREM2 in following transarterial chemoemboli-
zation (TACE), which played an important role in limit-
ing the functions of CD8" T cells and was associated with
a worse clinical prognosis in hepatocellular carcinoma
(HCC) [104]. You et al. [105] employed scRNA-seq to
construct a single-cell atlas for a total of 23,010 individual
cells from 6 patients with primary or recurrent malignant
glioma and identified 5 cell types, including TAMs and
malignant cells. M2-like TAMs were found to increase in
recurrent malignant glioma significantly and the M2-like
TAMs could activate the PI3K/Akt/HIF-1a/CA9 pathway
in the malignant glioma cells via SPP1-CD44-mediated
intercellular interaction.

Though granulocytes are a major component of the
TME, their function in immunotherapy is still unclear.
In an scRNA-seq study of CRC liver metastasis, IL-17
and the ferroptosis signaling pathway were significantly
enriched in granulocytes, suggesting a potential role
of the IL-17 signaling pathway in CRC liver metastasis.
Abnormal ferroptosis-mediated cell death and Wnt sign-
aling activation-induced neutrophil recruitment were
proposed as causes of the higher levels of tumor-infiltrat-
ing granulocytes in CRC metastasis samples [106].

Stromal cells

Cancer-associated fibroblasts (CAFs) are a major com-
ponent of the tumor stroma and play a critical role
in facilitating crosstalk between cancer cells and the
TME [92]. Increasing evidence has demonstrated that
CAFs do not always exert a tumor-supportive role in
oncogenesis, they may also play a tumor-suppressive
effect that is context-dependent, namely phenotypic
heterogeneity and functional diversity [107]. Many
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scRNA-seq studies have focused on the role of CAFs in
tumor metastasis [108, 109], and their effect on prog-
nosis [86, 110], and CAFs may be potential therapeu-
tic targets. Li et al. [98] found that inflammatory CAFs
(iCAFs) and extracellular matrix CAFs (eCAFs) not
only exhibited enhanced pro-invasive activities but also
mobilized the surrounding immune cells to construct
a tumor-favorable microenvironment in gastric can-
cer. In particular, eCAFs were associated with a shorter
overall survival (OS) time of patients with gastric can-
cer. Another study revealed that matrix cancer-associ-
ated fibroblasts (mCAFs) expressing «a-SMA, vimentin,
COL3A, COL10A, and MMP11 could enhance can-
cer cell invasion in HGSOC [97]. In another scRNA
study, several types of stromal cells were identified in
high-grade serous tubo-ovarian cancer (HGSTOC).
The study showed that the high relative frequency of
myofibroblasts, TGF-B-driven CAFs, mesothelial cells,
and lymphatic endothelial cells could predict poor out-
comes, while high levels of plasma cells correlated with
more favorable outcomes [100]. Guo et al. [101] used
multimodal intersection analysis (MIA) to integrate
scRNA-seq and SRT, and the exact cellular components
of the tumor and stromal regions were annotated in
the three ESCC samples. The results indicated that the
various stromal cell subpopulations were heterogene-
ous. Compared with immune cells, non-immune stro-
mal cells were significantly enriched in the TME. Most
subsets of epithelial cells were enriched in the cancer
regions, while inflammatory CAFs were correlated with
the stromal regions.

Nonhematopoietic cells (NHCs) are closely correlated
with B cells in neoplastic follicles and play a major role
in supporting follicular lymphoma (FL) [111]. Abe et al.
[112] constructed a single-cell transcriptome atlas of
more than 100,000 NHCs collected from 27 human sam-
ples, including 10 FL samples, and revealed 30 distinct
subclusters, including some that were previously unrec-
ognized. The 30 subclusters were composed of 10 sub-
clusters of blood endothelial cells (BECs), 8 subclusters of
lymphatic endothelial cells (LECs), and 12 subclusters of
nonendothelial stromal cells (NESCs). This study identi-
fied that human lymph nodes (LNs) harbor unique NHC
subpopulations that have not been detected in murine
LNs. The authors observed the remodeling of NHC pro-
portions in FL. The proportion of BECs was markedly
increased in FL relative to metastasis-free LNs (MFLNs),
whereas the proportion of LECs was decreased. Moreo-
ver, the proportion of arterial subclusters was increased
in FL BECs. In FL NESCs, the proportion of follicular
dendritic cells (FDCs) was substantially increased. Nota-
bly, the proportion of marginal reticular cells (MRCs) was
also greatly increased in FL, whereas the proportions of
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adventitia stromal cells (SCs), SFRP4-SCs, SFRP2-SCs,
and TNEF-SCs were decreased.

Somatic mutations as well as somatic copy number
alterations (SCNAs) are found in normal colorectal epi-
thelial cells by whole-genome bulk sequencing of normal
colorectal crypts and are considered to be a precancer-
ous phenomenon [113]. However, few studies have been
published on SCNAs of TME cells. Zhou et al. [114] per-
formed scRNA-seq-plus-genomics of 21 patients with
microsatellite-stable CRCs and 6 cancer-free, elderly
individuals. SCNAs are prevalent in immune cells, fibro-
blasts, and endothelial cells in both the TME and the nor-
mal tissues of each individual. Moreover, the proportions
of fibroblasts with SCNAs in tumors are much higher
than those in adjacent normal tissues.

CTCs

Circulating tumor cells (CTCs) are vital components of
liquid biopsies for the diagnosis of residual cancer, moni-
toring of therapy response, and prediction of recurrence
[115]. Transcriptomics of CTCs represents an attractive
opportunity to bridge the knowledge gap and develop
novel biomarkers, and analysis of CTCs collected from
patient blood may provide a new perspective for under-
standing the drug resistance of tumors and reveal a broad
range of targets for use in the field of precision oncol-
ogy [116-118]. Kozuka et al. [119] conducted a study in
which CTCs were collected from metastatic colorectal
cancer (mCRC) patients without relying on any tradi-
tional CTC markers, such as epithelial and mesenchymal
cell antigens, and were subjected to scRNA-seq using
SMART-seq v4. The results showed that mCRC patients
receiving second or later-line treatment who had epi-
thelial-mesenchymal transition (EMT) gene-expressing
CTCs had significantly shorter progression-free survival
(PES) and OS. Another scRNA-seq study also proposed
that CTC enumeration and scRNA-seq analysis might
predict response to therapy in the treatment of mela-
noma patients [120].

CSCs and LSCs

Cancer stem cells (CSCs) have a slow growth rate and are
resistant to chemotherapy and radiotherapy which lead
to the failure of traditional current therapy and have been
recognized as promising therapeutic targets for cancer
therapy [121, 122]. Zheng et al. found that distinct genes
within different CSC subpopulations were independently
associated with HCC prognosis, suggesting that the
diverse hepatic CSC transcriptome is related to intratu-
mor heterogeneity and tumor progression [123]. Another
scRNA-seq study revealed that Yes-associated protein
1 (YAP1) was highly upregulated in peritoneal carcino-
matosis (PC) tumor cells, conferred CSC properties, and
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appeared to function as a metastasis driver. Pharmaco-
logic inhibition of YAP1 specifically reduced CSC-like
properties and suppressed tumor growth in YAP1"" pC
cells, especially in combination with cytotoxic agents in
an in vivo patient-derived xenograft (PDX) model [124].

The inevitable chemotherapy resistance and high
relapse rate of acute myeloid leukemia (AML) are
mainly caused by the persistence of leukemia stem cells
(LSCs). [125]. The identification of the main features of
LSCs may improve diagnosis and treatment [126]. Nal-
dini et al. [127] discriminated LSCs from regenerat-
ing hematopoietic cells and assessed their longitudinal
response to chemotherapy by detecting nucleophosmin 1
(NPM1) mutation or chromosomal monosomy by single-
cell transcriptomic analyses. The researchers provided
evidence for a classical LSC model in NPM1™¢ AML,
where nonresponse/relapse was strongly correlated with
a high proportion of quiescent miR-126"8" LSCs at diag-
nosis. This research provides a framework for stratify-
ing patients based on the presence of miR-126"8" LSC
scRNA-seq data and to identify therapeutic targets for
LSC eradication.

Tumorigenesis and clonal evolution

Tumorigenesis and cancer progression are multistage,
complex, and dynamic evolutionary processes, that result
from diverse gene changes [128]. Genes or cell subclus-
ters that play crucial roles in tumorigenesis and the devel-
opment of tumors have been identified using single-cell
sequencing [91, 129]. By performing an scRNA-seq anal-
ysis of individual patients and potential heat diffusion for
affinity-based trajectory embedding (PHATE) analysis
in combination with scTCRseq and CTCL clonotyping,
Ren et al. [130] identified putative precancerous circulat-
ing populations characterized by an intermediate stage
of gene expression and a mutation level between that of
normal CD4" T cells and malignant CTCL cells. Song
et al. [131] performed scRNA-seq on 16 transformed
CTCL (tCTCL) skin biopsies and identified a core onco-
genic program that malignant T cells exploited to acquire
aggressive behaviors and a survival advantage with trans-
formation. Oxidative phosphorylation (OXPHOS) and
MYC were the top enriched pathways, and their activity
progressively increased as the disease evolved, followed
by EMT/stemness and E2F target genes; downregulation
of MHC I was suggestive of immune escape.

Recent genetic and epigenetic studies of the disease
course of leukemia and other hematological neopla-
sias have provided important insights into the role of
clonal evolution as a driver of tumor initiation, disease
progression, and relapse [132]. Clonal mutations are
shared by all cancer cells, whereas subclonal mutations
are present only in a subset [133]. An scRNA-seq study
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revealed marked expansion of abnormal germinal center
B-cell-like (GCB)-related clusters simultaneously exhib-
iting a cell activation profile like that of light zone (LZ)-
GCB cells and a cell proliferation profile like that of dark
zone (DZ)-GCB cells in both mouse and human angio-
immunoblastic T-cell lymphoma (AITL) samples [134].
These age-related clonal hematopoiesis (ACH)-derived
GCB cells harboring TET2 mutations can independently
undergo clonal evolution and function as microenviron-
mental cells to support AITL tumorigenesis. Tan et al.
[135] cross-analyzed healthy donors, asymptomatic car-
riers, and patients with adult T-cell leukemia/lymphoma
(ATLL) using scRNA-seq and T-cell receptor (TCR)-
seq to determine the seamless transition of naive T cells
into activated T cells and fully understand how HTLV-1
infection controls physiological pathways in T cells and
transforms them into ATLL cells; HTLV-1-infected cells
in an activated state further transformed into ATLL cells,
which were characterized as clonally expanded, highly
activated T cells. The expression of HLA class II genes
in HTLV-1-infected cells was uniquely induced by the
viral protein Tax and further upregulated in ATLL cells.
Functional assays revealed that HTLV-1-infected cells
upregulated HLA class II molecule expression and acted
as tolerogenic antigen-presenting cells to induce anergy
of antigen-specific T cells.

Cell—cell interactions

Tumors are complex ecosystems defined by the interac-
tion between heterogeneous cell types (including malig-
nant, immune, and stromal cells) that communicate by
ligand-receptor interactions, which may play a key role
in the development of cancer and maybe therapy targets
[136, 137]. Cell-cell interactions focus on interactions
between malignant cells and the TME or cells from the
TME [78, 138]. In addition to interactions between tumor
cells and stromal cells, interactions among stromal cells
have also received attention. Abe et al. [112] found that
medullary and adventitial stromal cells had significant
interactions with malignant B cells through CD70-CD27
interaction in FL and proposed stroma-derived CD70 as
a potential biomarker and therapeutic target for FL. In
gastric cancer samples, Li et al. [139] observed enhanced
interactions between endothelial cells and multiple cell
types, including fibroblasts, monocytes, macrophages,
and DCs. The strong interaction between endothelial
cells and fibroblasts implies that fibroblasts are closely
related to tumor angiogenesis and maintenance of the
tumor vasculature.

Immunosurveillance and immune evasion
Immune evasion is a hallmark of cancer [140]. Accord-
ing to the immunosurveillance theory, neoplastic cells
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can progress to generate clinically obvious cancer only if
they escape from the control of immunological effector
cells [141]. One study leveraged scRNA-seq data from 33
melanoma tumors and computational analyses to reveal
malignant cell states that promote immune evasion. The
researchers identified a resistance program expressed by
malignant cells that was associated with T-cell exclusion
and immune evasion. The program was expressed prior
to immunotherapy and was enhanced following immu-
notherapy in resistant lesions, and the expression of this
program could predict clinical responses to anti-PD-1
therapy in melanoma patients [142]. Zhou et al. [143]
performed scRNA-seq on normal mucosa tissue, differ-
entiated gastric cancer (DGC) tissue, poorly differenti-
ated gastric cancer (PDGC) tissue, and neuroendocrine
carcinoma (NEC) tissue from gastric cancer patients.
Interestingly, they found that along the trans-differen-
tiation path from DGC to NEC, immune evasion was
gradually increased with decreasing interferon pathway
response activity in malignant cells, though this finding
needs further functional investigation.

Metabolic reprogramming

Metabolic reprogramming, also known as deregulated
cellular metabolism, is one of the emerging hallmarks
of cancer that occurs as a result of the metabolic plas-
ticity of cancer cells [144]. Metabolic reprogramming in
tumor cells is dynamic and variable, dependent on the
tumor type and microenvironment, and reprogramming
involves multiple metabolic pathways, which is consid-
ered a promising therapeutic target against tumors [145,
146]. Fernandez-Garcia et al. [147] used scRNA-seq to
define the metabolic reprogramming of CD8* T cells
that were becoming activated and/or differentiating.
They identified a differential time-dependent reliance of
activating T cells on the synthesis versus the uptake of
various nonessential amino acids. Further research pro-
posed that the expression of ASNS affects the outcome
of CD8" T-cell differentiation and that ASNS overexpres-
sion enhances CD8" T-cell effector function and antitu-
mor responses. Xu et al. [148] established a systematic
landscape of metabolic heterogeneity and its relation-
ship with immunity in the AML microenvironment at
single-cell resolution for the first time. They focused on
the metabolic preference of AML progenitor cells and
diverse immune cells and proposed potential targets for
AML metabolic therapy, including ENO1, GSTP1, MT-
ND4L and UQCR11.

Transcription factors and transcriptional programs

Dysregulation of transcription factor activity unsurpris-
ingly drives tumorigenesis and oncogenic transforma-
tion [149]. Targeting transcription is a highly promising



Huang et al. Journal of Hematology & Oncology (2023) 16:98

anticancer strategy [150]. Before a transcription factor
can become a bona fide drug target, the underlying bio-
logical properties of that protein must be understood
[151]. Rastogi et al. [152] demonstrated that nuclear fac-
tor I-C (NFIC) overexpressing monocytes had increased
expression of growth and survival genes. NFIC knock-
down in an ex vivo mouse MLL::AF9 preleukemic stem
cell model decreased the growth and colony formation
of the cells and increased their expression of the myeloid
differentiation markers Grl and Macl. These results
indicate that NFIC is an important transcription factor
involved in myeloid differentiation as well as AML cell
survival and is a potential therapeutic target in AML.

Transcription factors do not generally function alone
and rather cooperate to control gene expression [153].
Sun et al. [154] comprehensively mapped malignancy-
related transcription factor regulatory networks activated
in different AML subtypes by analyzing scRNA-seq data
from AML patients and healthy donors. They identified
six modules of regulatory networks that were prevalently
dysregulated in all AML patients. AML subtypes fea-
turing different malignant cell compositions possessed
subtype-specific regulatory transcription factors asso-
ciated with suppression of differentiation or immune
modulation. Collectively, this study thoroughly revealed
the abnormal spectrum of transcriptional regulatory net-
works in AML and revealed that dysregulation was sub-
type-specific, providing insights into AML pathogenesis
and potential targets for both diagnosis and therapy.

Clinical applications of scRNA-seq in solid tumors
Solid tumors account for the vast majority of cancer inci-
dence and death. SCRNA-seq has been used in the study
and application of various solid tumors (Table 4).

Lung cancer

Cancer metastasis

Previous scRNA-seq studies related to lung cancer have
been limited to early-stage primary tumors and nor-
mal tissues resected from a small number of samples of
mixed histological types [96, 155]. In a recent scRNA-seq
study, the authors identified a cancer cell subtype that
deviated from the normal differentiation trajectory from
208,506 cells populating the normal tissues and early to
metastatic cancer tissues of 44 patients, and this sub-
type was specifically associated with cancer progression
and metastasis in lung adenocarcinoma (LUAD) patients
[156]. Analysis of stromal and immune cell dynamics
revealed ontological and functional changes that created
a protumoral and immunosuppressive microenviron-
ment. Normal resident myeloid cell populations were
gradually replaced with monocyte-derived macrophages
and DCs, accompanied by T-cell exhaustion.
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Disease monitoring

Obtaining high-quality samples of metastatic human
tumors, particularly at multiple treatment time points,
is difficult. A paucity of previous single-cell studies that
sample metastatic malignancies and prior scRNA-seq
studies of metastatic disease only focused on single treat-
ment time points or before treatment [155, 156]. May-
nard et al. [157] performed scRNA-seq on 49 clinical
biopsies obtained from 30 patients before and during tar-
geted therapy. The results revealed that cancer cells sur-
viving therapy in residual disease (RD) samples expressed
an alveolar-regenerative cell signature suggesting a ther-
apy-induced primitive cell-state transition, whereas those
present in progressive disease (PD) samples had upregu-
lated kynurenine, plasminogen, and gap-junction path-
ways. Active T-lymphocytes and decreased macrophages
were present in RD samples, and immunosuppressive cell
states characterized PD samples. This research provided
a foundation to develop strategies for the elimination or
neutralization of RD to induce more durable responses
for patients with advanced-stage NSCLC and potentially
other solid malignancies treated with various therapeutic
modalities.

Treatment

The molecular heterogeneity of NSCLC has not been
comprehensively analyzed. Li et al. [158] performed high-
precision scRNA-seq analyses on 7364 individual cells
from tumor tissues and matched normal tissues from 19
primary lung cancer patients and 1 pulmonary chondroid
hamartoma patient. They identified a significant propor-
tion of cancer cells simultaneously expressing classical
marker genes for two or even three histologic subtypes
of NSCLC—adenocarcinoma (ADC), squamous cell car-
cinoma (SCC), and neuroendocrine tumor (NET). These
cells were defined as mixed-lineage tumor cells, and
genes specific to mixed-lineage tumor cells were identi-
fied, including AKRIBI. Further experiments showed
that gene knockdown and small molecule inhibition of
AKRIBI significantly decreased cell proliferation and
promoted cell apoptosis, suggesting that AKRIBI plays
an important role in tumorigenesis and could be a target
for tumor therapy in NSCLC patients with mixed-lineage
tumor features. A previous scRNA-seq study only charac-
terized the T-cell landscape and neglected the dynamics
and molecular features of the immune landscape in lung
cancer at single-cell resolution [96]. Wang et al. [101]
performed scRNA-seq on 72,475 immune cells from 40
samples of tumor and matched adjacent normal tissues
from19 NSCLC patients and identified a novel lympho-
cyte-related subcluster named SELENOP-macrophages
(M¢), which highly expressed FOLR2, IL32, CD3D, and
LTC4S. Survival analyses based on established TCGA
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data showed that the SELENOP-M¢ cluster might play
an antitumor role in LUAD. Another scRNA-seq study
revealed that ectopic expression of intercellular adhesion
molecule-1 (ICAM1) in liver kinase B1 (LKBI) -deficient
tumors increases the homing and activation of adoptively
transferred SIINFEKL-specific CD8" T cells, reactivates
tumor-effector cell interactions and resensitizes tumors
to ICB [159]. The results revealed that ICAMI1 on tumor
cells orchestrates the antitumor immune response, espe-
cially in adaptive immunity.

Drug resistance

Most patients are refractory to immunotherapy or acquir-
ing resistance. Hu et al. [160] characterized the transcrip-
tomes of ~92,000 single cells from 3 pretreatment and
12 posttreatment samples from patients with NSCLC
who received neoadjuvant PD-1 blockade combined with
chemotherapy. They identified increased serum estradiol
and two cell types in the TME (FCRL4TFCRL5" memory
B cells and CD16TCX3CR1* monocytes) that could serve
as biomarkers for a “positive feedback” immune response
and a “negative feedback” response, respectively.

Colorectal cancer

Tumorigenesis and metastasis

Metastasis of CRC remains a major problem after cura-
tive treatment and is an important cause of CRC-related
death [161]. Wang et al. [162] performed whole genome
sequencing (WGS), multiregion whole exome sequencing
(WES), simultaneous scRNA-seq, and single-cell targeted
c¢DNA Sanger sequencing on matched adjacent normal,
primary tumor, and metastatic tumor tissues from 12
mCRC patients. The results indicated that aberrant acti-
vation of the PPAR signaling pathway plays a critical role
in CRC tumorigenesis. By analyzing matched samples
from the same patient, distinct origins of tumors that had
metastasized to the lymph nodes versus the liver were
revealed, which somewhat contradicts with traditional
ideas that distant organ metastasis is seeded through the
lymph nodes. These findings offer novel insights regard-
ing metastasis mechanisms as well as potential markers
and therapeutic targets for CRC diagnosis and therapy.

Treatment

Few studies have applied scRNA-seq to dissect the
mechanisms underlying immune-modulating thera-
pies. Zhang et al. [163] performed scRNA-seq analy-
ses on immune and stromal populations from CRC
patients. Treatment with anti-CSFIR monotherapy
preferentially depleted CIQCT™ TAMs with an inflam-
matory signature but spared SPPI" TAMs expressed
pro-angiogenic/tumorigenic genes in mice and humans,
and specific depletion of SPPI* TAMs might ultimately
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lead to improved outcomes of myeloid-targeted immu-
notherapy or enhance ICB combination therapies. In
addition, treatment with a CD40 agonist antibody pref-
erentially activated the Cc/22* ¢DC population and
increased Bhlhe40t T helper 1 (Thl)-like cells and
CD8" memory T cells. The previous studies found that
the BHLHE40+ Th1-like cell population is significantly
enriched in tumor samples from CRC patients with high
microsatellite instability (MSI), who respond to ICB [164,
165]. Another scRNA-seq study of mice determined
that AB680, a selective inhibitor of the CD73 ectoen-
zyme improved the anticancer functions of immunosup-
pressive cells such as Tregs and exhausted T cells, while
PD-1 blockade reduced the number of MalatI"e" Tregs
and M2 macrophages [166]. Their intratumoral immu-
nomodulation was distinct, and AB680 might be a novel
treatment for patients with refractory CRC who do not
respond to existing anticancer chemotherapy drugs and
PD-1 antagonists. Wu et al. [167] sequenced 97 matched
samples using scRNA-seq and spatial transcriptom-
ics analysis, and found that suppressive MRCITCCLI8"
macrophages displayed the highest metabolic activity
and underwent remarkable spatial reprogramming. Neo-
adjuvant chemotherapy (NAC) could block this activity
and restore the antitumor immune balance in responsive
patients, whereas nonresponsive patients showed a more
suppressive state.

Gastric cancer

Cancer metastasis

The mechanism of gastric cancer lymph node metastasis
remains unknown, partly because data from metastasis
studies were generated with the bulk approach, which
was likely to mask the roles of subpopulations. Wang
et al. [168] performed scRNA-seq on samples from the
primary tumors and metastatic lymph nodes (MLNs) of
three gastric cancer patients. The authors found a sub-
group of cells between the metastatic group and primary
group and discovered some gastric cancer lymph node
metastasis marker genes (ERBB2, CLDN11, and CDK12),
as well as potential gastric cancer evolution-driving genes
(FOS and JUN). Another scRNA-seq study of gastric can-
cer organ-specific metastasis (liver, peritoneum, ovary,
lymph node) revealed that immune and stromal cells
exhibited cellular heterogeneity and created a protumor
and immunosuppressive microenvironment. In addi-
tion, a 20-gene signature of LN-derived exhausted CD8*
T cells might predict LN metastasis. Recently, Qian et al.
[169] performed scRNA-seq on tissues from primary
tumors and MLNs of gastric cancer patients to explore
the differences in tumor cells and the TME between gas-
tric cancer primary tumors and MLNs. The authors iden-
tified a malignant subpopulation showing the potential
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for LN metastasis, which displayed high translation ini-
tiation and protein activity. In addition to malignant cells,
abnormal neutrophil polarization and maturation and
activation of the immune checkpoint SPP1 might con-
tribute to LN metastasis of gastric cancer.

Disease monitoring

Kwon and colleagues used WES and scRNA-seq on serial
and multi-region tissue samples in addition to serial
peripheral blood analyses with samples from advanced
microsatellite instability-high (MSI-H) gastric cancer
patients in a phase II trial of pembrolizumab [95]. The
results supported clear differences in both baseline and
adaptive TME composition between responders and
nonresponders. Nonresponders had frequent mutations
and upregulation of the Wnt/p-catenin pathway and
increased CAF abundance. It is interesting to note that
decreased T-cell infiltration and lower NK-cell numbers
were observed in nonresponders.

Treatment

Early-stage gastric cancer is mainly treated with surgery,
while for advanced gastric cancer, the current treat-
ment options remain insufficient [170]. Li et al. [139]
performed scRNA-seq on nine untreated nonmetastatic
gastric cancer patients and found that ACKRI was specif-
ically expressed in tumor endothelial cells. This gene was
associated with poor prognosis in the cohort data and
was thus reported to be a potential novel target for gas-
tric cancer treatment. Another study found that activa-
tion of the SPP1-CD44 interaction in MLNs was related
to the suppression of T-cell activation in the MLN, which
might be a therapeutic target in gastric cancer patients
with lymph node metastasis [169]. Moreover, selective
inhibitors of the Wnt/B-catenin pathway could be prom-
ising in combination with immune checkpoint inhibitors
(ICIs) in gastric cancer [95].

Prognosis

ITH is a fundamental property of cancer; however, the
origins of ITH remain poorly understood. Wang et al.
[72] performed scRNA-seq of PC samples from 15
patients with GAC, explored the ITH of malignant PC
cells and identified factors significantly correlated with
patient survival. Single-cell analysis of ITH was used to
classify PC specimens into two subtypes: gastric-dom-
inant (mainly gastric cell lineages) and GI-mixed (with
mixed gastric and colorectal-like cells), and both had
prognostic values independent of clinical variables. Fur-
ther analyses found that patients with GI-mixed molecu-
lar features in their PC tumor cells survived significantly
longer than those with gastric-dominant features prob-
ably because of intestinal metaplasia. In addition, all
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patients whose tumors had 17q gain were short-term sur-
vivors. Last, the authors discovered a 12-gene signature
that appeared to be fundamental to GAC carcinogenesis/
progression as it was not only highly prognostic in the
GAC-PC validation cohort but performed just as robustly
in several large-scale localized GAC cohorts. Kang et al.
revealed that activated fibroblasts and endothelial cells
together with immunosuppressive myeloid cells and
Tregs established an immunosuppressive microenvi-
ronment that correlated with worse prognosis and lack
of response in anti—-PD-1-treated patients. In contrast,
a subset of IFNy activated T cells and HLA-II express-
ing macrophages was found to be linked to treatment
response and increased OS [171]. Kumar et al. gener-
ated a comprehensive single-cell atlas of gastric cancer
(>200,000 cells) based on data from 48 samples from 31
patients with various clinical stages and histologic sub-
types [110]. They uncovered distinct CAF subtypes, and
INHBA-FAP-high cell populations were predictors of
poor clinical prognosis.

Liver cancer

Tumorigenesis

Despite the strong association between cirrhosis and
HCC and its high medical relevance, the causal relation-
ship between fibrosis and HCC development remains
poorly understood and therapeutically underexplored
[172]. Nearly all in vivo evidence and findings on the
role of HSCs remain controversial. Filliol et al. [173]
performed scRNA-seq of hepatic stellate cells (HSCs)
from fibrotic mouse liver and snRNA-seq of HSCs
from normal cirrhotic human livers to reveal the func-
tions of HSCs during hepatocarcinogenesis. Signatures
based on the differentially expressed genes (DEGs) were
able to reliably identify more quiescent and activated
mouse and human HSC subpopulations. Quiescent
and cytokine-producing HSCs enriched for hepatocyte
growth factor protected against hepatocyte death and
HCC development. In contrast, activated myofibroblas-
tic HSCs enriched for type I collagen, promoted pro-
liferation and tumor development. An increased HSC
imbalance between cytokine-producing HSCs and myofi-
broblastic HSCs during liver disease progression was
associated with increased HCC risk in patients [173].

Treatment

The relationships between the immune phenotypic char-
acteristics of innate lymphoid cells (ILCs) and HCC
remain unclear. He et al. performed scRNA-seq on sorted
hepatic ILCs from human patients with HCC and found
that targeting inducible T-cell costimulator (ICOS) and
its downstream effector HSP70 in ILC2s suppressed
tumor growth and remodeled the immunosuppressive
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tumor microenvironment [174]. Liu et al. performed
scRNA-seq on HCC tumors and adjacent normal tis-
sues obtained from six ICB nonresponders. They discov-
ered that the hypoxic microenvironment promoted SPP1
expression, and SPPIt macrophages interacted with
CAFs to stimulate extracellular matrix remodeling and
promoted tumor immune barrier (TIB) structure forma-
tion, thereby limiting immune infiltration into the tumor
core. Preclinically, blockade of SPP1 or macrophage-
specific deletion of Spp1 in mice led to enhanced efficacy
of anti-PD-1 treatment in mouse liver cancer, accompa-
nied by reduced CAF infiltration and increased cytotoxic
T-cell infiltration [102]. Yuen et al. analyzed tumor-
infiltrating T cells by flow cytometry and scRNA-seq.
Based on the CD8* T-cell infiltration level, they char-
acterized tumors with different genotypes into cold and
hot tumors. The single anti-PD-1 treatment appeared to
be effective in HCCs with genetic mutations driving hot
tumors, while combined anti-PD-1 and sorafenib treat-
ment may be more appropriate for HCCs with genetic
mutations driving cold tumors [175].

Prognosis

Song et al. performed scRNA-seq on 41,698 immune
cells from seven pairs of HBV/HCV-related HCC tumor
and nontumor liver tissues and identified one subset of
CD8™ T cells with the high secretion of XCL1 that corre-
lated with better prognosis [176]. He and colleagues used
k-means clustering based on normalized abundances and
identified seven distinct TME subtypes of HCC (TME1-
7). Tumors of the TME2 and TMES5 subtypes exhibited
a macrophage-dominated and lymphocyte-depleted
microenvironment and conferred the worst prognosis. In
contrast, the TME7 subtype conferred the most favorable
prognosis on their constituent tumors and exhibited high
proportions of cytotoxic T lymphocytes, central memory
T cells, and CD20* B cells and low macrophage content
[177]. Zhou et al. carried out scRNA-seq to analyze the
transcriptomic profile of traced Prom1* cells. By reveal-
ing the genetic profile of the Proml lineage, they found
that the signature-high group had a significantly worse
prognosis than the signature-low group in patients with
HCC [178]. Another study revealed that high levels of
COL1A1, ITGA2 and YAP were associated with poor
prognosis in liver cancer patients [179].

Breast cancer

Tumorigenesis, progression, and metastasis

The cell of origin (COO) in BRCAI mutant breast cancer
is not clear, and the process of BRCAI mutant breast can-
cer development has not been fully elucidated. Based on
RNA-seq and WES, Hu et al. identified that the impaired
differentiation process of normal luminal cells in BRCA1
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mutation carriers might contribute to tumorigen-
esis. Moreover, the expression of TP53 and BRCA1I was
decreased in luminal progenitor cells from normal breast
tissue in BRCAI mutation carriers, which might trigger
the basal/mesenchymal transition of luminal progeni-
tors and might result in basal-like tumor development
[180]. As the mechanisms governing seeding in distal
tissues are poorly understood, Davis et al. established a
robust method for the identification of global transcrip-
tomic changes in rare metastatic cells during seeding
using scRNA-seq and PDX models of breast cancer. The
authors identified mitochondrial OXPHOS as the top
pathway upregulated in micrometastases and found that
pharmacological inhibition of OXPHOS substantially
attenuated lung metastasis, showing that OXPHOS was
functionally critical for metastatic spread [74]. Sun et al.
conducted bulk RNA sequencing and scRNA-seq on both
mammary gland cells and mammary tumor cells isolated
from Brcal knockout mice. Of the candidate markers
for BRCAI mutant tumors, we discovered and validated
one oncogene Mrc2, whose loss could reduce mammary
tumor growth in vitro and in vivo [181].

Treatment

It remains unclear how stromal p38 signaling shapes the
metastatic TME and affects tumor immunity in meta-
static breast cancer. Faget et al. utilized a stromal labeling
approach and scRNA-seq to identify targets that further
increased the efficacy of p38MAPKa inhibitors (p38is).
The combination of a p38i, anti-OX40, and cytotoxic
T-cell engagement cured mice with metastatic disease
and produced long-term immunologic memory [182].

Drug resistance

Triple-negative breast cancer (TNBC) is an aggressive
subtype that frequently develops resistance to chemo-
therapy. Regardless of whether the resistance is caused
by the selection of rare preexisting clones or through the
acquisition of new genomic aberrations, Kim et al. [183]
applied single-cell DNA and RNA sequencing in addi-
tion to bulk exome sequencing to profile longitudinal
samples from 20 TNBC patients during NAC. The results
indicated that resistant genotypes were preexisting and
adaptively selected by NAC, while transcriptional profiles
were acquired by reprogramming in response to chemo-
therapy in TNBC patients. The preexistence of chemore-
sistant genotypes in the tumor mass indicates that there
may be diagnostic opportunities for detecting chemore-
sistant clones in TNBC patients prior to the administra-
tion of NAC to predict which patients are likely to benefit
from chemotherapy and even raise the possibility of ther-
apeutic strategies to overcome chemoresistance.
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Esophageal cancer

Treatment

Esophageal cancer is one of the most lethal cancers
worldwide for human health because of its high mor-
bidity and poor prognosis [184, 185]. Immunotherapy,
the strategy to enhance the efficacy and specificity of the
immune cells to suppress cancer progression, is a hot
research area in cancer therapy including esophageal
cancer [185]. Chen et al. [186] performed scRNA-seq
analysis on five tumor samples and five corresponding
nonmalignant samples from ESCC patients. The results
revealed the potential role of LAG3 and HAVCR2 as
checkpoint molecules for immunotherapy in ESCC.

Prognosis

Zhang et al. [187] investigated the composition of ESCC
tumors based on 208,659 single-cell transcriptomes
derived from 60 individuals. They found that high expres-
sion levels of the mucosal immunity-like (Mucosal) pro-
gram in the tumor were strongly associated with the
amount of effective infiltrating immune cells such as T
follicular helper type 1 (Tgyl), GC-B cells, and cDCs,
and the researchers found that patients with high expres-
sion of the Mucosal program may have higher antitumor
immunity and thus a better prognosis. The authors fur-
ther identified that CXCL17, AGR2, and MUC20 within
the program were the markers that were best associated
with ESCC survival.

Ovarian cancer

Treatment

Malignant abdominal fluid (ascites) frequently devel-
ops in women with advanced HGSOC and is associated
with drug resistance and a poor prognosis. Izar et al. used
scRNA-seq to profile ~ 11,000 cells from 22 ascites speci-
mens from 11 patients with HGSOC and found the JAK/
STAT pathway was activated in both malignant cells and
CAFs. The JAK/STAT inhibitor JSI-124 had potent anti-
tumor activity in primary short-term cultures and PDX
models of HGSOC [188]. Another study further sug-
gested that EMT or JAK/STAT inhibitor combination
therapy might enhance the treatment of HGSOCs [189].
Xu et al. [108] found that the immune coinhibitory recep-
tor TIGIT was highly expressed on exhausted cytotoxic
CD8* T cells (CD8" Tgy) and that TIGIT blockade could
significantly reduce ovarian cancer tumor growth in
mouse models.

Prognosis

Previous bulk gene expression analysis on HGSTOC
identified 4 molecular subtypes: the mesenchymal,
immunoreactive, differentiated, and proliferative
HGSTOC:. Stratification of patients according to these
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molecular subtypes failed to demonstrate differences
in response rates to various therapies in clinical trials
[190]. Schwedel et al. [191] found cell admixture affects
the interpretation and reproduction of ovarian cancer
molecular subtypes and gene signatures derived from
bulk tissue. As various factors in the stroma profoundly
affect the prognostic impact of molecular subtypes, elu-
cidating the role of stroma in the TME and prognosis is
important and necessary by single-cell analysis or micro-
dissection of tumor samples. Olbrecht et al. [192] per-
formed scRNA-seq of 18,403 cells unbiasedly collected
from 7 treatment-naive HGSTOC tumors and identi-
fied 6 prognostic subclusters. Of them, mesothelial cells
(FB_CALB2), myofibroblasts (FB_MYH11), transforming
growth factor 3-driven cancer-associated fibroblasts (FB_
COMP), tumor subcluster Tum_BAMBI and lymphatic
endothelial cells (EC_PROX1), predicted poor outcome,
while plasma cells (BC_IGHG1_PRDM1"&") were associ-
ated with improved OS. Sumitani et al. [193] performed
scRNA-seq of serous ovarian cancer cells from four dif-
ferent patients to determine the association of each
tumor population with poor prognosis. Two of the four
identified tumor cell populations (a cancer-initiating cell
population and a population expressing CA125) survived
the initial treatment and suppressed antitumor immunity
and were associated with poor prognosis. High levels of
EMT and cell cycle signatures were significantly related
to poor OS in ovarian cancer [189]. Xu et al. [108] fur-
ther found that tumor cells were characterized by a set
of EMT-associated gene signatures, from which the com-
bination of NOTCHI, SNAI2, TGFBRI, and WNT11 was
further selected as a gene panel to predict the outcomes
of patients with HGSOC.

Melanoma

Cancer metastasis

In multiscale analyses using scRNA-seq data from six dif-
ferent primary uveal melanomas, Pandiani et al. assessed
ITH at the genome and transcriptome levels. Their find-
ings identified that HES6 increases the aggressive poten-
tial and motile capacity of primary uveal melanoma both
in vitro and in vivo. Further experiments indicated that
HES6 might be a valid target to limit uveal melanoma cell
proliferation and migration [81].

Disease monitoring

Relatlimab plus nivolumab (anti-LAG3+anti-PD-1)
has been approved by the FDA as a first-line therapy
for stage III/IV melanoma, but its specific effects on the
immune system are unknown. Huuhtanen et al. [194]
evaluated blood samples from 40 immunotherapy-naive
or prior immunotherapy-refractory patients with meta-
static melanoma treated with anti-LAG3 +anti-PD-1
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using single-cell RNA and T-cell receptor sequencing
(scRNA +TCRap-seq) combined with other multiom-
ics profiling. They revealed that adaptive NK cells and
CD8" T cells have the highest LAG3 expression and were
more numerous in responders. Anti-LAG3+ anti-PD-1
treatment expanded LAG3" NK cells, CD8" T cells, and
CD4* T cells in responding patients. Tregs expand in the
periphery following anti-LAG3+anti-PD1 therapy but
become metabolically silent during treatment.

Treatment

Many patients derive no clinical benefit from ICIs, and
the molecular underpinnings of such resistance remain
elusive [142]. However, a previous scRNA-seq analysis
provided a glimpse into primary and metastatic uveal
melanomas ecosystems, and disclosed a regulatory
T-cell phenotype, highlighting LAG3 as a potential can-
didate for immune checkpoint blockade [94]. Recently,
Li et al. performed scRNA-seq on nine clinical speci-
mens (five primary tumor and four metastasis samples)
of a rare subtype of melanoma named acral melanoma.
Immune cells associated with acral melanoma exhibit
the expression of multiple checkpoints including PD-1,
LAG-3, CTLA-4, V-domain immunoglobin suppressor
of T-cell activation (VISTA), TIGIT, and the adenosine
A2A receptor (ADORA?2). VISTA was expressed in 58.3%
of myeloid cells and TIGIT was expressed in 22.3% of T/
NK cells. These findings provide targets for future clini-
cal immunotherapies for acral melanoma [195]. These
scRNA-seq studies demonstrate the promising therapeu-
tic role of ICIs in melanoma.

Clinical applications of scRNA-seq in leukemia
ScRNA-seq assists us evaluate how combinatorial pat-
terns of gene mutations change transcriptomic signatures
and cellular behaviors, and provides a unique opportu-
nity to identify novel tumor-specific targets in leukemia
[196]. It is mainly used in AML and acute lymphoblastic
leukemia (ALL) (Table 5).

AML
Treatment and therapeutic monitoring
The cause of relapse is thought to be the persistence
of leukemia-initiating cells (LICs) following treat-
ment in AML. Stetson et al. [197] assessed RNA-based
changes in LICs from matched samples taken at diag-
nosis and relapse using scRNA-seq. They demonstrated
that targeting both BCL2 and CXCR4 signaling might
help overcome therapeutic challenges related to AML
heterogeneity.

The molecular mechanisms underlying decitabine
response remain incompletely understood in myelod-
ysplastic syndrome (MDS) and AML. Upadhyaya et al.
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[198] performed scRNA-seq on total bone marrow aspi-
rate cells from 10 patients collected on days 0 and 10 of
decitabine treatment. They found that decitabine induced
global, reversible hypomethylation after 10 days of ther-
apy in all patients, which was associated with induction
of interferon-inducible pathways, expression of endog-
enous retroviral elements, and inhibition of erythroid-
related transcript expression. Erythroid-related pathways
were inhibited by therapy, which was reversed at relapse.

Drug resisOtance

Chemoresistance and relapse are the leading causes of
AML-related deaths. Cheng et al. [199] used scRNA-seq
to analyze the genetic profiles of 28,950 AML cells from
13 AML patients and found that chemoresistant AML
cells prematurely accumulated during early hematopoie-
sis. Hematopoietic stem cell-like cells from the non-com-
plete response (CR) group expressed more LSC markers
(CD9, CD82, IL3RA, and ILIRAP) than those from the
CR group. Chemoresistant progenitor cells had impaired
myeloid differentiation owing to the early arrest of
hematopoiesis.

A study revealed uncovered that miR-126"¢" LSCs were
enriched at diagnosis and at relapse in chemotherapy-
refractory AML and displayed enforced stemness and
quiescence features, and these cells promoted chemo-
therapy resistance [127]. Another study produced similar
results by dissecting the cellular states in bone marrow
samples from primary refractory AML patients or those
who relapsed soon after therapy through scRNA-seq. A
subpopulation of quiescent stem-like cells (QSCs) was
found to be involved in the chemoresistance and poor
outcomes of AML [200].

ALL

Treatment and therapeutic monitoring

The understanding of the resistance elicited in minimal
residual disease (MRD) is limited due to the rarity and
heterogeneity of the residual cells. Zhang et al. [201]
assessed 161,986 single-cell transcriptomes to analyze
the dynamic changes in B-cell acute lymphoblastic leu-
kemia (B-ALL) at diagnosis, the development of residual,
and relapse. In contrast to those at diagnosis, the leuke-
mic cells at relapse tended to shift to poorly differentiated
states, whereas the changes that occurred in the residual
cells were more complicated. Both in vitro and in vivo
models demonstrated that inhibition of the hypoxia path-
way sensitized leukemic cells to chemotherapy. Another
study revealed that the CD19 ex2part splice variant is a
new biomarker for predicting blinatumomab therapy fail-
ure [202].
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Table 5 Clinical significance of scRNA-seq in various liquid tumors
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Tumor

Year Species

Protocol Accession number (custom
database if available)

Clinical significance

References

Acute myeloid leukemia

2019 Human

2021 Human

2022 Human

2023 Human

2023 Human

2023 Human

2023 Human

2023 Human

2023 Human

Seqg-Well GSE116256

Smart-seq2 GSE126068

10xGenomics phs000159

10xGenomics Correspondence with authors

10x Genomics HRA001240

10x Genomics GSE196045

10x Genomics GSE185993

10xGenomics Correspondence with authors

10x Genomics GSE213584

Primitive AML cells exhibited dysregu-
lated transcriptional programs with co-
expression of stemness and myeloid
priming genes and had prognostic
significance

Targeting both BCL2 and CXCR4 signal-
ing might be a therapeutic strategy

Erythroid-related pathways were
inhibited by decitabine, and this
was reversed at relapse

Revealed premature accumula-

tion of chemoresistant AML cells
during early hematopoiesis. The
hematopoietic stem cell-like cells

from the non-CR group expressed
more LSC markers (CD9, CD82, IL3RA,
and ILTRAP) than those from the CR
group. Chemoresistant progenitor cells
had impaired myeloid differentiation
owing to the early arrest of hemat-
opoiesis

QSCs were involved in the chem-
oresistance and poor outcomes

of AML. The CD52-SIGLEC10 interac-
tion between QSCs and monocytes
might contribute to immune evasion
and poor outcomes. LGALST was iden-
tified as a promising target for chem-
oresistant AML, and an LGALST inhibi-
tor could help eliminate QSCs

NFIC was identified as a transcription
factor that was important for myeloid
differentiation as well as AML cell
survival and as a potential therapeutic
target in AML

Chemotherapy induced a general-

ized inflammatory and senescence-
associated response. Some progenitor
AML cells proliferated and differenti-
ated with an expression of OXPHOS
expression signature, while others were
OXPHOS (low) miR-126 (high) and dis-
played high stemness and quiescence
features

Identified a distinct LSC-like cluster
with possible biomarkers in NK-AML
(M4/M5). Provided an atlas of NK-AML
(M4/M5) cell heterogeneity, composi-
tion, and biomarkers with implications
for precision medicine and targeted
therapies

Identified unique C1Q* macrophage-
like leukemia cells. C1Q was identified
as a marker for AML with adverse prog-
nosis, orchestrated cancer infiltration
pathway activity by communication
with fibroblasts, and represents a com-
pelling therapeutic target for EMI

[261]

[197]

[198]

[199]

[200]

[152]

[127]

[262]

[263]
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Table 5 (continued)
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Tumor Year Species Protocol

Accession number (custom

Clinical significance References

database if available)

Acute lymphoblastic leukemia 2020 Human 10xGenomics

2021 Human Smart-seq2

2021 Human 10xGenomics

2022 Human 10xGenomics

GSE134759

GSE161901

EGAS00001004027

HRA000489

Monocyte abundance was predictive  [204]
of pediatric and adult B-ALL patient

survival. Human B-ALL cells promoted

the emergence of CD16" nonclassical
monocytes ex vivo. Anti-CSF1R therapy
enhanced the targeted treatment

of Ph* B-ALL models in vivo

Combination therapies target-

ing diverse oncogenic states

and the immune ecosystem seem
most promising to successfully elimi-
nate tumor cells that escape treatment
through coexisting transcriptional
programs

[203]

Multiple mechanisms leading [202]
to acquired CD19 mutations contrib-

uted to CD19 loss and relapse on bli-
natumomab treatment. CD19 ex2part
alternative splicing levels were found

to be a new biomarker predictive

of blinatumomab resistance or failure

The leukemic cells at relapse tended [201]
to take on poorly differentiated states,
whereas the changes in the residual

cells were more complicated. Inhibi-

tion of the hypoxia pathway sensitized

leukemic cells to chemotherapy

Drug resistance

The resistance mechanisms in relapsed/refractory early
T-cell progenitor acute lymphoblastic leukemia (ETP-
ALL) carrying activating NOTCH1 mutations are
unclear. Anand et al. [203] performed scRNA-seq on
malignant and microenvironmental cells and identified
2 highly distinct stem cell-like states that were critically
different in terms of cell cycle and oncogenic signaling.
The fast-cycling stem cell-like leukemia cells demon-
strated Notch activation and were effectively eliminated
in patients by Notch inhibition, whereas the slow-cycling
stem-cell like cells were Notch-independent and relied
on PI3K signaling. These cells promoted an immunosup-
pressive leukemia ecosystem, accompanied by the clonal
accumulation of dysfunctional CD8" T cells.

Prognosis

Based on scRNA-seq and protein-based data of human
B-ALL bone marrow and peripheral blood, Witkowski
et al. found that CD16* nonclassical monocytes may
represent the majority of circulating and bone marrow
monocytes, and they were found to be associated with
inferior treatment outcomes [204]. Another study found
a relapse-enriched B-cell subset was associated with poor
prognosis, implicating the transcriptomic evolution dur-
ing disease progression [205].

Clinical utilities of scRNA-seq in lymphoma
Lymphoma has its own characteristics that differ from
those of solid tumors and leukemia. In addition to the
same clinical applications as other tumors, scRNA-seq
can also aid in subtyping lymphoma (Table 6).

Diagnosis

Cancers are traditionally diagnosed by their tissue of ori-
gin and histologic features [206]. SCRNA-seq, as the earli-
est and best-established single-cell sequencing technique,
has been used to identify diagnostic biomarkers [206].
Gaydosik et al. [77] identified a 17-gene expression sig-
nature (ANP32, BPPIA, ATP5C1, PSMB2, DUT, RAN,
HMGNI1, RANBP1, HN1, SET, NPM1, SMC4, NUSAPI,
STMNI, and PCNA) common to all five tumors tested.
The authors validated the protein coexpression of three
of the genes (PCNA, ATP5C1, and NUSPAI) with TOX
in multiple patients with advanced-stage CTCL. Thus,
these genes have the potential to be diagnostic mark-
ers for CTCL. Jonak et al. [207] performed scRNA-seq
on two 6-mm skin punch biopsies from a 33-year-old
patient with concurrent mycosis fungoides (MF) and pri-
mary cutaneous follicle center lymphoma (PCFCL) and
revealed a type-2 immune skewing in MF, while PCFCL
lesions generally exhibited a more type-1 immune phe-
notype, consistent with its indolent behavior. This result
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indicated the existence of two clonal malignancies in the
skin of a single patient that occurred at the same time,
but developed in distinct skin lesions in a nonoverlap-
ping manner; these features were most consistent with
the diagnosis of discordant lymphoma, and the case pro-
vides proof of concept that scRNA-seq can be applied to
diagnose primary cutaneous lymphomas. Li et al. [208]
identified four genes (CYTOR, CXCL13, VCAMI, and
TIMD4) that were explicitly expressed in malignant T
cells that may be novel markers for subcutaneous pan-
niculitis-like T-cell lymphoma (SPTCL). Ren et al. [130]
performed integrative paired scRNA-seq and single-cell
TCRap sequencing (scTCRseq) analyses of CD4™ T cells
from 11 MF/SS patients. They found that 7 genes (i.e.,
AC133644.2, UBXN11, and ADTRP) were upregulated
while 28 genes (i.e., TRBCI, AIRE, and TPO) were down-
regulated in SS relative to MF, suggesting that these genes
could be biomarkers for diagnosis and predicting prog-
nosis. However, another study identified that the AIRE
gene was expressed in 58% of malignant cells versus 8.7%
of nonmalignant cells across samples and was the most
highly upregulated gene in SS [209].

Subtyping

The COO classification has identified two subtypes
of diffuse large B-cell lymphoma (DLBCL): GCB and
activated B-cell-like (ABC) DLBCL, with GCB cases
characterized by a better prognosis than ABC cases
[210-212]. As the COO classification represents an
oversimplification of the complex dynamics of the
proliferation, trafficking, and differentiation of B cells
within the germinal center, Holmes et al. [213] applied
genome-wide single-cell (sc) RNA profiling to further
dissect the heterogeneity of germinal center B cells.
The authors explored the dynamics of germinal center
B-cell development beyond the known DZ and LZ com-
partments and identified five stages: DZ cells (CXCR4,
AICDA), intermediate cells (CXCR4 and CDS83), LZ
cells (CD83 and BCL2A1I), plasmablasts (PBL; PRD-
M1Iand IRF4), or precursor memory B (PreM; CCR6)
cells. Based on the five stages, 13 sc-COO subtypes (DZ
a,DZb,DZc,INT a,INT b, INT ¢, INT d, INT e, LZ g,
LZ b, PreM, PBL a and PBL b) were identified, and they
provided sc-COO for ~80% of DLBCLs. In addition to
DLBCL typing based on B cells, a novel DLBCL typing
using scRNA-seq has also emerged beyond COO and
genotypic classes. For a further step, survival analysis
indicated Groups II and IV had the worst and best sur-
vival outcomes, respectively while the remaining three
groups had an intermediate prognosis in a merged data-
set containing National Cancer Institute [NCI]-DLBCL
data and (British Columbia Cancer Agency [BCCA]-
DLBCL data. The results indicated that the sc-COO
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classification can identify clinically relevant subgroups
within GCB- and ABC-DLBCLs, as well as DHITsig-
positive cases. In another study, the authors identified
44 distinct cellular states from all 12 cell types, rang-
ing from two to five states per cell type. Then, they
applied EcoTyper to reveal nine multicellular ecosys-
tems in DLBCL based on the 44 cellular states, namely,
lymphoma ecotypes (LEs). Although the results of this
study reclassified DLBCL based on cell states and eco-
systems, future studies will be needed to further char-
acterize the spatial topology and interactions within
LEs and the molecular switches that mediate therapeu-
tic responsiveness and resistance in DLBCL [214].

In addition to DLBCL, Liu et al. also established a
binary subtyping scheme for CTCL based on the molecu-
lar features of malignant T cells and their protumorigenic
microenvironments [78]. The cytotoxic effector memory
T-cell (T¢ygm) group, which displayed a cytotoxic effec-
tor memory T-cell phenotype, showed more M2 mac-
rophage infiltration, while the Ty, group, featuring a
central memory T-cell phenotype and worse patient out-
comes, was infiltrated by highly exhausted CD8" reactive
T cells, B cells and Tregs with suppressive activities.

Disease monitoring

Noninvasive monitoring of disease status, prognosis and
treatment response, and early detection of relapse are
preferred in clinical practice, as biopsy is unfortunately
impractical at times [215]. Ye et al. [216] compared the
malignant cell compartment in one pair of samples col-
lected at diagnosis and relapse. The scRNA-seq data
suggested that selective outgrowth of cells with an acti-
vated MAPK signaling program might be associated
with relapse in the DLBCL patient. Borcherding et al.
[209] extensively mapped the transcriptomic variations
in approximately 50 000 T cells of both malignant and
nonmalignant origins using single-cell mRNA and TCR
sequencing of peripheral blood immune cells in patients
with SS. New cellular clusters identified after progression
on therapy notably exhibited increased expression of the
transcription factor FOXP3, a master regulator of Treg
function, suggesting the potential of an evolving mech-
anism of immune evasion. Rindler and his colleagues
[217] revealed a specific panel of biomarkers that might
be used for monitoring MF disease progression. Despite
considerable interindividual variability, lesion progres-
sion was uniformly associated with the downregulation
of the tissue residency markers CXCR4 and CD69, the
heat shock protein HSPAIA, the tumor suppressors and
immunoregulatory mediators ZFP36 and TXNIP and
interleukin 7 receptor (IL7R) within the malignant clone
but not in benign T cells.
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Treatment

Traditional treatments for lymphoma include chemo-
therapy with or without radiotherapy, surgery, and bone
marrow transplantation [218, 219]. In recent vyears,
targeted therapy and immunotherapy have gradually
emerged as options and have been applied in clinical tri-
als, with encouraging achievements against malignant
lymphoma [218, 220-222].

Some studies have explored the application of scRNA-
seq to develop targeted therapy. Targeted therapies can
be divided into two categories. Some targeted thera-
pies target specific molecules, and others target distinct
cell populations or subpopulations. Fujisawa et al. [134]
performed scRNA-seq of 5 human AITL tumors and
3 homeostatic lymph node (HLN) samples, and an in
silico network analysis using the scRNA-seq data iden-
tified CD40-CD40LG as a possible mediator of GCB
and tumor cell cluster interactions. Therefore, blockade
of the CD40-CD40LG axis by administering an anti-
Cd40lg antibody suppressed tumor growth. Ren et al.
[130] found that CD82 regulates CTCL proliferation and
apoptosis through the JAK/STAT and AKT/PI3K path-
ways and revealed the therapeutic potential of targeting
CD82 and JAK, which endow malignant CTCL cells with
survival and proliferation advantages. A DLBCL study
identified the CD74-MIF interaction as the most sig-
nificant interaction between B cells and the other three
types of immune cells (T cells, macrophages, and DCs)
[85]. This same ligand-receptor interaction also resulted
in significant upregulation of MIF in malignant T cells
and interactions of malignant T cells expressing MIF
with macrophages and B cells expressing CD74 in CTCL
[131]. These findings suggest the utility of targeting the
CD74-MIF interaction with therapies for tCTCL.

Targeting macrophages in hematological malignan-
cies is a promising approach since these cells either
support or inhibit tumor growth depending on their
phenotypes and functions [98, 223]. In one study, Cao
et al. [75] used paclitaxel to substantially increase the
anticancer efficacy of CD47-targeted therapy in late-
stage non-Hodgkin lymphoma (NHL) by activating
Src family tyrosine kinase signaling in macrophages.
Paclitaxel re-enabled programmed cell removal (PrCR)
by not only directly stimulating the phagocytic capac-
ity of bone marrow macrophages but also reversing the
phagocytosis-inhibitory TME through the suppression
of TAM populations directly linked to NHL progres-
sion. In addition to TAMs, CD8" T cells are another
target population. Steen et al. [214] divided CD8* T
cells into five state (S1-S5) subpopulations. The tran-
scriptomic and spatial characterization linked CD8" T
cells in the S1 subpopulation to a previously described
CXCR5" CD8" T cell state. Patients harboring large
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numbers of CD8" T cells in the S1 subpopulation expe-
rienced significantly longer survival in the RB-CHOP
arm (bortezomib added to standard R-CHOP therapy)
than those in the R-CHOP arm in terms of both OS and
PES.

Immunotherapies are divided into two categories
based on the mechanism of action. Some are designed
to block the immune evasion of tumor cells, and these
therapies are represented by ICIs, most of which target
PD-1, PD-L1, cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4), and other related checkpoints. Other
immunotherapies are designed to enhance the ability
of immune cells to attack tumor cells, and these thera-
pies are represented by cellular treatment with chimeric
antigen receptor (CAR)-T cells [218]. Su et al. [224]
found that responses to pembrolizumab were asso-
ciated with lower expression of KIR3DL2 within the
Sézary cell population, suggesting that treatment with
anti-KIR3DL2 drugs such as lacutamuab synergized
with pembrolizumab therapy. Another study found that
both PD-1/PD-L1 and CD73/A2aR signaling mediated
the immunosuppressive microenvironment in DLBCL.
A combination of treatments targeting the immunosup-
pressive PD-1/PD-L1 axis with CD73/A2aR inhibitors
may provide additional clinical benefits and may over-
come primary and secondary resistance to PD-1/PD-1L1
blockade.

Jackson et al. [225] performed a sequential analysis
of manufactured and infused CAR-T cells using sin-
gle-cell RNA and protein expression data for the first
time to investigate the mechanisms linked to patient
response to CAR-T-cell therapy. CAR-T cells exhib-
ited significant heterogeneity across time points (prod-
uct, Day 14, and Day 30), cell-cycle phases, cell types,
and patients. The authors noted that the CAR-T cells
evolved toward a nonproliferative, highly differentiated,
and exhausted state, with an enriched exhaustion profile
marked by high TIGIT expression observed in CAR-T
cells from patients with a poor response; that is, there
was a shift in the predominant profiles of CD8" CAR-T

cells from CD45RAMCCR7MCD127MCD62LMCD25M
cells to CD45ROMCD28MCD69MCD27MPD-1M  and
CD45RAMCD57MCD69MPD-1M  cells upon infusion.

CD8* TIGIT" CAR-T cells had greater dysfunctional
scores than TIGIT™ cells, upregulated TOX expres-
sion and upregulation of many of the same exhaustion-
related genes that were differentially expressed between
response groups and had a higher surface expression of
all exhaustion markers tested, including PD-1. These
findings revealed for the first time that T/GIT inhibition
alone could improve CAR-T-cell efficacy in mouse mod-
els, as well as in models treated with a clinically relevant
monoclonal blocking antibody.
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Drug resistance

Drug resistance is one of the principal reasons for the
failure of anti-infection drugs and cancer chemotherapy
[226]. Tumor heterogeneity is the main driving force of
drug resistance [136].

Wang et al. [226] performed scRNA-seq on bone mar-
row samples from a patient with relapsed mantle cell
lymphoma (MCL). The results indicated that the major
immune escape mechanisms of MCL included inhibi-
tion of perforin activity, decreased immunogenicity,
and direct inhibition of apoptosis and cell killing medi-
ated by type I (CCND1TCD79A"TNFRSF13C™") and 1I
B (CCND1*CD79A™") cells. However, type I B cells dis-
played greater proliferation and differentiation potential
than other clusters, thus indicating that these cells had
greater potential for immune escape and the activation
of drug resistance mechanisms and might be useful drug
targets in the future.

The TME, which comprises cellular and noncellular
components, plays a crucial role in drug resistance [7].
Zhang et al. [227] performed sequential scRNA-seq of 21
specimens collected at baseline, during treatment, and/
or at disease remission/progression from three ibruti-
nib-responsive patients and 2 nonresponsive patients
to further explore the molecular heterogeneity and the
mechanism of drug resistance in refractory MCL. A
cell-to-cell communication analysis revealed that com-
plex interactions between MCL cells and the TME might
largely influence therapeutic resistance, warranting the
development of strategies to promote the anti-lymphoma
activity of the TME. Lossos et al. [228] established PDXs
of double-hit lymphoma (DHL) to more faithfully model
human aggressive lymphomas. According to the study,
rituximab resistance within the bone marrow was not
present upon early engraftment but developed dur-
ing lymphoma progression. Furthermore, this resist-
ance required a high tumor cell:macrophage ratio and
was overcome by multiple, high-dose alkylating agents.
ScRNA-seq of the macrophages identified a “superphago-
cytic” subset that expressed CD36/FCGR4, suggesting
that these cells were the primary effectors that mediated
the activity of the single agent cyclophosphamide. These
findings revealed a novel mechanism by which high-dose
alkylating agents promoted macrophage-dependent lym-
phoma clearance.

Prognosis

An accurate evaluation of the prognosis of cancer
patients is important [129]. Currently, three types of
prognostic factors identified by scRNA-seq have been
reported in lymphoma. The first is gene markers. Abe
et al. utilized multistep DEG analyses and revealed
LY6H expression which was first described in mouse and
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human endothelial cells in FL. Increased expression of
the markers LY6H and LOX, as well as TDO2 and REM,
was associated with an unfavorable prognosis [112]. Zhao
et al. [229] constructed prognostic models based on dif-
ferentially expressed genes associated with CD8" Tpy
subpopulations, and six prognosis-related genes were
obtained for model construction using multivariate Cox
regression analysis (GABRA3, HOXC8, RTN4R, CRLFI,
BIRC3, and REXOS5). The prognostic model could iden-
tify high-risk DLBCL patients and aid clinical decision
making. Borcherding et al. [73] showed the involvement
of FOXP3* malignant T cells in clonal evolution using
scRNA-seq and the machine-learning reverse graph
embedding approach: FOXP3" T cells transitioned into
GATA3" or IKZF2* (HELIOS) tumor cells in a patient
with stage IVA SS. FOXP3 was identified as the most
important factor for the early prediction of disease in
patients with CTCL; it and 19 other genes could predict
the CTCL stage with approximately 80% accuracy.

The second type of prognostic factor is cell subpopu-
lations. The sc-COO classification of DLBCL has been
reported in the section of subtyping [213]. Another
scRNA-seq analysis showed that DNMT3A mutations
defined a cytotoxic subset associated with a significantly
worse prognosis of PTCL-TBX21, this result can be used
to further refine pathological heterogeneity in PTCL-
NOS and suggests alternative treatment strategies for
this subset of tumors [230].

The third prognostic factor is gene signatures, which
usually consist of tens to hundreds of genes [231]. Liu
et al. [78] conducted a hierarchical clustering analy-
sis of 65 gene signatures and revealed four main meta-
programs, which indicated that malignant T cells have
similar behaviors across the heterogeneous transcrip-
tional spectrum of CTCL tumors. Annotation of the
top-ranking genes of the four meta-programs identified
distinct functional signatures, including T-cell signaling
and activation (meta-program 1: HLA-DRBI, CD69, and
MYC; and meta-program 4: ITK, FYN, and CBLB), cell
cycle (meta-program 2: MCM?7, PCNA, and BIRCS5) and
cell metabolism (meta-program 3: GAPDH, BUA52, and
RPS3). Notably, a high T-cell activation signature (meta-
program 1 and meta-program 4) was associated with a
favorable prognosis, while a high proliferation signature
(meta-program 2) predicted a poor patient outcome.

Conclusions

ScRNA-seq provides unprecedented mapping data for
cancer analyses because it provides high-resolution tran-
script sequencing; it can be used for the discovery of
new cell subsets and markers, the analysis of intratumor
and intertumor heterogeneity, and studies of the tumor
microenvironment, intercellular crosstalk, and lineage
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trajectories, and such studies have resulted in great pro-
gress in our understanding of cancer pathogenesis, diag-
nosis, prognosis, treatment, and drug resistance.

However, scRNA-seq has many disadvantages that
limit its widespread application. First, although scRNA-
seq has been the most mature and widely-used single-
cell omics in cancer research, it can’t completely reflect
cancer biology, such as the level of genomics, proteom-
ics, epigenomics, etc. Second, scRNA-seq has high
requirements for specimens, and can only use live cells as
detection objects; specimens analyzed at different times
will have associated batch effects. Third, enzymatically
digesting cells to obtain single-cell suspensions is likely to
kill cells and degrade RNA. This will also result in the loss
of spatial and morphologic information. Fourth, not all
nucleated cells are detected, the sequencing depth may
be limited, and scRNA-seq data do not fully reflect the
entire transcriptional landscape and genetic information
of cancer samples. The heterogeneity of patient tumors
and differences in detection platforms also increase the
difficulty of result interpretation and decrease data uni-
formity. In addition, scRNA-seq is expensive and time-
consuming, and data processing is complex.

Therefore, scRNA-seq technology still has much
room for improvement in cancer research. In the
future, researchers should focus on reducing the price,
further improving single-cell isolation technology,
improving throughput and sequencing depth, enhanc-
ing bioinformatics analysis pipelines, and expanding
applications to utilize frozen and formalin-fixed par-
affin-embedded (FFPE) tissues to improve the ease of
use and accessibility. In addition to advances in scRNA-
seq technology, scRNA-seq should also be combined
with other omics technologies and artificial intelli-
gence technology. ScRNA-seq-plus-genomics records
the dynamics between gene mutations and expression;
scRNA-seq-plus-proteomics reveals the relationship
between transcript abundance and resulting protein con-
tent; scRNA-seq-plus-epigenomics helps understand the
regulation of gene expression by chromatin structure or
methylation; scRNA-seq-plus-metabolomics map and
quantify the in sufficient detail to provide useful infor-
mation about cellular function in highly heterogeneous
cancers [66, 67]. Apart from the single-cell multi-omics,
spatial multi-omics also should be paid attention to and
be combined with scRNA-seq or other single-cell omics,
which will help us deepen our understanding of the cell
location and its various functions. Other cell-labeling
technologies such as CRISPR/Cas9 [232] and nuclear
hashing [57] have been combined with scRNA-seq. They
can identify and characterize the effects of thousands of
independent genetic perturbations in vivo on tissues or
cells with different functions at single-cell resolution. Of
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course, the combination of more omics requires more
samples, which is also a serious challenge in terms of
money and ethics. The application of more technolo-
gies generates more data, which also raises the require-
ments for researchers or clinicians to analyze and apply
the data, and puts higher demands on bioinformatics. As
a result, scRNA-seq with various other omics and tech-
nologies needs to be more tightly integrated to reduce
the cost and sample volumes. Moreover, artificial intel-
ligence-based machine learning and data processing
analyses should keep up with the scRNA-seq technol-
ogy to provide researchers with more useful information
that will improve the understanding of cancer. Lastly and
most importantly, scRNA-seq should be combined with
clinical needs to provide patients with better personal-
ized and precise treatment options. As a relatively new
technology that has not yet been widely used in clinical
practice, in addition to the norms that need to be devel-
oped for the technology itself, the ethical norms for its
use in clinical implementation also need to be formulated
and standardized by experts.
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