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Abstract 

Research into the potential benefits of artificial intelligence for comprehending the intricate biology of can-
cer has grown as a result of the widespread use of deep learning and machine learning in the healthcare sector 
and the availability of highly specialized cancer datasets. Here, we review new artificial intelligence approaches 
and how they are being used in oncology. We describe how artificial intelligence might be used in the detection, 
prognosis, and administration of cancer treatments and introduce the use of the latest large language models such 
as ChatGPT in oncology clinics. We highlight artificial intelligence applications for omics data types, and we offer 
perspectives on how the various data types might be combined to create decision-support tools. We also evaluate 
the present constraints and challenges to applying artificial intelligence in precision oncology. Finally, we discuss 
how current challenges may be surmounted to make artificial intelligence useful in clinical settings in the future.

Introduction
In the upcoming decades, it is anticipated that cancer 
would surpass other illnesses as one of the main global 
causes of morbidity and mortality [1]. A recent study 
from The Lancet [2] demonstrated that for many low-
income and middle-income nations, noncommunicable 

diseases (NCDs) pose an ever-greater health threat, 
with cancer becoming an NCD of greater importance. 
Therefore, it is imperative to focus on cancer treatment, 
enhance the rate of early detection and cure, and boost 
cancer screening.

Due to technical advancements in statistics and com-
puter software, computer professionals, and health scien-
tists may now collaborate closely to improve prognoses. 
As a result of the adoption of artificial intelligence (AI) 
strategies, researchers have increasingly concentrated on 
creating models using AI algorithms to detect and diag-
nose cancer. AI is the process of teaching a computer to 
mimic human intelligence by showing it how to study, 
evaluate, comprehend, deduce, interact, and make deci-
sions [3]. Tremendous success has been achieved with 
AI in the last ten years in the fields of speech synthesis, 
natural language processing, and computer vision. This 
review focuses on the latest AI techniques for tumor 
diagnosis, treatment, and prognosis. We highlight artifi-
cial intelligence applications for omics data types, and we 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of
Hematology & Oncology

†Chaoyi Zhang and Jin Xu contributed equally to this work.

*Correspondence:
Xianjun Yu
yuxianjun@fudanpci.org
Si Shi
shisi@fudanpci.org
1 Department of Pancreatic Surgery, Fudan University Shanghai Cancer 
Center, No. 270 Dong’An Road, Shanghai 200032, People’s Republic 
of China
2 Department of Oncology, Shanghai Medical College, Fudan University, 
Shanghai 200032, People’s Republic of China
3 Shanghai Pancreatic Cancer Institute, No. 399 Lingling Road, 
Shanghai 200032, People’s Republic of China
4 Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People’s 
Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-023-01514-5&domain=pdf


Page 2 of 29Zhang et al. Journal of Hematology & Oncology          (2023) 16:114 

offer perspectives on how the various data types might be 
combined to create decision-support tools and discuss 
how current challenges may be surmounted to make arti-
ficial intelligence useful in clinical settings in the future.

We searched three databases from their creation until 
November 10, 2023: MEDLINE (PubMed), CENTRAL 
(Cochrane Central Register of Controlled Trials), and 
Embase to assess the published literature pertaining to 
the application of artificial intelligence in cancer. Due 
to the rapid pace of AI updates, we have focused on the 
last two years of relevant research. The following key-
words were used in this scoping review: (neoplasms OR 
cancer) AND (artificial intelligence OR deep learning OR 
machine learning). With a focus on the application and 
usage of artificial intelligence in cancer treatment, we 
incorporated a total of 254 publications in the construc-
tion of this narrative review, including pertinent prospec-
tive, retrospective, and review studies.

Specific meaning of artificial intelligence
AI is an area of computer technology comprising numer-
ous techniques and subfields aimed at performing activi-
ties that could previously be completed only by humans. 
To enhance the interpretation of medical data relevant to 
medical administration, diagnostics, and predictive out-
comes, AI technologies and their subdomains are being 
implemented in healthcare delivery. The two main tech-
niques for implementing AI are machine learning (ML) 
and deep learning (DL), which are terms that are fre-
quently used interchangeably. Deep learning is a branch 
of machine learning. ML generates predictions by spot-
ting patterns in data by means of mathematical algo-
rithms. DL produces forecasts using multiple layers of 
fabric neural network algorithms that are modeled after 
the brain’s neural network architecture. In the past ten 
years, with advancements in big data, algorithms, com-
puting power, and Internet technology, AI has excelled in 
numerous tasks across a wide range of industries, includ-
ing identification of faces, image classification, speech 
recognition, automatic translation, and healthcare [4]. 
The main ML techniques are support vector machines 
(SVMs), decision trees, and K unsupervised algorithms, 
while the most commonly used for DL today are convo-
lutional neural networks (CNNs) [5]. Figure 1 presents a 
few of the most basic ML and DL approaches.

ML fundamentally seeks to replicate or mimic 
humans’ capacity for pattern recognition. Traditional 
ML approaches take far longer to teach and test based 
on a specific problem than DL approaches. SVMs, deci-
sion trees, random forests, gradient boosting (such as 
XGBoost), and other conventional ML techniques are 
examples of traditional ML techniques. There is a sig-
nificant flaw with decision trees, namely a decision tree 

divides samples extremely precisely, but dividing samples 
too precisely causes overfitting of the training set, and 
dividing samples coarsely results in a decision tree that 
does not fit the samples properly. Decision trees called 
random forests are based on the concept of learning and 
bagging combined. Two factors—the random selection of 
the dataset and the random selection of the characteris-
tics utilized in each tree—reflect the unpredictability of a 
random forest the most. The XGBoost technique repeat-
edly constructs an ensemble of decision trees. The capac-
ity of this technique to manage missing data, capture 
nonlinear correlations between the model features and 
the outcome, and have higher-order interactions between 
variables is its key benefits over conventional logistic 
regression-based risk models [7].

Training artificial intelligence models
Several processes are necessary for training an AI model, 
including data gathering and preparation, model selec-
tion, model training, and hyperparameter tuning.

Data collection and preprocessing
With the rapid development of modern medicine, vari-
ous types of data are emerging. A large amount of imag-
ing data has been generated as represented by X-ray, CT, 
and MRI, and the development of pathology has made 
sectioning the gold standard for tumor diagnosis. In 
addition to the traditional clinical information data, with 
the remarkable advances in sequencing technology over 
the past two decades, how to deal with the large amount 
of molecular data brought about by genomics, transcrip-
tomics, proteomics, etc., has also become a matter of 
close attention for clinicians. Later, we will describe how 
to deal with a single type of data. However, a patient usu-
ally does not have only one type of test and one type of 
data, so we will also introduce how to integrate different 
types of data to enhance computational models.

To facilitate the subsequent model training, we need 
to preprocess these data. For digital data, we need to 
remove outliers, deal with missing values, and nor-
malize the data. The most often utilized AI algorithms, 
using EHR as an example, are deep learning, decision 
tree algorithms, and regression algorithms. While com-
pleting regression tasks to finish disease risk prediction, 
researchers also use classification tasks to extract lesion 
characteristics from illnesses and categorize them [8]. 
The initial set of preparation measures mentioned above 
led us to normalize the data. To extract the characteris-
tics from the data, we must then process it further. Digi-
tal data may be used directly as raw data.

To enhance the diversity of the dataset, we may 
need to adopt techniques such as pitch shifting [9], 
time stretching [10], and adding background noise for 
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Fig. 1 Network structure of DL. a A model of an SVM; b A model of a random forest that is composed of several decision trees; c KNN characterized 
by the fact that it is composed of many random features rather than a linear feature; d Components of CNNs [6]; and e Components of graphical 
CNNs
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sound data. Sound data can have features extracted 
using methods such as Mel Frequency Cepstrum Coef-
ficients (MFCCs). Deep learning approaches are already 
being used in numerous creative photoacoustic tomog-
raphy projects for a range of goals, such as enhanced 
quantification, inadequate sampling modification, 
resolution enhancement, and reconstruction arti-
fact removal [11]. The sort of cancer for which sound 
data are most frequently employed is skin cancer. In a 
previous study [12], vibrational optical tomography 
(VOCT) and machine learning were utilized to assess 
the specificity and sensitivity of employing light and 
audible sound to distinguish between skin malignan-
cies and normal skin. An OQ LabScope 2.0 was used 
to measure the resonance frequency. Various machine 
learning techniques, including logistic regression, sup-
port vector, and decision-making models, were then 
used and contrasted to determine which model pro-
duced the best reliability. A recent study [13] imaged 
breast cells, especially malignant MDA-MB-231 cells 
and normal MCF10a cells, using phonon microscopy. 
A shallow convolutional neural network was trained to 
differentiate signals coming from healthy cells, malig-
nant cells, and background using the raw phonon data 
as inputs. They used the Gramian angular summation 
fields approach to transform the signals into a format 
that was appropriate for the network, which produced 
visual representations of the time-resolved signals. The 
final model has a 93% accuracy rate.

For image data, the preprocessing process may involve 
techniques such as rotating, inverting, scaling, and add-
ing noise. The best AI tool for processing images is deep 
learning. The most representative of these is convolu-
tional neural networks (CNNs) [14–16]. A CNN often 
includes the following layers: an input layer, a convolu-
tional layer, an activation layer, a pooling layer, and a fully 
connected layer. The core of CNN’s efficient image pro-
cessing lies in the convolutional layer (Fig.  1.C). In this 
way, an image is digitized. Transformer neural networks 
have recently replaced convolutional neural networks 
(CNNs) in many nonclinical and clinical image process-
ing jobs because of their enhanced reliability and effi-
ciency in computer vision tasks [17, 18]. According to a 
previous study [19], transformer-based methods outper-
formed attention-based MIL techniques in terms of data 
efficiency since they were better at learning from tiny 
quantities of data.

Different data can also be converted to each other. 
In addition to converting image data to numerical val-
ues, image data can also be converted to sound data to 
acoustically differentiate between malignant and benign 
lesions [20]. In the last layer of the DL classifier, all 1024 
nodes’ weighted activations were sonified—that is, data 

were represented using nonspeech to produce sounds—
after training, fine-tuning, and data replenishment [21].

Indeed, multimodality is inherent in health data. Our 
current state of health comprises a multitude of data, 
ranging from the broad macro-level (disease existence or 
lack) to the detailed micro level (biomarkers, proteom-
ics, and genomes). To improve prediction performance, 
a subsection of machine learning called “multimodal 
machine learning” seeks to create and train models that 
can use a variety of data sources and understand how to 
link to or integrate distinct modalities [22]. The majority 
of multimodal clinical decision-support systems in use 
today rely on an uncoordinated method of combining 
data from several sources [23–25]. IRENE was the first 
medical diagnostic transformer-based model to perform 
holistic representation learning on multimodal clini-
cal data concurrently using a single, cohesive AI model 
[26]. In contrast to earlier nonunified approaches, IRENE 
avoids taking separate pathways for learning modality-
specific characteristics in nonunified techniques, instead 
gradually learning holistic representations of multimodal 
clinical data. Large language models, which have just 
been developed, may improve this method [27].

Model selection
Depending on the kind of data and the issue we are try-
ing to address, we must select the best ML or DL archi-
tecture. When the dataset holds numeric data, we can 
use traditional regression models (e.g., linear regres-
sion) for prediction and traditional clustering algorithms 
(e.g., support vector machines (SVMs)) for classification. 
When the data we need to deal with are sound and image 
data, we need to choose to use neural networks (NNs), 
such as CNNs and RNNs, to help us mine the deeper fea-
tures of images. If we also need to focus on the sequence 
information between the data, we can use long short-
term memory (LSTM).

Model training
Conventional model training is divided into two steps: 
training and verification. We can divide the existing 
dataset into a training dataset and a verifying dataset at 
a ratio of 7:3 or 8:2. We first use the training dataset to 
train the model so that the model automatically opti-
mizes the parameters. To achieve better recognition and 
prediction results, then we use the verifying dataset to 
verify the training effect of our model.

Hyperparameter tuning
In an AI model, parameters are often divided into two 
categories: hyperparameters and model parameters. 
Model parameters are parameters that can be auto-
matically optimized through continuous training and 
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iteration, while hyperparameters are fixed parameters 
that need to be set manually. The number of layers in the 
convolution layer of the CNN is one kind of hyperparam-
eter. The setting of hyperparameters will directly affect 
the performance of a model. When the classification and 
prediction of a model is not good, we can modify the 
hyperparameters to provide its performance. The opti-
mization of hyperparameters is complicated work that 
requires sufficient professional knowledge and experi-
ence accumulated from long-term tuning (hyperparam-
eter tuning).

With the development of AI, an increasing number of 
models have been built, and Table 1 describes the latest 
FDA-approved AI models related to cancer.

ChatGPT, a public and open research preview that was 
released in November 2022, quickly popularized Ope-
nAI’s work with autoregressive LLMs based on generative 
pretrained transformers (GPT). Tiffany H. Kung et al.[35] 
evaluated ChatGPT on the United States Medical Licens-
ing Examination (USMLE) and found that ChatGPT per-
formed at or near the passing threshold of 60% accuracy. 
According to their study, LLMs such as ChatGPT may 
be able to help human students in a medical education 
context as a step toward eventual inclusion in clinical 
decision-making.

However, before clinical decisions are made, physicians 
often perform an additional and crucial step wherein 
they ask patients a series of questions to further clarify 
issues and schedule relevant tests to obtain more accu-
rate information to support a diagnosis. This step is cur-
rently difficult for ChatGPT to accomplish proactively. 
We must recognize that AI’s purpose is not to eclipse or 
take the place of humans but rather to offer decision-sup-
port tools that aid in the clinical management of cancer 
patients by medical professionals and researchers study-
ing the illness.

Increasingly significant role of AI in tumor 
diagnosis, staging, and grading
Tumor screening and early detection
An important way to reduce cancer incidence and mor-
tality is through screening in a population. With the 
increasing awareness of health screening, an increasing 
number of smart detectors are being invented to improve 
the early detection of cancer. For the purpose of early 
cancer diagnosis, traditional machine learning (ML) 
approaches including random forest (RF), naïve Bayes, 
k-nearest neighbor, support vector machines (SVM), and 
related methods have been applied. Convolutional neural 
networks are the most commonly used model in image-
based screening, and SVM algorithm-based and mass 
spectrum-based feature selection are commonly used in 
molecular diagnostics.

Digital breast tomosynthesis (DBT) can improve breast 
cancer detection rates by decreasing recall rates, increas-
ing incremental cancer detection rates, and increasing 
cancer detection rates [36–38]. However, DBT images 
take longer to interpret [39]. An AI model [40] was 
built consisting of a collection of 50 different classifiers. 
The clinical data and data from the Digital Imaging and 
Communications in Medicine tags were analyzed by 
five machine learning (ML) classifiers, and the four DBT 
viewpoints were processed by 45 deep learning (DL) 
classifiers. The ability of the AI model to recognize com-
mon digital breast tomosynthesis screening techniques 
reduced the number of examinations that required doc-
tors interpretation in a simulated clinical workflow.

For lung cancer screening, X-rays and low-dose CT are 
the most routine screening methods. DL algorithms have 
made good progress [41–43] in improving X-ray screen-
ing of lung nodules. However, low-dose CT is more accu-
rate than X-rays. The use of low-dose spiral computed 
tomography (CT) scans has been shown to significantly 
reduce lung cancer mortality [44]. A CNN (CXR-LC) was 
created utilizing information that is frequently found in 
electronic records (CXR picture, age, sex, and whether 
or not a person is a smoker) and validated that it can 
identify smokers at high risk of developing incident lung 
cancer in two large lung cancer screening trials (PLCO, 
NLST) [45, 46]. A DL system [47] was created that can 
correctly identify the existence of lung cancer within 
three years and account for all pertinent nodule and non-
nodule markers on screening chest CTs. Their research 
was the first to create a deep machine learning prediction 
method without the use of computer-aided diagnostic 
tools to assess a person’s 3-year probability of developing 
lung cancer and related lung cancer-specific mortality. 
Kiran Vaidhya Venkadesh et  al. [48] created and exter-
nally verified a CNN-based DL algorithm for estimating 
the likelihood of malignancy in lung nodules found by 
low-dose screening CT, which demonstrated good per-
formance, on par with thoracic radiologists, at estimating 
the malignancy risk of pulmonary nodules observed dur-
ing screening CT(AUC = 0.93). However, their researches 
included a number of restrictions. Firstly, one CT scan 
was employed in the created method, and a prior CT 
image was not taken into account [48]. Secondly, on aver-
age, members of the cohort [47] had LDCTs for screen-
ing every year, which may cause bias in the measurement 
results.

In order to address the above issues, a deep learning 
system was developed that can forecast the probability 
of developing lung cancer six years from now. Newly 
developed Sybil [49] can precisely estimate a person’s 
future risk of lung cancer on a single LDCT scan, ena-
bling more individualized screening. When using CNNs 
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to perform lung nodule classification, data imbalance 
is a crucial issue to be considered. To address this, 
MLSL-Net [50] was established, which employs mul-
tilabel softmax loss (MLSL) as the performance index. 
Recently, Xiangde Luo et  al. [51] proposed a centroid 
matching detection network (SCPM-Net) based on a 
3D sphere representation to address the limitations of 
CNNs, namely that they have limited elasticity when 
dealing with pulmonary nodules that have a large range 
of sizes and require predefined anchor parameters, 
such as the size, number, and aspect ratio of anchors. 
According to experimental findings on the LUNA16 
dataset, the SCPM-Net framework has an average sen-
sitivity of 89.2% at 7 preset FPs/scan.

In addition to imaging, molecular tests are an impor-
tant part of early screening. Nine lipids have been iden-
tified [52] as the features most crucial for early-stage 
cancer detection using SVM algorithm-based and mass 
spectrum-based feature selection. The chosen lipids were 
found to be differentially expressed in in situ early-stage 
lung cancer tissues according to matrix-assisted laser 
desorption/ionization MS imaging. A diagnostic screen-
ing approach for gliomas called DeepGlioma [53] uses 
deep neural networks and stimulated Raman histology 
(SRH) to quickly screen for molecular changes in newly 
collected glioma specimens.

Adenomas of the colorectum have been shown [54] 
to be highly correlated with colorectal cancer. Several 
studies have recently developed different AI models for 
improving adenoma detection rates [32, 55–62]. To pre-
dict the polyp class, two DL models, SEG and noSEG, 
were trained using 3D CT colonography image subvol-
umes. Model SEG was also trained using polyp segmen-
tation masks [56]. Joel Troya et  al. [58] combined side 
optics with AI. Hong Xu et al.[60] invented an AI polyp 
detection system (Eagle-Eye) with real-time notifica-
tion on the same monitor of the endoscopy system. All 
of these models have been shown to enable CT colonog-
raphy to noninvasively distinguish benign and prema-
lignant colon polyps. In addition, AI has been shown to 
save on the cost of colonoscopies [62, 63]. Along with 
colonoscopy, noninvasive diagnostics, including plasma 
fluorescence [64], tests for intestinal microbiota [65], and 
spatial light interference microscopy [59], can be used 
in conjunction with AI to enhance the early detection of 
colorectal cancer.

Furthermore, cervical cancer [66], skin cancer [67, 68], 
oral cancer [69, 70], esophageal squamous cell carcinoma 
and adenocarcinoma of the esophagogastric junction 
[71] can also be detected and distinguished early using 
AI models. The above studies greatly demonstrate the 
potential of AI models in detecting early cancers. Fig-
ure 2 describes the function of AI in cancer.

Tumor diagnosis
When assessing a patient’s signs and symptoms, clini-
cians typically draw on their own knowledge and profes-
sional expertise. Given the enormous amount of clinical 
data, it can be challenging for them to make a diagnosis 
quickly. In addition, there are issues with individualized 
patients, atypical test results, and false negatives. Doc-
tors with heavy clinical workloads frequently run the 
risk of missing or misdiagnosing patients. However, AI 
can process a large amount of data in a short period and 
can improve the accuracy and speed of disease diagnosis, 
thus allowing AI to be widely used in cancer diagnosis.

The current approaches of AI for cancer diagnosis can 
be routinely divided into two main types: microscopy-
based and image-based AI. Microscopy-based AI mainly 
explores models to improve the correct diagnosis from a 
histopathological point of view. Image-based AI involves 
algorithms that reduce the incorrect diagnosis rate from 
images such as X-ray and CT scans.

Here, we focus on the latest advances in current con-
ventional microscopy-based and image-based AI for can-
cer diagnosis. Weakly supervised learning models and 
generative adversarial networks are the most relevant 
models for histopathology. Various models in deep learn-
ing play an important role in assisting imaging to diag-
nose tumors.

Microscopy‑based research
Pathological diagnosis was once considered the gold 
standard for cancer diagnosis, but errors inevitably exist 
[72]. In the past, the majority of techniques relied on 
morphological traits or hand-crafted features to identify 
malignant and noncancerous cells in histopathological 
images [73, 74]. The power of AI is not limited to image 
categorization, where the goal is to forecast a certain 
condition consistent with the image. Generic models rep-
licate the original visuals and provide fresh possibilities, 
such as quick and safe model training. Curating enor-
mous databases of digitized tissue sections has been 
made practical by whole-slide imaging (WSI) of tissues, 
affordable storage, and rapid network data transfer [75]. 
Annotation-less techniques have gained popularity in 
recent high-profile papers [27, 76, 77]. These approaches 
do not rely on annotations for individual structures such 
as nuclei, cells, or tissues; instead, they simply need one 
label per complete WSI, such as malignant/benign, which 
characterizes the WSI as a whole. AI techniques lever-
age weak labels by utilizing the multiple instance learning 
(MIL) AI framework [78].

Histological staining, a vital step in the pathology 
workflow, is required to offer tissue contrast and color by 
permitting chromatic discrimination between different 
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tissue components. The most popular stain, hematoxy-
lin and eosin (H&E), sometimes known as the “standard 
stain,” is used in almost all clinical settings [79]. Aman 
Rana et  al. [80] trained conditional generative adver-
sarial networks (cGANs), which automatically convert 
native nontrained RGB WSIs to computational H&E-
stained pictures. Binglu Huang et al. [81] collected 1037 
H&E-stained pathology images from 2333 GC patients 
to develop GastroMIL, which achieved an accuracy of 
0.920 in an external validation set, superior to that of 
junior pathologists and comparable to that of expert 
pathologists. It is challenging to identify mitosis in H&E-
stained slices because there are few datasets available and 
because mitotic and nonmitotic cells are similar. Com-
paring performance metrics of multi-CNN combina-
tions with other classifiers such as AdaBoost and random 
forest, multi-CNN combinations with three pretrained 
CNNs and a linear SVM have been shown to provide 
93.81% accuracy and a 92.41% F1 score for detecting 
mitosis [82].

DL can also predict biomarkers with high performance 
from cancer pathology slides. Malignant cancer cells are 
created when normal cells have oncogenic driver muta-
tions, which completely alter the behavior of the cells 
by rewiring their internal systems [83]. When genetic 
mutations are present, the genotype as established by an 
enzyme-mediated biological research assay or other gold 
standard testing is used as the ground-truth approach 
during the traditional diagnostic workup to identify 
the picture label. The term “ground truth” describes the 
kind of test that is employed to identify training pic-
tures. As a result, by examining histological image data, 
the DL classifier may be trained to replicate the “ground 
truth.” In contrast to basic DL applications, these pro-
gressed applications for deep learning can give doctors 
extra information that is not being gleaned from routine 
material in the current medical workflows. They signify 
a novel category of biomarkers possessing prognostic 
and/or predictive utility. Microsatellite instability (MSI) 
due to mismatch repair (MMR) defects accounts for 

Fig. 2 AI in oncology, including early screening, diagnosis, treatment, prognosis, and clinical decision-making. (Created with BioRender.com)
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15–20% of colon cancer (CC), and many DL algorithms 
[84–86] have been established to detect MSI. To predict 
additional biomarkers for CRC from pathology slides, 
Jan Moritz Niehues et  al.[14] comprehensively assessed 
six distinct cutting-edge DL architectures. They discov-
ered that while MSI and BRAF mutant prediction was 
performed at a clinical-grade level, PIK3CA, KRAS, and 
NRAS mutation prediction did not meet these stand-
ards. An algorithm for cell-distance analysis of multiplex 
fluorescence immunohistochemistry (mfIHC) staining 
and a framework for automated Ki-67 LI quantification 
were created and validated in a cohort of 12,475 prostate 
cancer samples in order to enable automated Ki-67 LI 
assessment in common clinical practice [87]. AI-assisted 
analysis of biomarkers in thyroid cancer [88], and breast 
cancer [89] also helps in accurate diagnosis.

Overall, these models may be useful for diagnosing 
and categorizing malignancies if their performance is 
supported by prospective studies. This is especially true 
given that their performance is on par with or even supe-
rior to that of experts in the area.

Image‑based research
AI has much potential for helping radiologists with their 
work and for image information mining. Clusters of 
graphics processing units are integrated into high-perfor-
mance computers, which have powerful computational 
power. In addition to the AI we mentioned above, which 
can assist in early screening for breast, lung and colorec-
tal cancers, some other promising imaging tests can be 
combined with AI to improve diagnostic accuracy.

Numerous modalities have been used to acquire vast 
numbers of high-quality skin photos, exploiting the 
exceptional advancements in optical imaging methods. 
Therefore, AI has made promising progress in the detec-
tion of skin cancer through dermoscopy. Inception V3 
models that have already been trained have been used 
[90] to classify skin lesions and to present dermatologist-
level prediction outcomes. The knowledge distillation 
approach is also often used to help diagnose melanoma 
[91, 92]. In addition to the simple teacher–student model, 
the SSD-KD approach [93], a unique self-supervised 
diversified knowledge distillation technique, has been 
used for the lightweight multiclass categorization of skin 
diseases utilizing dermoscopy images. In that study, the 
conventional single relational modeling block was substi-
tuted with dual relational blocks in terms of technologi-
cal innovation. Multi-Site Cross-Organ Calibrated Deep 
Learning (MuSClD), a novel approach to cross-organ cal-
ibration between two sites of digitalized histopathology 
images, was validated in nonmelanoma skin cancer. 3D 
images [94, 95], EfficientNet [96, 97], genetic program-
ming (GP) [98], and new AI algorithms on smartphones 

[99, 100] have also been developed for skin cancer 
diagnosis.

To supplement human visual inspection, AI can assist 
in the detection of undetectable tumor lesions on PET 
scans. Ga-PSMA-11 PET-based radiomics features have 
been used to generate random forest models that accu-
rately predicted invisible intraprostatic lesions [101]. 
Biopsy and magnetic resonance imaging (MRI) are fre-
quently used to diagnose intracranial tumors. Due to 
the similar phenotypes of various tumor classes on MRI 
scans, it has been difficult to identify tumor types, espe-
cially rare types, from MRI data. A DL method for seg-
menting and classifying 18 distinct types of intracranial 
tumors was developed [102] using T1- and T2-weighted 
images and T2 contrast MRI sequences and evaluated 
with an AUC of 0.92.

AI may easily be applied to medical imaging, and major 
advancements in this area have been made in recent 
years. AI eliminates the uncertainty that people contrib-
ute to decisions and delivers objective measurements for 
each choice. However, the limits are also readily appar-
ent. The molecular causes of illnesses are not revealed by 
morphological evidence. By using this method, disease 
states with the same morphological appearance cannot 
be discriminated.

Tumor staging and grading
Important factors for tumor T-staging include the size 
and degree of invasiveness of primary tumors, which 
comprise descriptions of their shapes. Convolutional 
neural networks are most used in this task. The T stage 
of Barrett’s carcinoma is a crucial consideration when 
choosing a course of therapy. Endoscopic ultrasonog-
raphy is still the norm for preoperative staging, but its 
usefulness is under question. To help with staging and 
to improve outcomes, new tools are needed. With a high 
accuracy of 73% in diagnosing esophageal cancer, an AI 
system built around endoscopic images has been devel-
oped [103]. Tumor sizes and forms vary, making individ-
ual slice-by-slice screening for T-staging time intensive. 
Consequently, a multi-perspective aggregation network 
(TSD Net) has been created with ideas from oncologi-
cal diagnostics that included different diagnosis-oriented 
knowledge and enabled automatic nasopharyngeal carci-
noma T-staging identification [104].

Advances in imaging histology have greatly contrib-
uted to helping TNM staging of tumors. Separate itera-
tions of the machine learning models have been created 
using both the entire collection of extracted features (full 
model) and just a selection of the previously discovered 
robust metrics (robust models) to confirm that CT-based 
radiomics signatures were effective tools for determin-
ing the grade and stage of ccRCC [105]. Additionally 
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important in the early phases of decision-making, but 
time-consuming, is a delineation of the tumor. To fore-
cast the grade of a tumor while also segmenting it, a sin-
gle multi-task convolutional neural network has been 
created using the whole 3D, structural, preoperative MRI 
data [106].

Accurate assessment of lymph node metastasis (LNM) 
is essential for evaluating the staging and grading of 
tumor patients. In addition to offering a straightfor-
ward “yes” or “no” response on the likelihood of having 
cancer, AI models can also identify the disease site from 
a test picture. One of the most common applications is 
to help find the localization of metastatic tumors. Using 
whole-body PET/CT scans, convolutional neural net-
works (CNNs) based on UNet [1] were trained to detect 
and separate metastatic prostate cancer lesions fully 
automatically [107]. The localization of tumor metastasis 
in whole-slide images has also been studied extensively 
in recent years [107–110]. The condition of the lymph 
nodes (LNs) prior to surgery is crucial for the manage-
ment of colorectal cancer (CRC). With areas under 
the curve (AUCs) of 0.79, 0.73, and 0.70 in the training 
set, testing set, and verification set, respectively, a deep 
learning (DL) model [111] with features gathered from 
improved venous-phase CT images of CRC has been pro-
posed to identify LNM in CRC. Shaoxu Wu et  al. [112] 
created a diagnostic algorithm called LNMDM based 
on AI that was effective for finding micrometastases in 
lymph nodes and was demonstrated not only in bladder 
cancer (0·983 [95% CI 0·941–0·998]) but also in breast 
cancer (0·943 [95% CI 0·918–0·969]) and prostate cancer 
(0·922 [95% CI 0·884–0·960]). AI plays a significant role 
in aiding diagnostics to find lymph node metastases in 
slide pictures. Lymph node metastases, especially micro-
metastases, were successfully identified by the LNMDM 
[112] on whole-slide images in bladder cancer. The VIS 
AI algorithm demonstrated comparable accuracy and 
NPV in identifying LN metastases on breast cancer. In 
summary, the implementation of AI in tumor staging and 
grading has significantly improved tumor prognoses and 
increased the general survival rate of cancer patients.

Tumor therapy
AI for exploring tumor therapeutic targets
In recent years, the development of multiomics tech-
nologies in cancer research [113, 114] has greatly facili-
tated the discovery of anticancer targets [115–117]. The 
advancement of precision medicine and translational 
medicine will be significantly aided by the use of ML and 
DL to mine multiomics data to investigate complicated 
disease causation processes and treatment response 
mechanisms. In the following, we describe in detail the 
advances in genomics, epigenetics, transcriptomics, 

proteomics, metabolomics, and multiomics in cancer 
target discovery. Figure  3 describes the main sources of 
these six components and the advanced methods cur-
rently comprising them.

Genomics
The genome contains inherited information that con-
trols gene expression to shape the structure and working 
machinery of the cell [118]. Genomics focuses on under-
standing the composition, organization, visualization, 
and modification of an organism’s whole genome [119]. 
The rise of the genomic era has also boosted precision 
medicine and cancer [120]. The approach of a meta-
learning model [121] allows users to discover significant 
pathways in cancer and priority genes based on their 
contribution to survival prediction. To fully understand 
how cancer develops, progresses, and is treated, accu-
rate somatic mutation detection is difficult yet essential. 
The first method for detecting somatic mutations based 
on deep CNNs is called NeuSomatic [122]. However, the 
fact that matched normal specimens are not frequently 
acquired in clinical practice is a major barrier to genetic 
testing in cancer. The somatic vs. germline status of each 
discovered change may be predicted using SGZ, [123] 
which does not need a patient-related standard con-
trol, by modeling the mutation’s allele frequency (AF), 
accounting for the cancer content, cancer ploidy, and 
local copy number. Similarly, a recently created method, 
Continuous Representation of Codon Switches [124] 
(CRCS), a DL-based technique, can aid in the identifica-
tion and investigation of driver genes as well as the detec-
tion of cancer-related somatic mutations in the absence 
of matched normal samples.

Taking colon cancer as an example, numerous stud-
ies [125–128] have subtyped colorectal cancer based on 
similar and different biological traits and pathways, and 
they have identified the relationships between these path-
ways and patient prognosis, overall survival, and respon-
siveness to various treatments—particularly targeted 
therapy and immunotherapy. Using 499 primary colo-
rectal neoplasm diagnostic images from 502 individuals 
in The Cancer Genome Atlas Colon and Rectal Cancer 
(TCGA-CRC-DX) cohort, a retrospective study estab-
lished a weakly supervised DL framework incorporating 
three separate CNN models [85]. After comprehensive 
validation, the method was shown to be helpful for 
patient classification for targeted medicines, with possi-
ble cost savings and quicker turnaround times compared 
to sequencing- or immunohistochemistry-based tech-
niques. The research, however, examined each individual 
image tile without considering the significance of the 
spatial relationship between tiles. In a recent study [129], 
a method for forecasting cross-level molecular profiles 
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involving gene mutations, copy number variations, and 
functional protein expression from whole-slide pictures 
was proposed. This method focuses on the spatializa-
tion of cancer tiles. In the training dataset, the model 
performed exceptionally well in predicting a variety of 
genetic alterations and then identifying targeted thera-
pies for colon cancer patients.

Epigenetics
Epigenetic modification is the genetic change in the 
way genes operate and express without altering the 
DNA sequence. DNA methylation, histone modifica-
tion, and chromatin structure manipulation are the 
three primary epigenetic modifications that are now 
understood [130]. Although there are high-quality data 

on DNA methylation, few samples have RNA-seq data 
due to numerous experimental difficulties. Therefore, 
an innovative technique called TDimpute [131] was 
created to reconstruct lost data on gene expression 
from DNA methylation data using a transfer learning-
based neural network. Understanding how epigenet-
ics regulates gene expression to govern cell functional 
heterogeneity is dependent on the ability to predict 
differentially expressed genes (DEGs) from epigenetic 
signal information. On the basis of epigenetic data, a 
multiple self-attention model (Epi-MSA) [132] was 
suggested to predict DEGs. To determine which gene 
locations are crucial for forecasting DEGs, Epi-MSA 
first applies CNNs for neighborhood bin information 
embedding and then makes use of several self-atten-
tion encoders on various input epigenetic parameters.

Fig. 3 Components of multiomics and the main techniques. The combination of AI and multiomics has led to the discovery of new targets 
for cancer therapy. (Created with BioRender.com)
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Transcriptomics
Transcriptomics is a useful tool for comprehending the 
physiology of cancer and locating biomarkers. It includes 
analyses of alternative transcription and alternative poly-
adenylation, detection of integration transcripts, investi-
gations of noncoding RNAs, transcript annotation, and 
finding novel transcripts [133]. One study using DL algo-
rithms to interpret common cancer transcriptome mark-
ers [134] showed that across a wide range of solid tumor 
types, dysregulation of RNA-processing genes and aber-
rant splicing are widespread traits on which fundamen-
tal cancer pathways may converge. Molecular pathology 
plays an important role in cancer, but whether it is pos-
sible to estimate the levels of gene expression based on 
a visual inspection of H&E-stained WSIs has never been 
thoroughly explored. Numerous studies have been con-
ducted to predict cancer gene expression, including 
that of prostate [135] and breast [136] cancers, across 
the transcriptome from histopathological images. A DL 
model called HE2RNA [137] based on a multitasking 
poorly supervised technique was created using matched 
WSIs and RNA-Seq profiles from TCGA data, which 
included 8725 patients and 28 distinct cancer types. This 
increases the likelihood of discovering novel gene tar-
gets. Patients’ responses to treatment are significantly 
influenced by the quantity, composition, and geographic 
distribution of the cell groups in the tumor microenvi-
ronment (TME) [138]. The thorough characterization of 
gene regulation in the TME has been made possible by 
recent developments in spatial transcriptomics (ST) [139, 
140]. Three new approaches have recently been devel-
oped: Kassandra [141], XFuse [142], and TESLA [143]. 
Kassandra is a tree ML algorithm that was taught to pre-
cisely rebuild the tumor microenvironment (TME) using 
a large database of > 9,400 tissue- and blood-sorted cell 
RNA profiles combined into millions of artificial tran-
scriptomes. According to Kassandra’s deconvolution of 
TME components, these populations play a part in tumor 
etiology and other biological processes. By utilizing data 
from H&E-stained histological images, XFuse predicts 
superresolution gene expression per pixel. TESLA is an 
ML framework that incorporates gene expression and 
histological image data into ST to study the TME. The 
innovative aspect of TESLA is the annotation of diverse 
immune and tumor cells on histological images directly.

In addition, the identification of lncRNAs [144–146] 
and microRNAs [147, 148] by ML can assist in the precise 
treatment of cancer. In the fight against cancer, therapeu-
tic decisions are increasingly based on molecular tumor 
features, and cancer tissue molecular profiling is becom-
ing an essential component of standard diagnosis [149]. 
To reduce individualized patient differences, scGeneRAI 
[150] uses layerwise relevance propagation (LRP), an 

explainable AI technique, to extrapolate individual cell 
gene regulation networks from single-cell RNA sequenc-
ing data. Oncology drug response is a major challenge in 
cancer treatment. With an average Matthew correlation 
coefficient (MCC) and AUC of 0.56 and 0.80, respectively, 
the classification and regression tree (CART) model from 
interpretable ML models has proven to be the best model 
for predicting how breast cancer would react to doxo-
rubicin [151]. At the single-cell level, ScDEAL is a deep 
transfer learning system that integrates bulk cell-line data 
to predict cancer medication response at the single-cell 
level. Finding drug resistance targets at the level of tran-
scriptional profiles using AI deserves more research in 
the future.

Proteomics
Proteomics is a broad study of proteins that identifies and 
counts the proteins present in a biological sample, such 
as a sample of cells, tissues, or bodily fluids. Proteomics 
data offer the benefit of providing a numerical number 
of individual proteins throughout the body and dynamic 
characteristics that develop over time and among indi-
vidual subjects, in contrast to other forms of omics data, 
such as genomic data. Mass spectrometry (MS) is a key 
tool used in proteomics research [125]. MS-based prot-
eomics has advanced quickly in terms of lower cost and 
higher throughput, regularly permitting large-cohort 
studies with tens of thousands of participants and tens 
of millions of identified proteins in cancer cells and other 
biological samples. However, the majority of research 
concentrates on the final proteins discovered using a col-
lection of algorithms that compare partial MS spectra 
with the ordered database, leaving the problem of pattern 
identification and categorization of the raw mass-spec-
trometric information unanswered. Consequently, for the 
analysis of massive MS data using deep neural networks 
(DNNs), the publicly available MSpectraAI [152] plat-
form and the tumor classifier [153] have been developed, 
which could expand the intriguing use of DL techniques 
for classifying and predicting proteomics data from mul-
tiple cancer types and distinguishing between tumor and 
nontumor samples.

Sequential Window Acquisition of all Theoretical 
Mass Spectra-MS (SWATH-MS) is a cutting-edge MS 
method that enables the measurement of nearly all 
peptides as well as proteins present in a single sample, 
making it valuable in research involving massive sam-
ple cohorts [154]. It can be used to facilitate the cat-
egorization of CRC molecular subgroups and promote 
both diagnostics and the creation of novel medications 
[155]. Regarding colorectal cancer, a mechanism-based 
ML approach [156] has been proposed to find genes 
and proteins with substantial correlations to event-free 
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patient survival and predictive potential to account for 
patient-specific variations in STN activity by building 
three linear regression models. The development of 
proteomics has contributed to the discovery of new tar-
gets in hematological tumors. Targetable enzyme char-
acteristics have been revealed by proteomics of acute 
lymphoblastic leukemia that is resistant to Notch1 sup-
pression [157]. Through the induction of long-lasting 
immune responses, T cells play critical roles in human 
defense against hematological tumors. In recent work 
[158], ML and nanoscale proteomics were coupled to 
subtype T cells in peripheral bloodstreams from sin-
gle individuals with multiple myeloma. To reduce the 
possibility of overfitting the ML models, differentially 
expressed proteins (DEPs) were selected according to 
statistical significance, and only the top 13–15 DEPs 
were utilized. Thus, this work helped identify new tar-
gets for immunotherapy. Another DL network [159] 
identified the 20 proteins most strongly associated with 
FLT3-ITD in acute myeloid leukemia. In addition, DL 
and ML have been applied to proteomics data for pan-
creatic cancer [160] and diffuse large B-cell lymphoma 
[161] patients, respectively.

Metabolomics
Metabolomics is a burgeoning area of research that uti-
lizes technologically sophisticated analytical chemistry 
to perform high-throughput characterization of metab-
olites in cells, organs, tissues, or biological fluids [162]. 
New therapeutic targets have been suggested to target 
metabolic constraints in cancer as a result of metabo-
lomics studies, which have revealed potential medicinal 
weak points for treating cancer [163]. Lipidomics is a 
branch of metabolomics that aims to study and analyze 
the lipids in the metabolome and the molecules that 
interact with them [164]. Metabolomics analysis can be 
performed using GC‒MS and LC‒MS, and LC‒MS is 
commonly used for the analysis of lipidomics. The com-
bination of metabolomics and AI has flourished in vari-
ous areas of cancer, including breast cancer [165, 166], 
head and neck cancer [167], colorectal cancer [168, 
169], glioma cancer [170], esophageal cancer [171, 172], 
lung cancer [52, 173], kidney cancer [174], and neu-
roendocrine tumors [175]. With the greatest predic-
tion accuracy (AUC = 0.93) and a deeper understanding 
of disease biology, a DL technique has been shown to 
be beneficial for metabolomics-based breast cancer ER 
status categorization [176]. By biologically interpreting 
the first hidden layer, this technique can identify eight 
frequently enriched crucial metabolomics pathways 
(adjusted P value 0.05) that cannot be identified by 
other ML techniques [176].

Multiomics
Multiomics data, which include genomics, epigenomics, 
transcriptomics, and proteomics data, can offer profound 
information on the quantity and/or change in biological 
molecules across numerous dimensions in different tis-
sues or cells [177]. Multiomics data have gained interest 
recently for their potential to offer a complete picture of 
patients, but their high dimensionality makes them dif-
ficult to use [178]. AI related to cancer multiomics has 
boomed in the last year and has strong potential for 
development in cancer therapy. Cancer driver genes are 
important targets in tumor therapy [179]. When com-
pared to real tumors, an ML multiomics study [180] 
indicated carcinoma driver dysregulation in pancancer 
lineages of cells. Using graph convolutional networks 
to identify cancer driver genes is currently a popular 
research direction. DGMP [181] and MODIG [182] were 
created separately by applying pancancer multiomics 
data (including DNA methylation, copy number varia-
tion, mutation, and gene expression data). DGMP joins 
a directed graph convolutional network (DGCN) and 
multilayer perceptron (MLP), and MODIG is based on 
a graph attention network (GAT). They both have been 
shown to effectively identify cancer driver genes. Accu-
rate tumor druggable gene discovery advances preci-
sion cancer therapy and deepens the comprehension of 
targeted cancer therapy. To determine the landscape of 
the genes that are capable of causing cancer, DF-CAGE 
[183], a novel ML-based method, combined the data 
from over 10,000 TCGA profiles on somatic mutations, 
copy number variations, DNA methylation, and RNA-
Seq. DF-CAGE identified 465 putative cancer-druggable 
genes out of the approximately 20,000 protein-coding 
genes. These results provide insight into current pharma-
cological research and development efforts. DeepInsight-
3D [184], which depends on the translation of structured 
data into images and then makes use of CNNs, repre-
sents a solution to the issue of the high dimensional-
ity of the datasets combined with the lack of sufficiently 
large numbers of annotated samples in multiomics data. 
Future research toward better personalized treatment 
plans for various malignancies may be aided by the sug-
gested enhancements.

The prognosis for non-small cell lung cancer (NSCLC), 
a heterogeneous illness, is dismal. A recent study [185] 
used ML models to develop a classification method 
and identified five novel NSCLC clusters with different 
genetic and clinical characteristics. Similarly, a multiom-
ics data-affinitive AI algorithm [186] was created to iden-
tify new biomarkers in NSCLC but differently based on 
the graph convolutional network. Filippo Lococo et  al. 
integrated multiomics and AI data into clinical trials, 
promoting better care for lung cancer patients [187]. The 
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clinical significance of IMMT in KIRC has been validated 
using a combination of supervised learning and multiom-
ics integration [188]. The majority of prognostic models 
for colon cancer are based on single-pathway genes. In 
a recent study [189], the molecular mechanisms caus-
ing the aggressiveness, recurrence, and advancement of 
colon cancer were explained using an integrative multi-
omics study, and ML methods were used to recognize the 
subtypes.

AI models can also help locate tumor sites during sur-
gery. One of the most common applications is to help find 
tumor locations during surgery. The location, quantity, 
and size of cancer are critical factors for precise tumor 
excision, particularly in surgical patients. A study pre-
sented a novel double branch attention-driven multiscale 
learning method for MRI-based prostate and prostatic 
cancer segmentation networks [190]. The Dice similar-
ity coefficients (DSCs) for prostate and prostate cancer 
MRI segmentation were 91.65% and 84.39%, respectively. 
Using magnetic resonance imaging, UNet +  + can auto-
matically distinguish between liver tumors and normal 
hepatic tissue [191].

AI models can also help with tumor type classification. 
Neurosurgical cancer resection is the primary thera-
peutic method most frequently used for central nervous 
system (CNS) cancers. The kind of cancer is a crucial 
determinant in deciding whether the risk of a more vigor-
ous excision is acceptable. A patient-independent trans-
fer-learned neural network called Sturgeon was recently 
created to allow for the molecular subclassification of 
tumors of the central nervous system using sparse data 
[192]. In another study [193], after first-level categoriza-
tion determined whether the aberrant area of the picture 
was a brain tumor, deep residual network (DRN)-enabled 
RDTDO was used for brain tumor classification, which 
was provided via second-level classification.

Tumor prognosis
Clinical oncologists rely heavily on prognosis prediction 
to guide treatment choices by providing information on 
the predicted course of the disease and the chance of 
survival [194] (Table  2). The Cox proportional hazard 
regression model is used most frequently to predict sur-
vival [195]. However, due to its linear nature [196], the 
complex relationships between some features are difficult 
to interpret, which is compensated by the current sur-
vival models of ML and DL [197–199]. Common mod-
els for ML are SVMs, logistic regression, random forest, 
CatBoost, LightGBM, and XGBoost. SVMs are one of 
the most widely used algorithms in ML for cancer prog-
nosis. In recent research [200], 265 surgical resection 
patients were included (training cohort: 212, internal 
validation cohort: 43). An SVM model was created using 

nine clinicopathological characteristics. Their SVM-
based model may be utilized to forecast OS and DFS in 
GC patients as well as the advantages of adjuvant treat-
ment in TNM stage II and III GC patients. Another study 
[201] fed each feature set selected by LASSO into three 
classifiers, namely SVM, hist gradient boosting (HGB), 
and XGBoost (XGB), to develop predictive models. In a 
study of breast cancer, SVMs and  random forests were 
utilized as ML classifiers, while principal component 
analysis (PCA) and variational autoencoders (VAEs) were 
employed as reduced-dimensionality approaches [202]. 
However, multimodal classifiers were not proactively 
prospectively evaluated on original data in the study. 
RSF outperformed COX and SVM by a wide margin in 
research on GBM [203].

Currently, there are available radioactive substance 
analysis and CNN-based PET/CT image prognosis tech-
niques. However, there are intrinsic restrictions to risk 
stratification when obtaining radiomics or deep features 
in grid Euclidean space. To accurately stratify HNC risk, 
a functional-structural subregion graph convolutional 
network (FSGCN) has been proposed [204]. To over-
come challenges in predicting the LNM status from orig-
inal cancer histology, Siteng Chen et al. [205] presented 
an attention-based weakly supervised neural network 
that relied on self-supervised cancer-invariant character-
istics, which might function as an innovative prognostic 
marker across different types of cancers.

The combination of ML and DL is gaining increasing 
attention. Even after curative resection, pancreatic ductal 
adenocarcinoma (PDAC) has a dismal prognosis. The 
prognosis may be improved by using a DL-based classi-
fication of postoperative survival in the preoperative set-
ting to guide treatment choices. Based on this, ensemble 
learning was used to merge two models that were sepa-
rately constructed using clinical data-based ML models 
and computed tomography (CT) data-based DL models 
[206]. The classification of CRC tissues based on ana-
tomical histopathological information, however, may not 
be possible using DL structures alone. In one study [207], 
data were input into a deep SVM based on an ensemble 
learning technique called DeepSVM after the features 
were chosen, and the results showed that the hybrid 
model had an accuracy of between 98.75 and 99.76% on 
CRC datasets.

AI in clinical decision‑making
The data required by physicians to make medical deci-
sions are dispersed over numerous records, including a 
patient’s case  history, test results, and imaging studies. 
Clinical prediction models usually use direct physician 
inputs or structured inputs taken from the electronic 
health record (EHR). The dependency on formatted 
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inputs adds complexity to data processing as well as to 
the creation and use of models, resulting in the genera-
tion of many AI models. The invention of new drugs for 
oncology research in the era of precision medicine and 
the emergence of various treatment modalities, such as 
radiation therapy and surgery, have made the choice of 
oncology treatments fraught with various challenges. 
Given the breakthroughs in ML due to the availability of 
vast volumes of data, clinical decision-support systems 
(CDSS) driven by AI have been developed [229]. The ear-
liest extensively used CDSS, Watson for Oncology (WFO, 
IBM Corporation, USA), has steadily gained popularity 
throughout the world in the treatment of thyroid carci-
noma [230], prostate cancer [231], lung cancer [232], and 
breast cancer [233, 234]. Medical personnel enter a case’s 
structured data into the WFO system, and then, the most 
common treatment technique for the individual situation 
is quickly output by the system, along with reliable proof.

Beyond skilled medical professionals, AI algorithms 
can forecast certain medical outcomes for assisting clini-
cal decision-making in many ways. In terms of digital 
data, transforming unstructured electronic health infor-
mation into repomics (report omics) characteristics, a 
radiological repomics-driven model combining medi-
cal token cognition (RadioLOGIC) [235] is presented to 
evaluate human health and forecast pathological progno-
sis by transfer learning. The system exhibits superior fea-
ture extraction performance compared to cohort models 
and shows potential for automated clinical diagnosis ver-
ification from electronic health information. To predict 
outcomes and identify prognostic characteristics that 
correspond with both favorable and negative outcomes, 
the multimodal, poorly supervised deep learning system 
is able to integrate disparate modalities in whole-slide 
pictures and molecular profile data from 14 cancer types 
[236].

Although the CDSS can quickly collect and categorize 
stored information, the current state of application is that 
the CDSS is dominated by hospital ratings, and there is 
very little true large-scale application. EHR limitations, 
such as the inability to conduct efficient interpretation 
and information retrieval, can be addressed with the 
use of LLMs. LLMs are one of the most intriguing new 
advances in contemporary AI studies [237]. They receive 
training on billions of words taken from books, articles, 
and other online information. LLMs can perform data 
compression and encryption to protect data privacy. 
In cancer and medicine, DL natural language process-
ing (NLP) with free-text analysis is being increasingly 
employed [238, 239]. Transformer models have taken 
over NLP [240]. To evaluate the accuracy of LLMs for 
deducing the cancer disease response from free-text 
radiology reports, a study compiled 10,602 computed 

tomography records from cancer patients examined at 
a single institution [241]. The results demonstrated that 
the GatorTron transformer, which had an accuracy of 
0.8916 on the test set, outperformed bidirectional long- 
and short-term memory models, CNN models, and con-
ventional ML techniques. This implies that transformer 
models may be employed as decision-support tools to 
offer doctors automatic second perspectives on illness 
responses. ChatGPT is the most representative LLM, and 
numerous cancer studies related to it have emerged since 
its introduction. It is substantially more accurate than 
previous large-scale language models when responding to 
queries concerning lung cancer [242], liver cancer [243], 
and prostate cancer [244]. Figure 4 indicates a response 
after sending a patient’s chief complaint to ChatGPT.

Another excellent example is Med-PaLM [245], a 
Google-developed chatbot for medical Q&A. Most eval-
uations of a model’s clinical expertise are automated and 
based on a small number of standards. MultiMedQA, a 
benchmark incorporating six existing medical question 
answering datasets, was introduced to solve these con-
straints. It surpasses the previous state of the art by more 
than 17% and has 67.6% accuracy on MedQA (questions 
similar to those on the US Medical Licensing Exam). 
However, the answers provided by the model compared 
to those provided by a physician still have a great deal of 
opportunity for improvement, as demonstrated by this 
work and similar studies. The follow-up Med-PaLM 2 
scored 86.5% on the MedQA dataset, an improvement of 
more than 19% over Med-PaLM.

The development of LLMs completely equips cancer 
practitioners with tools that may be utilized to enhance 
the efficacy of therapy and the accuracy of tumor diag-
nosis as well as serve as a guide for clinical decision-
making. In addition, regular individuals may utilize these 
platforms to identify particular clinical symptoms, which 
can aid in early identification and raise public awareness 
of health issues. Additionally, if people utilize AI, they 
may more quickly detect overmedication and improper 
treatment prescribed by some doctors in exchange for 
payment.

Challenges and opportunities for the future
The future of AI in cancer research is fraught with both 
formidable obstacles and bright prospects for advancing 
cancer detection, diagnosis, therapy, and research.

Availability and reliability of data
A significant quantity of training data is required for DL 
to be effective and credible. Limited data might lead to 
overfitting and a subpar performance in an external test 
cohort. Obtaining enough data is quite difficult when 
creating AI-based models, especially DL models. Data 
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from medical imaging cannot be immediately entered. 
Processing and extracting information from the image 
data are essential. A typical neural network cannot fit all 
medical images, especially whole-slide images that can 
easily have billions of pixels per image. One method [246] 
is to crop the image before sending it to an AI system, 

adding a manual step to what may otherwise be a fully 
automated approach, to isolate a smaller region of inter-
est, such as a portion of a slide image that contains a 
tumor. Insufficient labeling required for supervised learn-
ing can also lead to loss of data reliability. Additionally, 
issues occur when bias in datasets is caused by technical 

Fig. 4 Simulates how a large language model (exemplified by ChatGPT) will assist doctors in diagnosing the disease after a patient with suspected 
lung cancer arrives at the hospital. Sending the chief complaint to ChatGPT, it would first emphasize that it is not a doctor itself, then warn 
that the symptoms are indicative of a serious illness, and give possible diseases. (Created with BioRender.com)
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variables. Single-source bias, for instance, occurs when 
a single system generates an entire dataset. On the one 
hand, models can be trained on site-specific data to adapt 
to the unique characteristics of each location where they 
are used, and they are additionally developed and verified 
on datasets gathered from various sources to increase 
generalization [247]. On the other hand, biomedical tech-
nologies such as CODEX and spatial transcriptomics are 
one way to combine the picture and molecular data [136, 
248]. These technologies overlay geographically resolved 
transcriptomics and proteomics data on images, enabling 
models to handle omics data in image form.

Interpretability
Over the last 5  years, research into explainable AI has 
accelerated. DL has come under fire for being a “black 
box” that does not clarify the way the model transforms 
given inputs into outputs. It is challenging for oncologists 
to comprehend how DL models assess data and make 
judgments because of the numerous elements involved. 
The biological significance of explanatory ability must 
be thoroughly studied in order for DL to be approved by 
regulators and used as a diagnostic tool. In genomics, this 
requires comparing significant genetic traits found by 
DL to those identified by traditional bioinformatics tech-
niques. Additionally, when a DL model is unsure about 
its predictions, its capacity to generate the “don’t know” 
output is crucial. Overconfidence in forecasts, such as 
forecasting the cancer main site with only 40% accu-
racy, can lead to erroneous cancer diagnosis or manage-
ment decisions in crucial situations. Both post hoc and 
integrated interpretability approaches are viable ways to 
gather explanations from trained models and help the 
model learn to provide predictions and explanations 
concurrently.

Ethics and morality
An increasing number of ethical questions around 
patient autonomy, prejudice, and transparency have been 
raised by the application of artificial intelligence (AI) in 
medicine [249]. The most susceptible source of informa-
tion determines the total security level when we com-
bine patient data from other sources. Clinical data are 
frequently the property of particular institutions due to 
concerns about patient privacy, and there are few meth-
ods in place to share data among institutions. It is fre-
quently inadequate to remove personal identifiers and 
secret information since an attacker can still draw con-
clusions to retrieve some of the missing data. The good 
news is that multicenter information transfer agreements 
and safeguarding privacy distributed DL (DDL) are start-
ing to overcome this roadblock [250–252]. DDL offers 
a mechanism that protects privacy so that several users 

can collaborate on learning using a deep model with-
out directly exchanging local datasets. In addition, it is 
important to ascertain the level of supervision that doc-
tors must provide and identify the person accountable 
for any poor choices made by DL tools. On the other 
hand, we should educate AI users to guarantee that they 
are knowledgeable consumers of the technology and 
endeavor to openly and clearly express to them what they 
should anticipate in a variety of circumstances. Many of 
the hazards described above may be reduced by being 
accessible, having varied demands, and being cautious.

When implementing AI, ethical issues are crucial since 
unethical data gathering or usage practices might intro-
duce biases into models. These biases can take numerous 
forms, but they are mostly determined by the data and 
cohort composition employed by the particular AI sys-
tems. Providing and reviewing AI models lacks defined 
criteria or norms. Identifying the possible biases included 
in the established systems will be crucial; thus, future 
studies should fill this knowledge gap to help researchers 
and physicians.

Clinical integration
As mentioned above, AI has been shown in many studies 
to improve the correctness of cancer diagnosis. However, 
a different perspective has been proposed. In one study 
[253], the authors systematically evaluated 131 pub-
lished studies using the QUality Assessment of Diagnos-
tic Accuracy Studies-2 (QUADAS-2) tool. They reported 
that the accuracy of AI in breast cancer screening pro-
grams cannot currently be evaluated based on available 
research, and it is unclear where in the therapeutic path-
way AI could be most helpful.

For LLMs, one of their advantages is the capacity to 
sift through vast volumes of data and provide replies in 
a conversational and understandable manner. LLMs also 
have the potential to be used in patient education and 
consultation, offering patient-friendly information to aid 
in their understanding of their medical issues and avail-
able treatment choices, facilitating joint decision-making. 
More crucially, LLMs can contribute to the democratiza-
tion of medical knowledge by allowing anybody, regard-
less of location or socioeconomic position, quick access 
to reliable medical information. However, special atten-
tion needs to be paid to the fact that current LLMs are 
not yet capable of fully replacing doctors, as they may 
contain errors or omit key points in the responses. 
Although ChatGPT-4.0 was more accurate than the 
other tools, neither ChatGPT nor Google Bard or the 
Bing or Google search engines provided 100% accurate 
answers to all queries [242]. The much-anticipated Med-
PaLM, while promising, is evaluated by multiple choice 
questions; however, real life is not multiple choice, and 
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different clinical symptoms and specificities in different 
patients make clinical diagnosis more complex. While AI, 
such as ChatGPT-4.0, might be helpful for giving broad 
information and responding to frequently asked queries. 
Nonetheless, it is important to take great caution when 
responding to inquiries from certain patients. It is essen-
tial to continuously upgrade AI models to include the 
most recent medical information.

Currently, almost all relevant AI models have been 
created to assist in cancer diagnosis using clinical data 
from the time of development. These clinical data may be 
derived from patient reports, complaints, or sequencing 
results. The question is whether there is an AI model that 
can recommend more tests and treatment modalities or 
perhaps aid in prescribing anticancer medication with-
out relying on clinical data. The current state of affairs 
is that with the development of multiomics, a variety of 
data, such as methylation and fragmentomics [254], are 
being used to train AI models. If one day the data of the 
AI model accumulates to a large enough size, is it pos-
sible to predict the probability of cancer occurrence by 
only entering the data of normal people, and is it possible 
to give the corresponding chemotherapy regimen by only 
comparing the sequencing results of cancer patients and 
the database. This is a question worth thinking about and 
very interesting. First, the database must be large enough 
and ethical; second, there is variability between individu-
als, and it would be irresponsible to treat them by looking 
only at sequencing data at the genetic level or transcrip-
tional level, for example.

However, if it is only in the area of cancer diagnosis, 
AI models have the potential to identify molecules and 
biomarkers associated with mutated genes and thus con-
firm the diagnosis of cancer independently of traditional 
pathology measurements. Meanwhile, with the advent 
of wearable and portable medical instruments, AI has 
shown much potential for the early screening of tumors. 
Therefore, we think that in the future, AI models have the 
potential to impact the cancer diagnostic market, but in 
terms of treatment, they cannot be separated from doc-
tors and clinical data.

What must be realized is that despite the rapid devel-
opment and promising future of AI, it can never replace 
clinicians and will only become an important tool to 
assist them in the future.

Conclusion
In summary, AI has the ability to fundamentally alter 
cancer treatment and move it closer to the promise of 
precision oncology. In an era where genomics is being 
incorporated into health delivery and health data are 
being more digitized, it is anticipated that AI would 

be used in the construction, verification, and applica-
tion of decision-support tools to promote precision 
oncology. We highlighted several promising AI applica-
tions in this review, including detection, prognosis, and 
administration of cancer treatments. It is undeniable 
that large language model can greatly assist physicians 
in their clinical work, but it can never replace them. 
Important conditions for the general adoption of AI in 
clinical settings include phenotypically rich data for the 
development of models and clinical validation of the 
biological value of AI-generated insights. Finally, clini-
cal validation of AI is required before it may be used in 
ordinary patient treatment.
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