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Abstract 

Liquid–liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living 
cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual mol‑
ecules into membrane‑free, droplet‑like BMCs with specific functions, which coordinate various cellular activities. 
The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, 
the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we 
comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer 
processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have 
also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS 
from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further 
guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
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Background
The spatial and temporal coordination of biochemi-
cal reactions is crucial for cellular physiology [1]. While 
membrane-bound organelles are essential for spatially 
organized cellular processes, the discovery of membrane-
less organelles (MLOs) has shed light on new mecha-
nisms for tightly controlling processes within cells [2]. 
MLOs, as known as biomolecular condensates (BMCs), 
include the nucleolus [2], Cajal bodies [3], nucleoli [4], 
stress granules (SGs) [5–7], and super-enhancers (SEs)

[8–10] etc. These structures typically range from 0.1 to 
3  µm [11]and play key roles in facilitating or modulat-
ing specific cellular processes. BMCs and MLOs are both 
formed by the process of phase separation, and in most 
scenarios, these two concepts are equivalent.

Until the emergence of the concept of liquid–liquid 
phase separation (LLPS), the formation and organiza-
tion of MLOs remained unclear [12]. Thus, LLPS pro-
vides a reasonable framework to explain the formation 
mechanism of MLOs and BMCs. This dynamic process 
involves the transition of biomolecules from a homoge-
neous environment to sparse and dense phases [11, 13, 
14], aiming to reach the lowest-entropy state. Notably, 
LLPS occurs when multivalent biopolymers instantane-
ously interact with each other [15–17], forming liquid-
like entities such as bodies, puncta, granules, droplets, 
and condensates [18].
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Normal BMCs ensure basic cellular functions, whereas 
their aberrant forms result in cellular dysfunction and 
possible tumorigenesis. Studies have demonstrated that 
LLPS are crucial in the regulation of tumor onset, pro-
gression [19], including promoting cancer cells pro-
liferations and metastasis. Further, the hallmarks and 
enabling characteristics of cancer in the 2022 version 
provide a framework for further oncological studies[20]. 
However, understanding of the regarding phase separa-
tion processes involved in each hallmark is still limited. 
Therefore, unveiling a novel dimension of its biological 
functions is in need.

In this review, we include all cutting-edge and typi-
cal articles related to liquid–liquid separation in oncol-
ogy. Firstly, we describe the methods used to investigate 
LLPS, followed by their role in promoting the formation 
of BMCs/MLOs. Subsequently, we examine the current 
understanding of how LLPS influences tumorigenesis, 
progression and their emerging role in cancer treatment. 
Finally, we comprehensively summarize the latest insights 
into methods to interfere with aberrant forms of BMCs.

Mechanisms and methods associated 
with the phenomenon of LLPS
Concepts and mechanisms
Phase separation is defined as the spontaneous aggrega-
tion of molecules when their concentration exceeds a 

certain threshold, thus forming a membrane-less com-
partment [21]. Typically, the interactions between mac-
romolecules in LLPS are typically non-covalent and of 
low affinity [22, 23]. This process is often driven by the 
modification of intrinsically disordered regions (IDRs) 
within proteins [24, 25]. The concept of LLPS was first 
introduced in the biochemical field of biochemistry in 
2009 by Hyman and colleagues with various milestone 
events followed subsequently (Fig.  1), offering a novel 
perspective on various MLOs distributed in cells (Fig. 2) 
[26]. Although several in silico tools help forecast the 
potential of phase-separated molecules (Table  1), com-
prehensive summaries of the characteristics and condi-
tions that induce LLPS are limited.

Structural characteristics and critical components 
that triggers LLPS
The concept of a driver (or scaffold)/client is widely 
accepted. Proteins, DNA, and RNA can also be used as 
scaffolds. With multiple binding sites, these macromol-
ecules facilitate weak interactions and trigger LLPS. The 
detailed structures are summarized below.

Multi‑foldable domains
One of the most common structural features that facili-
tates LLPS is multivalency, which involves the interac-
tion of various macromolecules (Figs.  3A–C). By using 

Fig. 1 History of LLPS research developments. Milestone discoveries are outlined
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multiple, similar domains to mediate the interactions, 
these macromolecules effectively trigger LLPS and 
attract client molecules to form condensates. For exam-
ple, the proline-rich motif (PRM) domain characteris-
tic of the neural Wiskott-Aldrich syndrome (N-WASP) 
interacts with the SH3 domain of NCK, thereby induc-
ing LLPS [53]. A similar principle applies to the nephrin/
Nck/N-WASP system, wherein the phosphotyrosines of 
nephrin interact with the SH2 and SH3 domains of NCK 
to bind to the PRMs (Fig.  3D) [54]. Similarly, higher-
order polymerized structures are formed via the tan-
dem dimerization domains of the speckled POZ protein 
(SPOP) and its interaction with cullin-3-RING ubiquitin 
ligase and other substrates, promoting its localization 
in nuclear speckles[55] (Fig.  3E). Dimerization or oli-
gomerization of proteins can also contribute to LLPS. For 

example, when the dimerization of HP1a is disrupted, the 
mobility of the droplets increases, hindering the matura-
tion of heterochromatin formations (Fig. 3F)[56].

IDR/low‑complexity domains contribute to LLPS
IDRs are distinctive features of certain proteins of the 
condensates, accounting for 33–55% of eukaryotic pro-
teomes [57, 58]. Like IDRs, low-complexity domains 
(LCDs) are also distinctive features of proteins comprised 
by highly biased amino acid compositions [59]. IDRs 
and LCDs lack stable tertiary structures and have flex-
ible conformations, making them prone to undergo LLPS 
[11, 60–62]. β sheets in TDP34/FUS (Fig. 3G), coiled-coil 
domains in YAP/TAZ (Fig. 3H) and alpha-helix in TDP43 
(Fig. 3I), exemplify the role of LCDs in LLPS [63–69]. 
While IDR interactions involve pi-pi interactions, salt 

Fig. 2 Intra‑cellular MLOs within a eukaryotic cell. MLOs are distributed in the nucleus, nuclear membrane, cytoplasm, and plasma membranes 
of cells. Nucleolus, perinucleolar compartments, paraspeckles, Cajal bodies, transcription condensates, Gems, DNA repair foci, nuclear stress 
bodies, PcG bodies, histone locusbody, PML bodies, DNA replication bodies, polycombs, SPOP/DAXX bodies, super enhancers, heterochromatin, 
and amyloid bodies (located in nucleolus) are located in the nuclear by the LLPS. Whereas some MLOs are distributed in the nuclear membrane 
(Babliani bodies), cytoplasm (such as sec bodies, cGAS‑DNA condensates, ER associated TIS granules, autophagosome cargo condensates, stress 
granule, P granules, U bodies, Virus factories, Numb/pon complex, RNA transport granules, centrosome, inclusion bodies, siganling puncta, GW 
bodies, germ granules, transport RNP, and proteosome bodies, metabolic granules, keratin granules), and cell plasma membrane (such as immune 
synapse densities, Numb/pon complex, Nephrin adhesion complexes/ signaling clusters, T cell microclusters, and ZO mediated tight junction)
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Table 1 Overview of databases related to liquid–liquid phase separation (LLPS)

Category Database Availability Details of databases References

Prediction of LLPS related 
proteins

SGnn http:// sgnn. ppmcl ab. com Proteins bearing prion‑like domains 
(PrLDs)

[27]

PhaSepDB http:// db. phasep. pro/ Phase‑separation related proteins [28]

D2P2 https:// d2p2. pro/ search Phase‑separation related proteins [29]

PLAAC http:// plaac. wi. mit. edu/ Prion‑Like Amino Acid Composition [30]

DrLLPS http:// llps. biocu ckoo. cn/ Proteins in this database are classified 
as drivers,
regulators and potential Clients

[31]

PhaSePro https:// phase pro. elte. hu A manually curated database of LLPS 
driver proteins in various organisms, 
with emphasis on the biophysical prop‑
erties that govern phase separation. 

[32]

BioGRID https:// thebi ogrid. org/ Database of Protein, Genetic 
and Chemical Interactions

[33]

LLPSDB http:// bioco mp. ucas. ac. cn/ llpsdb/ 
home. aspx

A database of proteins undergoing 
LLPS in vitro

[34]

HUMAN CELL MAP https:// cell‑ map. org/ or https:// 
human cellm ap. org/

Summarizes for each compartment 
the enrichment of expected domains 
and motifs as well as GO‑terms
Provides channels to analyze spati‑
otemporal correlations between pro‑
teins in different organelles

[35]

MLOsMetaDB http:// mlos. leloir. org. ar/ Unified resource of MLOs and LLPS 
associated proteins

[36]

catGRANULE http://s. tarta glial ab. com/ A website good at predicting LLPS pro‑
pensity of dosage‑sensitive proteins

[37]

PScore https:// github. com/ haoca i1992/ 
PScore‑ online# pscore‑ online

A machine learning algorithm that pre‑
dicts the likelihood of phase separated 
proteins

[38]

Prediction of LLPS related RNAs RPS http:// rps. renlab. org/#/ Home A comprehensive database of RNAs 
involved in liquid–liquid phase separa‑
tion

[39]

RNAPhaSep http:// www. rnaph asep. cn/#/ Home A resource of RNAs undergoing phase 
separation

[40]

RNA granule data‑
base

http:// rnagr anule db. lunen feld. ca/ A database containing RNA granules [41]

Integreation of LLPS related 
diseases

DisPhaseDB http:// disph asedb. leloir. org. ar An integrative database of diseases 
related variations in liquid–liquid phase 
separation proteins

[42]

Prediction of specific structures 
or features of LLPS

IUPred2A https:// iupre d2a. elte. hu/ Combination of the iupred database 
and the ANCHOR database, which can 
predict the disordered and disordered 
binding regions of proteins

[43]

PONDR http:// www. pondr. com Predictor of natural disordered regions [44]

MobiDB https:// mobidb. org Provides information about intrinsically 
disordered regions and related features

[45]

CIDER http:// pappu lab. wustl. edu/ CIDER/ Calculation of many different parame‑
ters associated with disordered protein 
sequences

[46]

ZipperDB https:// servi ces. mbi. ucla. edu/ zippe 
rdb/

Predictions of fibril‑forming segments 
within protein

[47]

Metadisorder http:// iimcb. genes ilico. pl/ metad isord 
er/

Prediction of protein disorder [48]

DisMeta https:// monte lione lab. chem. rpi. edu/ 
disme ta/

Prediction of protein disorder [49]

http://sgnn.ppmclab.com
http://db.phasep.pro/
https://d2p2.pro/search
http://plaac.wi.mit.edu/
http://llps.biocuckoo.cn/
https://phasepro.elte.hu
https://thebiogrid.org/
http://biocomp.ucas.ac.cn/llpsdb/home.aspx
http://biocomp.ucas.ac.cn/llpsdb/home.aspx
https://cell-map.org/
https://humancellmap.org/
https://humancellmap.org/
http://mlos.leloir.org.ar/
http://s.tartaglialab.com/
https://github.com/haocai1992/PScore-online#pscore-online
https://github.com/haocai1992/PScore-online#pscore-online
http://rps.renlab.org/#/Home
http://www.rnaphasep.cn/#/Home
http://rnagranuledb.lunenfeld.ca/
http://disphasedb.leloir.org.ar
https://iupred2a.elte.hu/
http://www.pondr.com
https://mobidb.org
http://pappulab.wustl.edu/CIDER/
https://services.mbi.ucla.edu/zipperdb/
https://services.mbi.ucla.edu/zipperdb/
http://iimcb.genesilico.pl/metadisorder/
http://iimcb.genesilico.pl/metadisorder/
https://montelionelab.chem.rpi.edu/dismeta/
https://montelionelab.chem.rpi.edu/dismeta/
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Table 1 (continued)

Category Database Availability Details of databases References

Expasy https:// web. expasy. org/ compu te_ pi/ Computation of the theoretical pI 
(isoelectric point) and Mw (molecular 
weight)

[50]

AMYCO http:// bioinf. uab. es/ amyco v04/ Evaluation of mutation impact 
on prion‑like proteins aggregation 
propensity

[51]

MFDp2 http:// biomi ne. ece. ualbe rta. ca/ 
MFDp2/

Accurate sequence‑based prediction 
of protein disorder which also outputs 
well‑described sequence‑derived infor‑
mation that allows profiling the pre‑
dicted disorder

[52]

Fig. 3 Basic condensates promoting features. A‑C Interactions between macromolecules that facilitate phase separation. D The SH2 domain 
of NCK binds to Nephrin, and NCK possesses three SH3 domains that can bind the proline‑rich motifs (PRMs) of N‑WASP, showing a typical repetitive 
molecular domain (RMD) that contributes to LLPS. E Oligomerization of SPOP and its interactions with substrates can induce phase separation. F 
Dimerization of HP1a promotes LLPS. G–I Several classic IDRs, which consist of LCDs. J–N Fundamental interacting force between IDRs. O Formation 
of BMCs, from dissociation to assembly. P–S Four types of sequence variations that drive phase separation

https://web.expasy.org/compute_pi/
http://bioinf.uab.es/amycov04/
http://biomine.ece.ualberta.ca/MFDp2/
http://biomine.ece.ualberta.ca/MFDp2/
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bridges between opposing charge residues, pi-cation 
interactions, dipole-dipole interactions (Van der Waals 
forces), and hydrophobic forces (Figs.  3J–N) represent 
different forms of LLPS [70].

Nucleic acids regulate LLPS
Nucleic acids, especially the single-stranded nucleic 
acids, tend to aggregate to form droplets, whereas dou-
ble-stranded nucleic acids tend to form gel-like aggre-
gates [71]. Via electrostatic interactions and the pairing of 
repeating molecules, certain RNAs achieve polyvalency, 
effectively inducing LLPS in combination with proteins, as 
observed in the RG/RGG-rich domains of the SERPINE1 
mRNA-binding protein 1 (SERBP1) system [72]. In con-
trast, the RNA concentration does not show a strong posi-
tive correlation with the phase transition ability [73]. RNA 
modifications and non-coding RNAs can also induce LLPS 
spontaneously [74] or by attaching to proteins, facilitating 
clients recruitment for the condensate assembly [75–77].

Head‑to‑tail polymerization
Occasionally, stable structural domains in proteins, such 
as SAM and DIX, retain their ability to trigger local 
condensation [78, 79]. Among the dishevelled and axin 
components of the Wnt signaling, the DIX domain can 
assemble in a head-to-tail manner and promote Wnt 
signaling [80, 81]. The SAM domain of the tankyrase 
protein forms similar puncta in a head-to-tail manner 
to bind and ribosylate poly ADP AXIN, thus promoting 
Wnt signaling [82]. These structural conditions facilitate 
the formation of condensates (Fig. 3O).

Sequence variations at the gene levels
Disease-related genomic changes regulate LLPS. The 
NUP98 fusion protein in leukemia, carrying IDRs, serves as 
a good model for gene fusion [83] (Fig. 3P). Similar results 
have been obtained with anaplastic lymphoma kinase 
(ALK) and BCR-ABL1 fusions [84, 85]. Linear motifs that 
modulate ligand recognition within IDRs control the func-
tion of alternatively spliced (AS) proteins [86, 87] and mod-
ulate their assemblies (Fig. 3Q). On the contrary, repetitive 
motifs can induce pathogenic repeat expansions (Fig. 3R). 
Missense mutations in IDRs and polymerization/modular 
domains may influence the phase transition status bilater-
ally (Fig. 3S). For instance, F291S and Y283S mutations in 
the heterogeneous nuclear ribonucleoprotein A2 scarcely 
affect the aggregation, whereas D290V and P298L muta-
tions improve the condensation [88].

External conditions and physicochemical properties affect 
LLPS
In this section, we focus on the conditions and the post-
translational modifications (PTMs) which play a crucial 

role in regulating the dynamic transitions of molecules 
within the cell.

The interplay of various intracellular conditions, such 
as the concentration of proteins, pH level, and changes 
of the cellular milieu, alter the strength of polyvalent 
interactions. These conditions are key regulators of tran-
sitions within the cell. Furthermore, the concentrations 
of macromolecules are critical. When the concentration 
exceeds a critical threshold, the interaction between 
these macromolecules outweighs the forces that main-
tain homogeneity of the system, making the solution 
susceptible to phase separation. Conversely, when the 
concentrations are below this threshold, the compo-
nents remain evenly distributed [89, 90]. The alterations 
of pH value can significantly impact LLPS by chang-
ing the surface charges of amino acids, the α-carbonyl 
groups, and the α-amino terminal protonation status. 
pH alterations affect the stability of specific proteins and 
change the secondary structure from ordered to disor-
dered. Altering the protonation of amino acids directly 
influences the chemical properties of macromolecules, 
further altering their intermolecular interactions and 
triggering LLPS. For example, the decreased cytoplas-
mic pH, induced by external stimuli, can promote LLPS 
of naturally disordered proteins, as observed with Sup35 
in yeast cells [91]. The increase in salt concentration and 
the addition of substances such as PEG3000 and glyc-
erol can also modulate LLPS [73, 92]. Additionally, weak 
electrostatic interactions, driven by IDRs, are highly 
sensitive to changes in pH and ionic strength, poten-
tially explaining LLPS induction due to environmental 
changes [17, 93]. In addition, temperature and stress 
levels can also trigger or disrupt LLPS by affecting the 
solubility of macromolecules [11]. Moreover, prion-like 
domains in proteins can sense pressure, influencing the 
solubility and phase behavior [94, 95].

The PTMs are crucial in the regulation of phase transi-
tions by altering molecular interactions or directly modi-
fying the potency of BMCs [96–98]. PTMs can induce 
changes of biomolecules in the spatial structures and 
state of proteins [96, 99]. PTMs of RNA-binding proteins 
(RBPs) can directly weaken or enhance the interactions 
between components, contributing to the formation of 
RNP granules, serving as an example of an MLO that is 
composed of RBP and RNA [96]. PTMs can promote or 
inhibit polyvalent interactions by influencing the condi-
tion of proteins, thus affecting the occurrence of LLPS 
[100]. Notably, the Lys residues within the IDRs are par-
ticularly prone to get SUMOylation, a modification that 
significantly contributes to the formation of the promye-
locytic leukemia nuclear bodies (NBs). De-SUMOylation 
can lead to the release of a constituent protein and the 
separation of NBs during mitosis [101, 102].
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Given the complexity of physicochemical conditions, 
the manipulation of PTMs is an intriguing approach to 
influence LLPS. Thus, it is pivotal to understand the pos-
sible mechanisms in cancer-related PTMs associated 
with LLPS (Table 2).

Deregulated phase separation in cancer
Emerging evidence has robustly revealed that aber-
rant BMCs are involved in various biochemical pro-
cesses in human diseases and various oncogenic 

Table 2 Summary of cancer‑related PTMs involved in LLPS

PTM Disease association Participants Biological role Regulation of LLPS References

Ubiquitination Non‑small‑cell lung cancer USP42 Drives nuclear speckle mrna 
splicing and promote tumori‑
genesis

Promotion [8]

Multiple cancer types p62 Promotes tumor cell survival 
by upregulating p62 liquid 
droplet formation and degra‑
dation

Promotion [103]

Multiple cancer types SPOP/DAXX Co‑localizes with DAXX 
in Liquid Nuclear Organelles 
and facilitates DAXX Ubiquit‑
ination

Promotion [104]

Phosphorylation Multiple cancer types TAZ Formation of transcription 
compartment to promote 
gene expression

Promotion [68]

Methylation Leukaemia YTHDC1‑m6A condensates Facilitates a phase‑separated 
nuclear body and suppresses 
myeloid leukemica differentia‑
tion

Promotion [105]

Multiple cancer types UTX (namely KDM6A) Involved in chromatin‑
regulatory activity in tumour 
suppression

Promotion [106]

Sumoylation Colon cancer RNF168 Genomic instability and DNA 
damage repair

Promotion [107]

Acetylation Multiple cancer types KAT8‑IRF1 KAT8‑IRF1 condensate forma‑
tion boosts PD‑L1 transcription

Promotion [108]

Neddylation Acute promyelocytic leukemia 
(APL)

PML/RARa Induce abberent LLPS and dis‑
rupt function of PML nuclear 
bodies to drive APL

Inhibition [109]

Table 3 Oncogenic signaling assosciated condensates that were involved in LLPS

Signaling Pathway Cancer type Biomolecule/ condensate Biological role Ref

EGFR/RAS signaling Lung cancer EGFR condensates Regulating pro‑tumor activation 
of Ras

[110, 111]

KRAS signaling Lung cancer EML4‑ALK condensates Modulating the KRAS signaling 
pathway, amplifying the oncogenic 
potential of this cascade, ultimately 
leading to dysregu‑ lated cellular 
proliferation and survival

[112, 113]

JAK‑STAT3 signaling Lung cancer EZH2/STAT3 Myristoylation modification of EZH2 
enables its phase separation, com‑
partmentalize STAT3 within the con‑
densates and leads to the sustained 
activation and enhanced transcrip‑
tional activity of STAT3

[113]

PI3K‑AKT‑mTOR signaling 
pathway

Lung cancer stress granule dynamically interacting with a key 
component of lung oncogenic 
pathway, mTOR and its regulators, 
influencing its localization, activity, 
and downstream signaling

[114]
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Table 3 (continued)

Signaling Pathway Cancer type Biomolecule/ condensate Biological role Ref

Hippo signaling pathway Pan‑cancer YAP, TAZ, TEAD Undergoing LLPS, accumulat‑
ing in the nucleus coregulator 
with increased activity in various 
cancers

[68, 115]

Hepatocellular carcinoma G6PC (glycogen compartments) YAP signaling activation [116]

Hepatocellular carcinoma YAP/TEAD transcriptional conden‑
sates

Acting as signaling hubs 
for the tumor microenvironment

[117]

Hepatocellular carcinoma Laforin‑Mst1/2 condensates Increasing hepatocarcinogenesis [116]

p53 signaling Pan‑cancer p53, 53BP1 53BP1 can form phase separa‑
tion droplets, which enrich tumor 
suppressor protein p53. Cancer‑
associated mutation of p53 can 
accelerate the protein aggregation 
and amyloid formation by destroy‑
ing the folding of p53 core domain

[118, 119]

Wnt/β‑catenin signaling Breast and prostate cancer DACT1 WNT signaling inhibition [120]

TGF‑β signaling Colorectal cancer SMAD3 forming nuclear foci when the sign‑
aling pathway is activated

[121]

cAMP/PKA signaling Atypical liver cancer 
fibrolamellar carcinoma

DnaJB1‑PKAcat fusion Tumorigenic cAMP signaling [122]

Hepatocellular carcinoma RIα condensates Promoting cell proliferation 
and transformation

[122]

RAS signaling Pan‑cancer EML4‑ALK fusion RAS signaling overactivation [123, 124]

Pan‑cancer CCDC6‑RET fusion RAS signaling overactivation [123, 124]

Pan‑cancer LAT, GRB2, SOS Activating Ras in tumour develop‑
ment

[125]

MAPK signaling RTK‑driven human cancer SHP2 Stimulation of downstream MAPK 
signaling pathways and ERK1/2 
activation

[126]

Wnt/β‑Catenin signaling Colorectal cancer Destruction complex Regulating development 
and stemness

[127]

NRF2/NF‑κB signaling Lung cancer p62 bodies Accelerating cancer development [128]

NF‑κB pathway signaling Virus‑associated cancer p65/inclusion body The trapped p65 (subunit of NF‑κB) 
by phase separation of viral replica‑
tion machinery cannot translo‑
cate into the nucleus to activate 
the downstream transcription 
of proinflammatory cytokine genes 
and other antiviral genes

[129]

cGAS‑STING signaling Pan‑cancer NF2m‑IRF3 condensates Regulating tumor immunity [130, 131]

IL‑6/STAT3 signaling Hepatocellular carcinoma Paraspeckles IL‑6/STAT3 signaling promotes par‑
aspeckles formation, which favors 
overactivation of STAT3

[132]

(See figure on next page.)
Fig. 4 Summary of deregulated phase separations in cancer. A RTK granule formations activate RTK/MAPK signaling pathways to promote tumor 
proliferation. B DDX21phase separation activates MCM5, facilitating EMT signaling and modulating metastasis of colon cancer. C LLPS of 53BP1 
diminish downstream targets of p53 to evade growth suppressions. D The accumulation of 53BP1 in the nuclear foci is enhanced after DNA 
damage, activating p53 and regulating cellular senescence. E SUMO ALT‑associated PML bodies on the telomeres facilitate the replicative 
immortality of cancer cells. F Nuclear condensates (nYACs) generated through the LLPS of YTHDC1 (binding with m6A‑mRNA) are significantly 
increased in AML cells. G Mutations in the FERM domain of NF2 (NF2m) robustly inhibited STING‑initiated antitumor immunity by forming 
NF2m‑IRF3 condensates. H PML nuclear bodies (NBs) serve as comprehensive ROS sensors associated with antioxidative pathways. I EBNA2 
becomes part of BMCs and regulates EBV gene transcriptions. J BRD4 forms condensates with SEs to regulate angiogenesis. K NUP98‑HOXA9 fusion 
proteins attenuate aberrant chromatin organizations. L  m6A‑modified androgen receptor (AR) mRNA phase separated with YTHDF3 responds to AR 
pathway inhibition (ARPI) stress in prostate cancers. M LLPS of GIRGL‑CAPRIN1‑GLS1 mRNA suppresses GLS1 translation and adapts to an adverse 
glutamine‑deficient environment. N icFSP1 induces FSP1 condensates to trigger ferroptosis in the dedifferentiation of cancer cells
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signaling pathways [19] (Table  3). Next, we review 
the role of LLPS in tumors based on several hallmarks 
(Fig. 4).

LLPS promotes the proliferation of cancer cells
Cancer cells can undergo unrestricted division [20, 
133–136], which can occur through gene mutations that 

Fig. 4 (See legend on previous page.)
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activate oncogenic receptor tyrosine kinases (RTKs) and 
the downstream MAPK signaling involving RAS proteins.

Adaptor proteins involved in RTK and RAS signaling, 
such as LAT, GRB2 and SOS, undergo phase separation 
during RTK activation [137]. This phenomenon increases 
the interaction time between SOS and RTK/RAS, provid-
ing a mechanism for kinetic proofreading during RTK 
activation [125, 138] and preventing the spontaneous 
membrane localization of SOS, and the downstream acti-
vation of RAS. Interestingly, carcinogenic RTK mutations 
resulting from chromosomal rearrangements cause the 
loss of membrane localization but not its ability to stimu-
late downstream pathways. Mechanically, these conden-
sates can assemble the RAS-activating complex GRB2/
SOS1, which activates the RAS-MAPK signaling in a 
membrane-independent manner [123]. Moreover, RTK 
fusion oncoprotein granules enable the activation of RTK 
signaling [123, 139]. The close binding to RTK oncopro-
tein condensates allows GRB2 to concentrate key down-
stream molecules, achieving the constitutive activation of 
RAS-MAPK signaling in cancer cells (Fig. 4A). Therefore, 
BMCs provide a new method for modulating cancer-pro-
moting signaling in a spatially restricted manner.

LLPS promotes the metastasis of tumors
The ability to invade and metastasize allows the tumors to 
develop distantly, and the epithelial–mesenchymal transi-
tion (EMT) programs are commonly involved [140]. Acti-
vated by EMT, the transcription coactivators YAP and 
TAZ facilitate metastasis [141, 142]. Hu et al. found that 
YAP fusion proteins undergo LLPS in the nucleus and 
that the IDR provided by the partner of YAP is required 
for assembly. This aggregation promotes the YAP/TAZ-
specific transcriptions and attenuates metastasis [68]. 
Similarly, another study revealed that the phase separa-
tion of DDX21 activates MCM5, thus triggering EMT 
signaling and modulating the colon cancer metastasis 
(Fig.  4B)[143]. Besides, SGs are also involved in malig-
nant invasion and metastasis. EMT markers Cadherin, 
Vimentin, Snail and Slug are suppressed under SG core 
component G3BP1 depletion, implying the role of G3BP1 
in tumor metastasis [144]. Moreover, G3BP modulates 
mRNA stability under stress conditions and facilitates the 
invasion of cancer cells [145]. These carcinogenic mecha-
nisms provide new explanations for tumor metastasis, as 
well as the inspiring ideas for models of cancer progres-
sion regulation by the BMCs.

LLPS helps evade tumor growth suppression, regulate 
the aging process, and achieve replicative immortality 
of tumor cells
Cancer cells not only promote their growth but also mod-
ify tumor-suppression pathways [20]. By inhibiting tumor 

suppressors such as SPOP, p53, and RB1 [146–148], can-
cer cells escape intrinsic growth limitations. P53, one of the 
most well-known tumor suppressors, inhibits tumorigenesis 
via transcriptional activation, which leads to the disorders 
of apoptosis, cell cycle, and cell senescence. Tumor-associ-
ated stress significantly triggers p53 aggregation [149–154]. 
These findings demonstrate that the disruption of particu-
lar BMCs may cause cancer (Fig.  4C). Further studies are 
needed to validate this approach with other tumor suppres-
sors and to test its potential applications.

Cellular senescence is considered an anticancer mecha-
nism that maintain homeostasis and is associated with 
cell cycle arrest. The initiation and maintenance of cellu-
lar senescence rely on the frequent damage to the P53/Rb 
signaling pathway. Increased accumulation of 53BP1 in 
the nuclear foci after DNA damage can activate p53 and 
has recently been shown to regulate the cellular senes-
cence via LLPS (Fig. 4D) [155].

Cancer cells can overcome the cell senescence and 
death via telomerase or alternative methods for length-
ening telomeres (ALT) [156–158]. Multivalent interac-
tions between SUMO and SUMO-interacting motifs were 
observed in the formation of ALT-associated PML bod-
ies on telomeres in cancer stem cells (Fig. 4E) [159]. The 
fusion of PML bodies enables the clustering of telomere 
elements and the recruitment of DNA helicases, and 
other molecular machinery to extend the length of tel-
omeres [160]. This finding suggests that cancer stem cells 
achieve replicative immortality through the unchecked 
cell division, and that this process is associated with LLPS.

LLPS modulates epigenetic reprogramming of various 
BMCs
Common epigenetic modifications include histone modi-
fications, DNA methylation, and RNA interference [161, 
162]. Interactions between epigenetic modifications and 
their corresponding reader proteins also exhibit polyvalent 
interactions.  M6A, known as the most common mRNA 
modification [163], alters the mRNA structure and inter-
acts with multiple other mRNA modifications and proteins. 
This modification facilitates YTHDF protein phase separa-
tion, further contributing to the forming of various RNA–
protein granules, including P bodies and SGs [74, 164]. In 
addition, YTHDC1 can undergo LLPS in the nucleus by 
interacting with  m6A-modified mRNAs. This interaction 
results in the formation of nuclear YTHDC1-m6A conden-
sates (nYACs), which are significantly enhanced in acute 
myeloid leukemia (AML) cells (Fig. 4F) [105].

LLPS helps cancer cells escape immune destruction 
and participate in tumor‑associated inflammation
The immune system employs the RLR-MAVS and 
cGAS-STING signaling pathways for protection against 
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microbial invasion and support tumor immune surveil-
lance [165–167]. However, tumors often escape immune 
clearance surveillance. Recent findings by Meng et  al. 
revealed that neurofibromin 2 (NF2) facilitates innate 
immunity by eliminating tank-binding kinase 1 (TBK1) 
activation. It is the missense mutations in the FERM 
domain of NF2 (NF2m) that robustly inhibit the STING-
initiated antitumor immunity via the NF2m-IRF3 con-
densates formations (Fig.  4G), suppressing the TBK1 
activation [130]. This offers novel insights into NF2-
related cancer treatments.

Notably, inflammation often plays a dual role in can-
cer. Overproduced in various inflammatory tissues, the 
reactive oxygen species (ROS) may accelerate the genetic 
mutations of cells, making them more aggressive and 
malignant [168]. However, recent research indicates that 
the PML NB may function as a sensor for ROS in two 
ways: protecting cancer cells from excessive ROS or pro-
moting ROS-induced apoptosis (Fig. 4H). Given the lack 
of in-depth research in this field, further tumor microen-
vironment exploration is required to understand these 
processes fully.

Tumor-associated viruses, such as human papilloma-
virus, Kaposi sarcoma herpesvirus, and Epstein–Barr 
virus (EBV), influence tumor progression through LLPS 
[169–171]. In EBV proteins such as EBNA2 and EBNALP, 
LLPS regulates host gene expression, forming biomol-
ecule condensates at Runx3 and MYC SE sites to regulate 
viral and cellular gene transcription (Fig. 4I). Further, the 
LLPS of EBNA2 can influence the alternative splicing of 
the pre-MPPE1 gene in cancer [170].

LLPS induce vasculature of the tumors
Vascularization, also known as angiogenesis, is cru-
cial for supplying tumors with nutrients and oxygen for 
growth. Vascular endothelial growth factor (VEGF) is 
the leading factor responsible for rapid nutrient supply. 
Mounting evidence has indicated a correlation between 
BMC formation and angiogenesis. For example, the con-
stitutive expression of the transcription factor (TF) MYC 
in metastasizing cells can lead to VEGF transcription by 
potentially forming phase-separated transcription con-
densates, promoting promotes angiogenesis [172]. Simi-
larly, the use of 1,6-hexanediol, an inhibitor of LLPS, has 
recently been shown to regulate angiogenesis by inhib-
iting cyclin A1-related endothelial functions as well as 
condensates with BRD4, indicating that targeting con-
densates can block critical reactions (Fig. 4J) [173, 174].

Genomic arrangements initiate LLPS
Genomic instability contributes to tumor progression. 
Genomic translocations and rearrangements can lead 
to the fusion between the IDR of one protein and the 

DNA- or chromatin-binding domain of another [175]. 
This fusion acts as a TF, eliciting LLPS and attracting 
additional partners to initiate transcriptional programs 
that ultimately contribute to tumorigenesis. A typical 
example is the NUP98 fusion oncoprotein (FO), which 
occurs in 50% of patients with chemotherapy-resistant 
AML [176–179]. FOs demonstrate that malignancies 
establish cancerous TF condensates [83, 180, 181] and 
attenuate aberrant chromatin organization (Fig. 4K).

LLPS of SGs assist in avoiding cell death of cancer cells 
under the stress
Cancer cells can escape apoptosis by forming SGs (a 
form of MLOs) when exposed to extreme conditions, 
such as high temperatures, toxins, mechanical damage, 
or other stresses. For example, the Y-box binding protein 
1 (YB-1) interacts with the 5’-untranslated region (UTR) 
of G3BP1[182], leading to the increased expression of 
G3BP1 and SGs, which is elevated in human sarcomas 
[183–185]. Consequently, these cancer cells survive 
hyperproliferation, chemotherapy and other various 
stressful conditions. Additional studies on prostate can-
cer have demonstrated that the  m6A-modified androgen 
receptor (AR) mRNA phase separated with YTHDF3, 
while the unmodified AR mRNA phase separated with 
G3BP1 to survive AR pathway inhibition stress (Fig. 4L)
[186]. Collectively, SGs may serve as novel targets for 
cancer biology investigations.

LLPS regulates cellular metabolisms of cancer cells
Malignant cells undergo metabolic reprogramming 
[187], thereby attracting considerable interest in tumor-
related research in the past decades [188]. For example, 
the reduction of glutaminase-1 (GLS1) enables cancer 
cells to survive under prolonged glutamine deprivation 
stress [189, 190]. Wang et  al. reported that  the lncRNA 
GIRGL promotes the LLPS of GIRGL-CAPRIN1-GLS1 
mRNA  to suppress GLS1 translation, thus adapting to 
an adverse glutamine-deficient environment (Fig.  4M)
[191]. CAPRIN1, an RNA-binding protein involved in 
the SG formation via LLPS, plays a role in this metabolic 
adaptation. Therefore, alteration of cell adaptation to an 
adverse metabolic environment is possible by targeting 
condensates.

Potential role of LLPS in the phenotypic plasticity 
of tumorigenesis
Tumor cells often exhibit phenotypic plasticity to evade 
terminal differentiation. This plasticity includes the 
dedifferentiation, the differentiation inhibition, and the 
transdifferentiation [20]. During dedifferentiation, spe-
cific malignant cells become sensitized to ferroptosis 
[192–194], a form of cell death. Nakamura et  al. [195] 
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first demonstrated that the novel FSP1 inhibitor, icFSP1 
impairs cell proliferation and induces FSP1 condensa-
tion to trigger ferroptosis in cancer cells (Fig.  4N). This 
highlights the role of iron in tumor progression and the 
dependence of cancer cells on iron in drug-resistant 
states.

Clinical applications of LLPS in oncologic fields
Potential of LLPS in cancer treatments
Considering that various regulatory mechanisms of LLPS 
are closely associated with tumorigenesis, it is impera-
tive to explore therapeutic approaches against abnor-
mal LLPS. These strategies can be categorized into three 
main approaches (Table 4).

Disruptions of the formation of BMCs
The direct disruption of the driving force behind LLPS 
offers a straightforward approach (Fig. 5A). For example, 
certain drugs can intervene in the LLPS process by target-
ing IDRs of proteins. Notably, the anti-HIV drug elvitegra-
vir directly binds to the highly disordered steroid receptor 
coactivator 1, effectively inhibiting oncogene YAP tran-
scription by disrupting SRC1/YAP/TEAD condensates 
(Table 4) [117]. Similarly, Yu et al. reported that the nuclear 
translocation of YAP and LLPS are affected by IFN treat-
ment in cancer cells. Therefore, interrupting the LLPS of 
YAP can inhibit cancer cell proliferation and enhance the 
immune response, indicating its potential as a predictive 
biomarker in immune checkpoint blockade [67]. Further, 
altering interactions between LCDs indirectly modulates 
the transcriptional subunits, thus offering a promising 
approach for targeting disease-causing TFs.

Modifications of PTMs and physicochemical conditions
As previously mentioned, certain post-transitional modi-
fications and physiochemical conditions contribute to 
LLP dynamics (Fig.  5B). For example, nYACs protect 
mRNAs from degradation and strengthen the role of 
YTHDC1 in leukemogenesis, which inspires us to dis-
rupt  m6A to violate deleterious condensates[105]. Fur-
ther, studies have reported that modulating PTMs in 
LLPS proteins is also significant [25, 96, 102, 218–221]. 
In the case of colon cancer, SENP1 has been reported 
to decrease RNF168 SUMOylation, inhibit nuclear con-
densate formation, and promote DNA damage repair 
(DDR) and drug resistance. Given these observations, 
strategies to curb the harmful effects of protein aggrega-
tion by influencing protein modifications warrant further 
investigation.

Drug interventions of the dynamics of condensates
Drugs can significantly influence the dynamics of the 
condensates, affecting their anticancer effects and 

potentially leading to drug resistance (Fig. 5C). For exam-
ple, in luminal breast cancer, tamoxifen accumulates in 
MED1 condensates, preventing the incorporation of ERα 
into these condensates, partially inhibiting cancer pro-
gression. However, when MED1 is overexpressed, larger 
condensates dilute the drug concentration, ultimately 
leading to the development of resistance [202]. Several 
drugs, such as cisplatin, mitoxantrone, and THZ1, selec-
tively partition into BMCs formed by MED1 (Table  4). 
Drug resistance can occur via selective partitioning into 
BMCs or changes in properties. Notably, cisplatin exerts 
its anticancer activity by dissolving SEs, indicating that 
changes in the condensate properties may improve thera-
peutic outcomes[202]. This finding highlights the poten-
tial of altering the properties of condensates to improve 
therapeutic outcomes. In some cases, promoting the 
formation of BMCs may have therapeutic effects. For 
example, in APL, fusion proteins of PML-retinoic acid 
receptor α (RARA) hinder the assembly of PML bodies 
and result in the suppression of differentiation genes. 
Successful APL treatment involves the restoration of 
PML nuclear bodies using empirically discovered drugs 
(Table 4) [222].

Roles of LLPS in vesicular trafficking and drugs’ delivery
Although LLPS and traditional vesicles are two different 
concepts with distinctive definitions, the  vesicular traf-
ficking role of LLPS is still rarely described and attrac-
tive. Conventional approaches typically utilize nanoscale 
carriers that are confined within the compartments of 
the intranuclear body. Nevertheless, recent findings have 
demonstrated that micron-scale polypeptide clusters, 
formed through phase separation, possess the ability to 
traverse the cell membrane via a non-canonical endocytic 
pathway. These clusters undergo glutathione-induced 
release of their cargo and exhibit the capacity to rapidly 
incorporate various macromolecules into microdroplets, 
such as RNA, small peptides and enzymes [223]. Loaded 
with polysomes, they can provide new approaches for 
vaccine carriers based on mRNAs and intracellular trans-
portations for cancer treatments.

Likewise, as previously mentioned, droplets of drugs 
formed by LLPS can unexpectedly raise the inner drug 
concentration up to 600 times higher than that outside 
the condensate [202]. Furthermore, MED1 predomi-
nantly acts on oncogene promoters, thereby enabling 
cisplatin to ultimately target the corresponding DNA 
through its toxic platinum atoms, effectively assaulting 
the vital components of the cancer cells. Besides, the 
phosphopeptide KYp has been observed to induce LLPS 
level at the cell membrane, thus enhancing the permea-
tion and internalization of the peptide drug [224]. KYp 
has the ability to interact with alkaline phosphatase, 
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resulting in the dephosphorylation and in  situ self-
assembly at the cell membrane [224]. The process 
induces the aggregation of alkaline phosphatase and the 
separation of proteolipid phases at the membrane, ulti-
mately enhancing membrane leakage and facilitating 
the entry of the peptide drug. These great discoveries 
provide inspirations for designing drug delivery sys-
tems and more similar ideas are worth exploring.

Conclusions and future perspectives
In the past decades, crucial advances have been made in 
figuring out the role of LLPS in a variety of cellular pro-
cesses and biological functions. Since the update of the 
new version of “Hallmarks of cancer 2022”, cancer hall-
marks and their enabling characteristics help distill the 
oncogenic complexity into an evidently logical science, 
which have been gradually proven to be closely  asso-
ciated with LLPS. In this review, we summarize the 

mechanism of LLPS formations, recent discoveries and 
the  individual role of LLPS in oncology. These findings 
collectively reveal its vital role in solving undruggable 
targets and multiple clinical problems.

The role of specific proteins and post-translational 
mechanisms in the formation and regulation of LLPS are 
being investigated. These efforts aim to identify abnormal 
conditions and gain insights into the mechanisms regu-
lating the formation of the condensates. These studies 
have already begun to help find new strategies for target-
ing disease-related condensates. Notably, while previ-
ous drugs were designed to inhibit each protein directly, 
LLPS offers a novel and unexpected possibility of inter-
fering with the pathological process and does not neces-
sitate targeting each protein individually. This approach 
achieves disruption of the condensates formed by IDRs 
of TFs.

Fig. 5 Potential approaches to developing new cancer treatments by regulating BMCs. A Targeting driving forces to disrupt condensate formation. 
B Changing the modifications of components or physicochemical interaction. C Drug concentrations influenced by dynamic condensates
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Despite the steady progress in targeting BMCs 
using LLPS, several fundamental questions need to be 
answered. For example, what are the functional differ-
ences between LLPS-formed assemblies and typical 
protein complexes? What factors contribute to dynamic 
condensation and decondensation, and how do different 
BMCs communicate in vitro and in vivo? Moreover, the 
role of PTMs in tumorigenesis requires further explora-
tion (Table 5). Clarifying these aspects will improve our 
understanding of the conversion of physiological into 
pathological condensates in cancer. Future research will 
require collaborative efforts, innovative approaches, and 
a holistic approach to studying cancer-associated LLPS, 
which may lead to novel anti-tumor therapies directly 
targeting BMCs.
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and how do different BMCs communicate in vitro and in vivo?

The target protein molecules and signaling pathways discovered 
through LLPS method are a class of molecules that can form condensates 
spontaneously due to their own unique properties or under different 
environmental conditions. LLPS is essentially an energy saving process 
in the organisms. Further functional differences between LLPS‐formed 
assemblies and canonical protein complexes deserve investigations

Is there other function of PTMs in tumorigenesis and tumor progressions? Further studies on phase separation on the basis of proteomics and PTMs 
are needed

Detections of BMCs/ MLOs in tumor samples and clinicopathologic asso‑
ciations with cancer patients are deficient

Clinicopathologic tests should be involved in further studies

How do environment conditions inducing condensate assemblies being 
applied to clinical practice?

Perhaps changing the environment conditions can dynamically alter 
the condensation and decondensation of the BMC, which will make sense 
in drug deliveries. A greater understanding of the opportunities for tar‑
geting LLPS condensates in the pharmaceutical intervention should be 
obtained

Is there any new convenient method to probe and control (induce, dis‑
solve, or tune) the endogenous condensates?

The partitioning of anticancer drugs in subcellular condensates 
is also dominant for drug efficacy. According to this characteristic, we can 
detect the distribution of drugs in cells or by linking drugs to molecules 
that can specifically aggregate in liquid droplets

How to make use of LLPS to enhance the efficiency of drugs in clinical 
practice?
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