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To the editor
Coronavirus Disease 2019 (COVID-19) is a global pub-
lic health concern caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). Despite sig-
nificant emphasis on vaccine inoculation globally, vac-
cine-induced neutralizing antibody immunity alone has 
proven insufficient to prevent SARS-CoV-2 infection [1, 
2]. Accumulating evidences demonstrate the critical role 
of coronavirus-specific T lymphocytes for recovery and 
long-term protection [3]. SARS-CoV-2 vaccination has 
triggered a robust and enduring T cell response that can 
effectively recognize variants from Alpha to Omicron [4]. 
Recent study indicates a disease severity-dependent TCR 
clonal expansion pattern in COVID-19 patients, dem-
onstrating that the disease-specific TCRs is required for 
symptomatic relief [5]. However, the landscape of T-cell 
receptor (TCR) repertoires in COVID-19 and the TCRs 
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Abstract
The T-cell receptor (TCR) repertoires exhibits distinct signatures associated with COVID-19 severity. However, the 
precise identification of vaccine-induced SARS-CoV-2-specific TCRs and T-cell immunity mechanisms are unknown. 
We developed a machine-learning model that can differentiate COVID-19 patients from healthy individuals based 
on TCR sequence features with an accuracy of 95.7%. Additionally, we identified SARS-CoV-2-specific T cells and 
TCR in HLA-A*02 vaccinated individuals by peptide stimulation. The SARS-CoV-2-specific T cells exhibited higher 
cytotoxicity and prolonged survival when targeting spike-pulsed cells in vitro or in vivo. The top-performing TCR 
was further tested for its affinity and cytotoxic effect against SARS-CoV-2-associated epitopes. Furthermore, single-
cell RNA sequencing (scRNA-seq), immune repertoire sequencing (IR-seq) and flow cytometry were used to access 
vaccine-induced cellular immunity, which demonstrated that robust T cell responses (T cell activation, tissue-
resident memory T cell (Trm) generation, and TCR clonal expansion) could be induced by intranasal vaccination. In 
summary, we identified the SARS-CoV-2-associated TCR repertoires profile, specific TCRs and T cell responses. This 
study provides a theoretical basis for developing effective immunization strategies.
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responsible for recognizing SARS-CoV-2 remain uncer-
tain [6, 7].

This study, as illustrated in Additional information, 
Fig. S1, was designed to address these uncertainties. Ini-
tially, we conducted a comprehensive analysis of periph-
eral blood TCR repertoire in various groups, including 
healthy controls and individuals at different stages of 
SARS-CoV-2 infection (comprising 54 healthy, 103 acute, 
90 transition, and 108 convalescent patients), utiliz-
ing data from the ImmuneACCESS and ImmuneCODE 
databases (Additional information, Table S1). Compari-
son of TCR repertoire differences, the overlap ratio and 
complementary-determining region 3 (CDR3) amino 
acid usages between acute and transition groups (0.110) 
was more similar than others (Additional information, 
Fig. S2A, B). Besides, infected patients revealed signifi-
cant differences in TCR repertoire distribution compared 
with healthy controls (Fig. 1A, B). Notably, TCR patterns 
in patients indicated a predilection for high-frequency 
clusters, while controls exhibited different TCR usage 
profiles characterized by a predilection for low-frequency 
clusters, attributed to increased TCRs diversity following 
SARS-CoV-2 infection (Fig. 1C; Additional information, 
Fig. S2C-E). Moreover, we developed a machine-learn-
ing model that could accurately differentiate COVID-19 
patients from healthy individuals based on TCR sequence 
features, achieving an impressive area under the receiver 
operating characteristics (ROC) curve value of 95.7% 
(Fig. 1D, E). Intriguingly, we observed similarities in TCR 
repertoires when comparing TCR sequences after SARS-
CoV-2 infection and vaccination, suggesting the potential 
for specific T cell and TCR identification post-SARS-
CoV-2 vaccination (Additional information, Fig. S2F).

To identify SARS-CoV-2-specific T cells and TCRs, we 
employed a multiplexed peptide-MHC tetramer stain-
ing approach to screen 8 spike or nucleocapsid protein 
(XG1-XG8) for recognition by T cell responses with HLA 
allele HLA-A*02, the most common HLA class I allele in 
China [8]. Booster vaccinations notably enhanced T cell 
activation (Fig.  1F), with the SLSSTASAL peptide (XG2 
peptide, one of peptide from spike protein) demonstrat-
ing the most robust expansion of CD8+XG2+ T cells and 
heightened cytokine expression (IL2, GZMB, GZMK, 
IFNG and TNF) (Fig.  1G; Additional information, Fig. 
S3A). To assess the cytotoxicity of XG2+ T cells, we 
co-cultured them with epithelial cells (BEAS-2B or SV-
HUC-1) expressing spike protein by lentivirus (pCDH-
EF1a-spike-GFP) infection. (Additional information, Fig. 
S3B). Compared to XG2− T cells, XG2+ T cells exhibited 
higher cytotoxicity and prolonged survival when target-
ing spike-pulsed cells (Fig. 1H, I; Additional information, 
Fig. S3C). Immune repertoire sequencing (IR-seq) and 
a deep learning framework for predicting immunogenic 
peptide recognized by TCR (DLpTCR) approaches were 

used to determine specific TCR clonotype from XG2+ 
T cells (Additional information, Table S2). Compared 
with XG2− T cells, XG2+ T cells showed the significant 
decrease in VJ and CDR3 amino acid usage after vaccina-
tion (Additional information, Figs. S3D-G). We identified 
the top 5 high-probability CDR3 amino acid sequences 
binding to the SLSSTASAL peptide (Fig.  1J). Subse-
quently, one of these high-probability TCRs (TRA CDR3, 
CILNNNNDMRF; TRB CDR3, CASSEFSGRMNTEAFF) 
was overexpressed in CD8+ T cells (Additional informa-
tion, Fig. S3H, I), leading to enhanced cytolytic activity 
against target cells (Fig.  1K, L) with the elevated phos-
pho-ZAP70 (Tyr319) and phospho-AKT (Ser473) (down-
stream of TCR signaling) (Fig. 1M).

To evaluate the T cell responses in the lower respiratory 
tract elicited by specific peptides, we immunized mice 
intranasally with the SLSSTASAL peptide (Additional 
information, Fig. S4A). Lung mononuclear cells were col-
lected at 1, 7 and 30 days post-immunization for scRNA-
seq and IR-seq (Additional information, Table S3, S4). 
Compared to non-immunized individuals, peptide-stim-
ulated pulmonary tissues displayed increased fractions 
of total, central memory (Tcm), effector memory (Tem), 
and tissue-resident memory T cells (Trm) in the early 
days (1 and 7 days) (Fig. 2A, B; Additional information, 
Fig. S4B) without inducing tissue injury or inflammatory 
responses (Additional information, Fig. S4C-E). These 
T cells also exhibited high activation genes and various 
cytokine genes expressions (Ccl5, Cxcl10, Cxcl16, Gzmb, 
Gzmk, Ifng, and Nkg7) after 7 days post-immunization, 
similar to XG2+ T cells from humans (Fig. 2C; Additional 
information, Fig. S4F, G). Flow cytometry further con-
firmed a significant increase in the percentage of memory 
T cells and T cell activation (Fig. 2D, E; Additional infor-
mation, Fig. S4H). Although the effect of T cell activation 
diminished after 30 days post-immunization, Trm cells 
were still detectable (Fig. 2D, E; Additional information, 
Fig. S4I-K). Additionally, we evaluated the pulmonary 
TCR repertoire on 0 day, 7 days, 30 days after intranasal 
immunization. Vaccination enhanced TRBV12-1 usage 
and reduced TRBV1 usage (Fig.  2F). Similar with TCRs 
expansion in COVID-19 patients, antigenic stimulation 
significantly augmented TCRs diversity on 7  day post-
immunization (Fig.  2G, H), leading to similar CDR3 
amino acids usage (including SHDR%TE, SD%RNTE, 
SDH%NTE, and S%HRNTE) (Fig. 2I-L). Taken together, 
antigen exposure induced significant expansion of TCR 
clonotypes in local pulmonary tissues, suggesting that 
epitope-specific Trm responses could provide long-term 
protection against SARS-CoV-2 infection.

In summary, our study introduces a machine-learning 
approach capable of accurately predicting COVID-19 
infection severity based on TCR sequence features. We 
successfully identified SARS-CoV-2-specific T cells and 
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their CDR3 sequences from human peripheral blood and 
observed a robust memory T cell response in local pul-
monary tissues. Furthermore, we cloned specific TCR 
sequences in CD8+ T cells and established highly efficient 
TCR-T cells. Our research introduces an autonomous 

TCR screening platform capable of identifying precise 
TCR sequences that bind to specific HLA-peptide com-
plexes. Leveraging this platform, we can similarly pin-
point neoantigen-associated TCRs in various diseases, 
including cancer, infections, and autoimmune conditions.

Fig. 1 The characteristics of SARS-CoV-2-specific T cell and TCR repertoire. A Principal Component Analysis (PCA) visualization of TCR sequences obtained 
from the ImmuneACCESS and ImmuneCODE databases, comparing healthy donors (n = 54) with patients at different stages of infection (acute n = 103, 
transition n = 90, and convalescent n = 108). B Levenshtein distances depict TCR clone similarities between acute and transition groups and diversity 
in TCR clones between acute and healthy groups. C Rank-abundance curve illustrating TCR diversity. D Machine learning framework for analyzing TCR 
sequences from COVID-19 patients and healthy individuals. E Performance evaluation of machine learning models for predicting SARS-CoV-2 infection. 
F Bar graphs representing the proportion of peptide-specific CD8+ T cells in HLA-A*02+ healthy donors before and after immunization. G Representative 
flow plot showing the percentage of specific T cells (CD8+XG2+) after peptide stimulation. H Cytotoxic activities of XG2+ T cells against BEAS-2B-spike cells 
assessed at different effector/target (E/T) ratios. I Quantification of lysis rates when co-cultured with BEAS-2B-spike cells (n = 4). J Top 5 CDR3 amino acid 
sequences predicted by IR-seq and DLpTCR. K Cytotoxic activities of TCR-T cells against BEAS-2B-spike cells assessed by flow cytometry. L Quantification 
of TCR-T cell lysis rates when co-cultured with BEAS-2B-spike cells (n = 8). M Comparison of phospho-ZAP70, ZAP70, phospho-AKT, AKT, and β-Tubulin 
expression in TCR-T cells by immunoblot analysis (n = 3). Data are representative of at least three independent experiments
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Abbreviations
COVID-19  Coronavirus Disease 2019
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
TCR  T cell receptor
CDR3  Complementary-determining region 3
ROC  Receiver operating characteristics
PCA  Principal component analyses

IR-seq  Immune repertoire sequencing
DLpTCR  Deep learning framework for predicting immunogenic 

peptide recognized by TCR
scRNA-seq  Single-cell RNA sequencing
Tcm  Central memory T cell
Tem  Effector memory T cell
Trm  Tissue-resident memory T cells

Fig. 2 Intranasal immunization enhances T cell response. A UMAP plot of scRNA-seq displaying pulmonary T cell subsets at 0, 1, 7, and 30 days post 
intranasal immunization in mice (n = 3). B Proportion of T cell subsets in pulmonary tissue at indicated time-point. C Bubble plot showing the expression 
of T cell activation genes at 0 and 7 days post-immunization. D Representative flow plots depicting CD8+ memory T cells and Trm in pulmonary tissues. 
E The percentage of various T cell subsets in pulmonary tissue after vaccination (n = 8). F Analysis of TCR repertoires in pulmonary tissues by IR-seq (n = 5). 
Pie graph displaying the top10 V and J gene usages after 0 (left), 7 (middle), and 30 days (right) immunization. G TCR diversity based on CDR3 amino 
acid clonotypes (left), Chao1 (middle), d50 (right). H Rank abundance analysis of TCR clonotypes. I-K Bias analysis of CDR3 amino acid motif. L Heatmap 
hierarchical clustering of CDR3 amino acid sequences. Data are representative of three independent experiments. Data are representative of at least three 
independent experiments
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