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Abstract 

The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role 
of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, 
has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 
plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction 
adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer 
(CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected 
chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid 
tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated 
to further maximising and optimising the efficacy. This review summarises the important research, latest progress, 
and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
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Background
Worldwide, gastrointestinal (GI) tract cancers are the 
most prevalent malignancies with high morbidity and 
mortality [1]. According to the Global Cancer Observa-
tory 2022 estimates, East Asia registered 1,469,225 new 

patients with GI tract cancers in 2022, accounting for 
43.1% of the global incidence of GI tract cancers and 
837,360 deaths, amounting to 41.7% of cancer-related 
deaths of GI tract cancers. Notably, the incidence of GI 
tract cancers is sharply increasing among young adults 
[2]. However, the etiological factors for GI tract cancers 
encompass infectious agents (such as HP, EBV infec-
tions), genetic factors (such as CDH1 mutations), and 
environmental factors (such as poor dietary habits) 
which have not been completely eliminated. In certain 
high-risk regions, routine endoscopic screening has not 
yet been universally implemented, severely affecting the 
health of populations and imposing economic burdens 
globally. Immunotherapy, one of the most recently devel-
oped therapies based on the theory of cancer immu-
noediting which indicated the crucial role of immune 
escape in tumour development and growth, has wrought 
a profound revolution in cancer treatment [3]. Immu-
notherapy was defined as therapeutic methods restoring 
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the normal anti-tumour immune response, restarting the 
tumour-immune and further eliminating tumour cells 
[4]. Immune checkpoint inhibitors (ICIs), cancer vac-
cines, cell therapy, oncolytic virus (OVs) were in the cat-
egory of immunotherapy.

Recent clinical trials, especially of ICIs targeting pro-
grammed death protein 1 (PD-1) and PD ligand-1(PD-
L1), have shown their noteworthy efficacy in GI tract 
cancers and have contributed to a paradigm shift in treat-
ment principles. Notwithstanding the anti-PD-1/PD-L1 
treatment patterns of second- or later-line GI tract can-
cers, the success of Chekmate-649 [5], ORIENT-16 [6], 
Keynote-177 [7], and Keynote-590 [8] enabled anti-PD-1 
antibodies plus chemotherapy be involved into the first-
line mainstay treatment for esophagogastric junction 
(EGJ)/gastric cancer (GC), mismatch repair-deficient 
(dMMR)/microsatellite instability-high (MSI-H) colo-
rectal cancer (CRC) and advanced oesophageal cancer 
(EC). Besides, Keynote-811 promoted the combination of 
trastuzumab, pembrolizumab, and chemotherapy as the 
standard first-line treatment for human epidermal growth 
factor receptor 2 (HER-2) positive GC [9]. Moreover, the 
long-lasting survival benefit of above large-scale clinical 
trials is under observation. The remarkable improvement 
in response to first-line therapy has boosted a surge of 
clinical trials focused on perioperative anti-PD-1/PD-L1 
therapy in GI tract cancers [10–23]. Additionally, chi-
meric antigen receptor T-cell (CAR-T) therapy, exerts 
potent anti-tumour efficacy against GI cancers. Accord-
ing to phase I results in claudin18.2-redirected CAR-T 
cells (CT041) in patients with GI cancers who failed to 
respond after at least two prior lines of therapy, CT041 
reached an objective response rate (ORR) and Disease 
control rate (DCR) of 48.6% and 73.0%, respectively. 
What’s more, the 6-month response rate was 44.8% [24]. 
The initial triumph of the CT041 phase I clinical trial was 
a milestone marking the entry of CAR-T therapy into GI 
tumour treatment. Therefore, an increasing number of 
clinical trials and translational studies concerning novel 
immunotherapies, combination treatments, and therapy 
modes in distinct lines for GI are being performed.

Despite the significant therapeutic progress in immu-
notherapy, many challenges persist: the biomarkers with 
definite cut-off values remain unknown; the majority of 
patients with GI tract cancers still suffer from primary or 
secondary resistance; the strategies for patients with spe-
cific subtypes have not been identified; and the manage-
ment of adverse effects is yet to be standardized. Here, 
we focused on the EC, G/GEJC, and CRC and systemati-
cally summarised the pivotal clinical trials and discussed 
the latest advances in the management of these cancers. 
Furthermore, we outlined the progress and challenges 
in the realisation of precision immunotherapy, including 

the exploration of biomarkers, investigation of resistance 
mechanisms, and strategies to optimise the development 
and efficacy of novel immunotherapies.

Current immunotherapy landscape
Oesophageal cancer
History and current situation of immunotherapy for EC
Approximately 70% of patients with EC are diagnosed at 
an advanced stage, with a median overall survival (OS) of 
7–13 months under standard chemotherapy [25, 26] and 
a 5-year survival rate of 15–20% [27].

The histological subtypes of EC vary significantly 
across different regions. Oesophageal squamous cell 
carcinoma (ESCC) accounted for 85% of all EC world-
wide, predominating in Eastern Europe and Asia. In con-
trast, oesophageal adenocarcinoma (EAC) comprised 
about 14% of cases and is more prevalent in Western 
Europe and North America [28]. EAC typically involves 
the lower third of the oesophagus and the GEJ, associ-
ated with Barrett’s oesophagus, history of gastroesopha-
geal reflux disease, obesity, and tobacco usage, sharing 
molecular characteristics similar to those in GC [27–30]. 
Conversely, ESCC generally affects the upper two-thirds 
of the oesophagus and is linked with both smoking and 
alcohol consumption, exhibiting molecular features more 
resemble those observed in head and neck squamous 
cell carcinoma. Despite the advances in treatment, there 
remains a lack of phase III clinical trials focusing exclu-
sively on immunotherapy for EAC. Currently, the effi-
cacy data for immunotherapy in EAC is primarily derived 
from subgroup analyses of related studies. Previous stud-
ies have compared second-line single-agent immunother-
apy with chemotherapy and reported positive outcomes, 
preliminarily establishing the role of immunotherapy 
in ESCC [31]. Immunotherapy has therefore advanced 
towards first-line treatment (Table 1).

To date, data from several phase III clinical trials, 
including KEYNOTE-590 [8], ESCORT-1st [26], Check-
Mate-648 [45], ORIENT-15 [37], JUPITER-06 [38], 
RATIONALE-306 [39], GEMSTONE-304 [46] and 
ESCORT-RWS [47] demonstrated that the first-line 
combination of chemotherapy and PD-1/PD-L1 block-
ade (chemo + anti-PD-1/PD-L1) could extend the OS 
of patients with ESCC from less than 12 months with 
chemotherapy alone to approximately 16 months. These 
findings have solidified the premier role of immuno-
chemotherapy as the first-line treatment for advanced 
ESCC. And subsequently led to the exploration of immu-
notherapy for locally advanced diseases. In terms of 
adjuvant treatment, the phase III study CheckMate-577 
[43] revealed significant benefits for patients with EC 
or GEJC (EAC accounting for 71%) underwent neoad-
juvant chemoradiotherapy (nCRT) followed adjuvant 
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nivolumab therapy, showing improved disease-free 
survival (DFS) (22.4 months vs. 11.0 months, HR 0.69, 
P < 0.001). Currently, most clinical trials of different 
neoadjuvant immunotherapy combined with chemo-
therapy (CT) or chemoradiotherapy (CRT) regimens 
were phase I or II studies, which demonstrated favour-
able pathologic complete response (pCR) rates ranging 
from 17 to 56% [48–59]. ESCORT-NEO [44] was the 
first phase III study to evaluate the role of neoadjuvant 
immunotherapy for resectable locally advanced ESCC 
(LA-ESCC) demonstrated that neoadjuvant camreli-
zumab plus chemotherapy can significantly improve pCR 
rate from 4.7 to 28% (P < 0.0001) compared to chemo-
therapy alone. Moreover, the phase II study NICE [60] 
recently updated its 2-year follow-up data, showing that 
37.3% of patients experienced disease recurrence with 
distant metastasis accounting for 27.4% of these cases, 
being the predominant recurrence pattern. The 2-year 
OS and progression-free survival (PFS) rates were 78.1% 
and 67.9%, respectively. Although these trials underline 
the short-term benefits of neoadjuvant immunotherapy 
plus chemotherapy, further data are essential for evaluat-
ing long-term survival outcomes. Accordingly, National 
Comprehensive Cancer Network (NCCN) guidelines 
recommend multiple immunotherapy combinations with 
chemotherapy as the first-line treatment for ESCC, with 
nivolumab specifically endorsed for adjuvant treatment.

Challenges in immunotherapy for ESCC
Perioperative immunotherapy necessitates comprehen‑
sive investigation Despite ongoing research into various 
regimens, there are currently no standard guidelines for 
neoadjuvant immunotherapy. Based on CROSS [61] and 
NEOCRTEC5010 [62], nCRT could improve survival over 
surgery alone among LA-ESCC patients and increase pCR 
rate to 29.0–43.2%. Further, combining nCRT with PD-1 
blockade, as demonstrated in the phase II PALACE-1 
[59] and NEOCRTEC1901 [63] studies, can increase the 
pCR rate to 50.0–55.6%. Neoadjuvant PD-1 blockade with 
chemotherapy also showed a significant increase in pCR 
rates over chemotherapy alone [44]. However, whether 
these higher pCR rates contribute to prolonged survival 
remains unclear and requires further validation in phase 
III randomized controlled trials (RCTs). Moreover, there 
is a notable absence of comparative studies between 
immunotherapy combined with nCRT versus nCT alone. 
Additionally, the role of neoadjuvant radiotherapy in the 
era of immunotherapy requires further clarification. Cur-
rently, there was only trials compared the nCRT and nCT. 
A Japanese study [64] showed that nCRT yielded superior 
OS compared to nCT in patients undergone R0 resection 
(mOS: not reached vs. 20.2months, P = 0.028).In contrast, 
a Chinese study [65] indicated that nCRT did not signifi-

cantly improve OS over nCT (HR 0.82, 95%CI 0.58–1.18, 
P = 0.28), which may attribute to the inconsistency to dif-
ferences in T stage and radiotherapy dosage among the 
study populations. Considering that combined radio-
therapy may not substantially improve efficacy and that 
treatment-related deaths have been reported in studies 
including PALACE-1 [59], NEOCRTEC1901 [63] and EC-
CRT-001 [66], the treatment regimens of immunotherapy 
combined with nCRT require further optimisation. For 
example, researchers are exploring whether reducing the 
dose of radiation or chemotherapy could achieve effec-
tive outcomes with reduced toxicity. As phase I SCALE-1 
[67] study presented at the 2022 ASCO indicated, a short 
course of nCRT combined with toripalimab exhibited 
promising efficacy and tolerability in LA-ESCC.

To improve the effectiveness of the above-mentioned 
treatments, several promising directions are being 
explored: (1) Optimising combination chemotherapy 
regimens. Different chemotherapy agents affect tumour 
immune microenvironment (TIME) differently. For 
example, a meta-analysis, showed that the combination 
of taxane plus platinum (TP) with ICI exert higher sur-
vival rates compared to fluorouracil plus platinum [68]. 
Studies showed that taxanes could induce immunogenic 
death of tumour cells and activate TIME [69] making 
the taxane-based regimen a frequent choice in ongo-
ing studies. Taxanes such as albumin-bound paclitaxel 
and paclitaxel are commonly used in EC clinical trials. 
The ESCORT-NEO [44] study compared the differences 
between albumin-bound paclitaxel and paclitaxel: 
group A (camrelizumab, albumin-bound paclitaxel, and 
cisplatin) and B (camrelizumab, paclitaxel, and cispl-
atin). Results showed that group A exhibited a higher 
pCR rate of 28.0%, compared to 15.4% in group B. This 
superior outcome in group A may be attributed to the 
"selective tumour local enrichment" effect of albumin-
bound paclitaxel, which allows higher concentration 
in tumour tissues, potentially minimizing immune 
system damage. Additionally, the application of albu-
min-bound paclitaxel avoids the negative immune 
regulatory effects caused by glucocorticoids. (2) Opti-
mising the sequence of administering chemotherapy 
and immunotherapy. Delaying PD-1 blockade until 3 
days after administrating chemotherapy, as reported in 
a phase II study [51] could possibly enhance pCR rates 
by allowing chemotherapeutic agents to clear from the 
body before receiving anti-PD-1 agents, thus sparing T 
cells and maximizing cancer cell eradication. Thus, it is 
essential to explore the sequence of regimens in combi-
nation strategies by RCTs. (3) Determining the optimal 
duration of neoadjuvant therapy. The optimal mumber 
of neoadjuvant immunotherapy cycles remains uncer-
tain. A prospective study investigating the combination 
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of nCT and camrelizumab for the treatment of ESCC 
revealed that the pCR rates within the four-cycle group 
(50.0%, 3/6) were not significantly superior to the two-
cycle group (46.7%, 7/15) [70]. Excessively prolonged 
treatment may result in missing the optimal surgical 
timing, whereas insufficient treatment could result in 
inadequate tumour shrinkage. Thus, it is essential to 
conduct prospective RCTs to determine the most effec-
tive treatment cycle and customise the number of treat-
ment cycles for each patient. (4) Identifying patients 
who would most benefit from immunotherapy. Nota-
bly, the 2-year OS rate for patients treated with neo-
adjuvant adebrelimab is 92% [71], higher than that of 
immunotherapy plus nCT. Thus, it is also vital to iden-
tify whether it is enough to receive neoadjuvant mono-
immunotherapy for patients with specific features.

Efficacy‑enhancing strategy remains unclear At pre-
sent, several first-line combined immunotherapy treat-
ments have shown promising outcomes, yet they failed to 
meet clinical demands. The challenges of improving the 
efficacy persist. In recent years, the number of clinical 
studies related to immunotherapy combination therapy 
has increased rapidly. CheckMate-648 [36] showed that 
nivolumab plus ipilimumab extended OS compared to 
chemotherapy alone, without new safety concerns iden-
tified, providing new chance for ESCC patients with 
chemotherapy intolerance. Additionally, the feasibility 
of combining PD-1/PD-L1 inhibitors with TIGIT mono-
clonal antibody has also been explored. The phase I study 
GO30103 [72] and phase II study AdvanTIG-203 [73] ini-
tially assessed the safety and efficacy of this combination. 
Furthermore, the phase III study SKYSRAPER-08 [42] 
compared the efficacy of tiragolumab (tira) + atezolizumab 
(atezo) + chemotherapy (CT) and placebo (pts) + CT, 
suggesting significantly improved PFS (6.2 months vs. 
5.4 months) and OS (15.7 months vs. 11.1 months). The 
MORPHEUS-EC study [74] included the comparison of 
mono-immunotherapy (tira + atezo + CT vs. atezo + CT 
vs. CT alone) and showed that the OS in three groups 
were 16, 13.1, and 9.9 months, respectively. Although the 
combination of PD-1/PD-L1 blockade and TIGIT mAb 
did not demonstrate a clear numerical advantage over the 
16-month OS of the first-line immunotherapy, there are 
notable differences in the efficacy and prognosis between 
monotherapy and combination immunotherapy in the 
phase Ib/II MORPHEUS-EC study [74]. Therefore, block-
ade of PD-1/PD-L1 combined with TIGIT mAb presents 
a promising strategy for ESCC. Additionally, given the 
unique anatomical site of EC, investigation into first-line 
systemic therapy combined with radiotherapy is war-
ranted. Both the ESO-Shanghai 13 study [75] and the 2023 
ESMO 1576P study [76] showed improvements in prog-

nosis. More ongoing clinical studies on immunotherapy 
for esophageal cancer have been summarized in Table 2.

In summary, immunotherapy strategies of EC vary by 
tumour sites.  The management of precise  periopera-
tiveimmunotherapy, the strategies to improve efficacy 
of diverse tumour sites, potential beneficiary population 
features in perioperative and advanced-stage settings are 
important directions for future development.

Gastric and gastroesophageal junction cancer
History and current situation of immunotherapy for G/GEJC
Despite the continuous advancement and optimisation 
of chemotherapy regimens for advanced G/GEJC, the 
efficacy of first-line chemotherapy for advanced G/GEJC 
remains poor, with an OS of no longer than 12 months 
[77]. Immunotherapy has achieved satisfactory results in 
the treatment of advanced G/GEJC (Table  3), breaking 
through the long-standing treatment bottleneck of short 
survival with traditional chemotherapy.

Immunotherapy initially began after the reporting 
of positive results from the ATT RAC TION-2 [79] and 
KEYNOTE-059 [95] studies, which suggested that the 
single-agent immunotherapy in the later-line (≥ 3) treat-
ment of advanced G/GEJC could significantly improve 
ORR and OS. Despite the KEYNOTE-061 [80] in the 
second-line treatment of advanced G/GEJC were failed to 
meet the primary endpoint, however the post-hoc analy-
sis found pembrolizumab in PD-L1 CPS ≥ 10 patients 
had a better outcome than chemotherapy group, sug-
gesting a potential benefit from immunotherapy. KEY-
NOTE-062 [96] initially explored the role of first-line 
immunotherapy in (HER-2-negative G/GEJC across three 
cohorts, including pembrolizumab monotherapy, pem-
brolizumab combined with chemotherapy and chemo-
therapy alone, with primary endpoints being OS and PFS 
in patients with PD-L1 CPS ≥ 1 or ≥ 10. Despite failing to 
meet its primary endpoint, an OS benefit was observed 
for pembrolizumab monotherapy over chemotherapy in 
PD-L1 CPS ≥ 10 patients (17. 4 months vs 10. 8 months; 
HR 0. 69; 95%CI 0. 49–0. 97). However, this finding was 
not statistically tested. The study’s shortcomings are pre-
sumably attributed to its complex statistical design and 
the variability in chemotherapy regimens. Concurrently, 
the CheckMate-649 study [5] of first-line treatment 
using nivolumab for HER-2-negative G/GEJC enrolled 
2687 patients across three cohorts, focusing on OS and 
PFS in the PD-L1 CPS ≥ 5 patients. This study demon-
strated that nivolumab combined with chemotherapy 
increased mOS by 3.3months and decreased the risk of 
death by 29% compared to chemotherapy alone in the 
CPS ≥ 5 patients, with similar trends across the entire 
cohort. Subsequently, ORIENT-16 [6], KEYNOTE-859 
[82], RATIONALE-305 [97], and GEMSTONE-303 [85] 
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Table 2 Summary of ongoing key phase III clinical trials of immunotherapy in EC

Disease Population selection Line Regimen Primary endpoint Status Sample 
size(estimated)

NCT number

ESCC - First-line Active Comparator: Camreli-
zumab + Chemotherapy
Experimental: Radiother-
apy + Camrelizumab + Chemo-
therapy

OS Recruiting 436 NCT06086457

ESCC locally advanced - Experimental: Arm A
Camrelizumb + Radiother-
apy + Chemotherapy
Placebo Comparator: Arm B
Placebo + Radiother-
apy + Chemotherapy

PFS Unknown status 396 NCT04426955

ESCC - First-line Experimental: Atezoli-
zumab + Tiragolumab + Chem-
otherapy
Placebo Comparator: Pla-
cebo + Chemotherapy

OS PFS Active, not recruiting 461 NCT04540211

ESCC Unresectable;
have not progressed fol-
lowing definitive concur-
rent chemoradiotherapy

- Experimental: Arm A: 
Tiragolumab + Atezolizumab
Experimental: Arm B: 
Tiragolumab Placebo + Atezoli-
zumab
Placebo Comparator: Arm C: 
Tiragolumab Placebo + Atezoli-
zumab Placebo

PFS
OS

Active, not recruiting 760 NCT04543617

ESCC - Second-line Experimental: Camreli-
zumab + Apatinib
Active Comparator: Camreli-
zumab

OS Unknown status 234 NCT05049681

ESCC Stage T1-4aN1-3M0 
or T3-4aN0M0

Neoadjuvant Experimental: Radiother-
apy + Sintilimab + Chemo-
therapy

OS Recruiting 422 NCT05357846

Active Comparator: Radio-
therapy + Chemotherapy

ESCC PD-L1 CPS < 10 First-line Experimental: Chemoradia-
tion + Tislelizumab

PFS Recruiting 155 NCT05919030

Active Comparator: Chemo-
therapy + Tislelizumab

ESCC resectable cT1-
4aN + M0 or T3-4aN0M0 
and residue disease 
is found after neoad-
juvant chemotherapy 
plus surgery or cT1-
2N0M0 and pathologi-
cally proven T1-2N + M0 
after upfront surgery

Adjuvant Experimental: Sintilimab DFS Active, not recruiting 219 NCT05495152

No Intervention: Observation 
Arm

ESCC R0 resectable thoracic 
esophageal cancer, cT1-
3N1-2M0, cT2-3N0M0

Perioperative Experimental: Pembroli-
zumab + Chemotherapy + Sur-
gery + Pembrolizumab

EFS Recruiting 342 NCT04807673

Experimental: neoadjuvant 
chemoradiotherapy + Surgery

ESCC PD-L1 positive First-line Experimental: HLX10 + Chemo-
therapy

PFS Active, not recruiting 489 NCT03958890

Placebo Comparator: Pla-
cebo + Chemotherapy

OS

ESCC cT1N2-3M0 or cT2-4aN0-
3M0 thoracic ESCC

Neoadjuvant Experimental: Sintili-
mab + Chemotherapy

pCR rate Not yet recruiting 420 NCT05244798

Experimental: Sintili-
mab + Chemoradiotherapy

Other: Chemoradiotherapy
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showed that combination chemotherapy with sindi-
lizumab, pembrolizumab, tirelizumab, and suglizumab 
(PD-L1 mAb) significantly increased mOS to 13 ~ 15 
months in first-line treatment for HER-2-negative G/
GEJC, especially in patients with high PD-L1 expres-
sion, where mOS could reach 15 ~ 18 months, and ORR 
was approximately 60%. Notably, as a biomarker-driven 
clinical trials, GEMSTONE-303 [85] specifically enrolled 
individuals with PD-L1 expression ≥ 5%, thus resulting in 
relatively high efficacy and survival benefits.

Based on these promising results, PD-1/PD-L1 mAb 
combined with platinum-containing chemotherapy has 
become the standard recommended regimen for the first-
line treatment of G/GEJC, as incorporated into NCCN 
guidelines. Besides, it is noteworthy that long-term fol-
low-up data from Checkmate-649 revealed a marked 
survival advantage in the Chinese population when 
compared to the global average, particularly notable in 
patients with a CPS ≥ 5, where the 3-year OS rates are 
31% [98] and 17% [99] respectively. This disparity likely 
stems from genetic and lifestyle differences between East-
ern and Western populations. Additionally, molecular 
characteristics, the TME, and health economics concerns 
should also be considered. The shared dining customs 
among Chinese may increase the transmission of Helico-
bacter pylori (HP), a known precursor for G/GEJC [100, 
101]. A comprehensive meta-analysis involving 11 studies 
showed that G/GEJC cases with HP positivity are associ-
ated with higher PD-L1 expression levels, which corre-
lates to better responses to immunotherapy [102, 103]. 
A study by Jia et  al. [104] demonstrated that patients 
with HP-positive, EBV-negative, and MSS-positive G/
GEJC achieved significantly longer immune-related PFS 
(irPFS) (6.97 months vs 5.03 months, HR 0.76, p < 0.001) 
and showed a tendency toward four months extended 
irOS in comparison to those in the HP-negative group 
(18.3 months vs 14.2 months, p = 0.105). Therefore, con-
sidering the characteristics of GC populations in different 
regions, the high spatiotemporal heterogeneity of GC, 
and the complexity of the microenvironment, researchers 
around the world have been exploring personalized and 
precise immunotherapy strategies for GC patients with 
specific features in recent years.

Current situation of immunotherapy for G/GEJC with specific 
subtypes
G/GEJC is characterized by significant heterogene-
ity and a diversity of molecular subtypes. Several stud-
ies concentrating on specific molecular subtypes of G/
GEJC have demonstrated that combination immuno-
therapy may offer survival advantages, especially in 
patients with MSI-H and EBV infection. These insights 
are often derived from subgroup analyses in combination 

immunotherapy clinical trials [80, 96], or from retrospec-
tive evaluations of clinical data [105]. The discussion 
below will detail the investigation of immunotherapy for 
particular subtypes of G/GEJC.

HER‑2 HER-2 is a classic target for G/GEJC. ToGA 
study had established trastuzumab combined with chem-
otherapy as the first-line standard treatment for HER-
2-positive G/GEJC [106]. Since then, despite numerous 
failures in the development of new drugs targeting HER-
2, the emergence of immunotherapy and antibody–drug 
conjugates (ADCs) has dramatically altered the treatment 
landscape for HER-2-positive GC. KEYNOTE-811 evalu-
ated trastuzumab plus chemotherapy with or without 
pembrolizumab in the first-line treatment of HER-2-pos-
itive G/GEJC. The third interim analysis (follow-up 38.5 
months) [88] showed significant improvement in mPFS 
and mOS for patients with ITT and PD-L1 CPS ≥ 1 when 
combined with ICIs. However, for patients with CPS < 1, 
there was no difference in mPFS and mOS was worse 
when combined immunotherapy.Given the promising 
results, NCCN guidelines have restricted the indication 
for combined immunotherapy to HER-2-positive patients 
with CPS ≥ 1. The lack of survival benefit of combination 
immunotherapy in patients with CPS < 1 may stem from a 
higher percentage of patients in the control group receiv-
ing subsequent treatments (47% vs 39%). Additionally, 
HER-2 may up-regulate PD-L1 expression [107], and the 
status of immunotherapy included in follow-up treatment 
after progression in the control group is unknown, which 
could also affect the outcome. Besides trastuzumab com-
bined with immunotherapy, HER-2-targeted ADCs have 
also achieved satisfying efficacy in clinical application 
of G/GEJC. The results from the Chinese mul-ticenter 
phase I study C103 [108] showed that in HER-2-express-
ing G/GEJC who progressed after at least first-line treat-
ment, the ORR for disitamab vedotin (RC-48) combined 
with toripalimab was 43%, with an mPFS of 6.2 months, 
and an mOS of 16.8 months. Clinical benefits were also 
observed in HER-2-positive and low-expressing patients 
at the recommended phase II dose, with ORR of 56% 
and 46%, respectively, and mPFS of 7.8 months and 5.8 
months, respectively. These outcomes represent a sig-
nificant improvement compared over previous data for 
RC-48 monotherapy. In addition, duration of response 
(DoR) in second-line treatment was significantly out-
performed that in third-line and subsequent treatments, 
15.6 months and 3.6 months respectively, suggesting that 
the advance of the combined treatment regimen could 
yield superior benefits. A clinical trial evaluating RC-48 
combined with toripalimab and chemotherapy or trastu-
zumab in first-line HER-2-expressing G/GEJC is ongoing 
(NCT05980481), with results eagerly anticipated.
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Claudin18. 2 According to the SPOTLIGHT [109] and 
GLOW [110], Zolbetuximab, a CLDN18.2 mAb in com-
bination with chemotherapy provided a survival benefit 
in first-line Claudin18.2-positive (≥ 75% of tumor cells 
exhibit moderate-to-strong membranous CLDN18.2 
staining) and HER-2-negative G/GEJC. Preclinical study 
[111] demonstrated that zolbetuximab combined with 
chemotherapy can significantly promote CD8 + T cell 
infiltration. Moreover, when combined with PD-1 mAb, 
zolbetuximab more effectively inhibited tumour growth, 
and significantly increased the number of mice achiev-
ing complete response (CR), indicating a synergistic 
effect. The phase 1 study of QLS31905 [112] a CLDN18.2/
CD3 bispecific antibody, in advanced solid tumours, pre-
sented at the 2023 ESMO, included 31 patients with G/
GEJC and initially reported safety and efficacy data. Fur-
ther clinical studies focusing on CLDN18.2 combination 
immunotherapy are currently underway (NCT06206733, 
NCT05964543).

dMMR/MSI‑H Notable characteristics of dMMR/
MSI-H G/GEJC include a favourable prognosis, chemo-
therapy insensitivity and obvious benefits from immu-
notherapy [113]. Due to the low incidence, high-level 
evidence from large sample studies is absent. Subgroup 
analyses from the KEYNOTE-059, KEYNOTE-061 and 
KEYNOTE-062 studies initially suggested that PD-1 mAb 
exhibits a high response rate and prolonged survival in 
dMMR/MSI-H G/GEJC [114]. Preliminary findings from 
the phase II prospective single-arm NO LIMIT study 
[115] indicate that nivolumab combined with ipilimumab 
as a first-line treatment results in an ORR of 62.1%, with 3 
patients (10%) achieving CR, a DCR of 79.3%, and a mPFS 
of 13.8 months, aligning with the established safety profile 
of dual immunotherapy. In addition, results from multiple 
prospective phase II studies have shown therapeutic effi-
cacy of envafolimab [116], tislelizumab [117], serplulimab 
[118], and pembrolizumab [119] in the second-line treat-
ment of dMMR/MSI-H advanced G/GEJC patients who 
have not previously received immunotherapy..

EBVaGC EBV associated GC (EBVaGC) patients, char-
acterized by highly active immune-active TME [120], may 
benefit from immunotherapy. However, the efficacy of 
immunotherapy in EBV-positive G/GEJC are inconsist-
ent [105, 121, 122]. At present, a clinical trial investigating 
double-immunotherapy in EBV-positive G/GEJC patients 
is nearing completion (NCT04202601), with results 
eagerly anticipated.

AFPGC Alpha fetoprotein‑producing G/GEJC (AFPGC), 
a distinct subtype of G/GEJC, comprises approximately 
6% and is known for its predisposition to liver and lymph 

node metastases, elevated AFP levels, and a poor prog-
nosis [123]. A prospective phase II study [124] demon-
strated that a combination of camrelizumab, apatinib 
and SOX achieved promising outcomes in advanced G/
GEJC patients with AFP > 2 × ULN or AFP positive, with 
an ORR of 55.6%, a 12-month PFS rate of 42.1%, and a 
12-month OS rate of 63.7%.

The results presented above indicate that G/GEJC, 
which expresses numerous specific targets, can be effec-
tive in combination  with immunotherapy. The subse-
quent steps involve further validating the efficacy through 
additional phase III studies and conducting translational 
research to elucidate the precise mechanisms impacting 
immunotherapy, aiming to facilitate its clinical applica-
tion. Furthermore, it is important to note that while G/
GEJC expressing different targets can receive targeted 
therapy, multiple targets are often expressed simultane-
ously. In this regard, determining the appropriate weight-
ing and sequencing of different targeted therapies is 
crucial, necessitating a deeper understanding of tumours 
and the TME.

With the continuous exploration of new targets, 
molecular typing is becoming increasingly precise, and 
treatment options tending to be diversified. Compared 
to EC and CRC, molecular targets that have been dis-
covered and successfully translated into clinical practice 
are enriched in G/GEJC. Therefore, an increasing num-
ber of biomarker-driven gastric cancer-related clinical 
studies are underway, covering populations with dMMR/
MSI (NCT 06346197), HER-2 positive (NCT05152147), 
CLDN18.2 positive (NCT06093425, NCT06206733), 
PD-L1 positive (NCT06346197, NCT06093425, 
NCT06206733), FGFR2b positive (NCT05111626) GC. 
For patients expressing specific targets, a major goal of 
biomarker-driven research is to further explore whether 
immune combination targeted therapy produces syner-
gistic anti-tumour effects and whether combination ther-
apy can help these patients achieve a chemo-free state. 
Additionally, accompanying clinical research to further 
explore biomarkers of patient efficacy and survival, and 
to uncover resistance mechanisms and reversal strate-
gies, will aid in achieving a sustained refinement of GC 
stratification (Table 4).

Challenges in immunotherapy for G/GEJC
Efficacy‑enhancing strategy remains unclear
Despite the advancements of ICIs as first-line regimen 
in G/GEJC, approximately 40% of patients still could 
not benefit from combination therapy with single-agent 
ICIs. The mOS shows a modest extension of merely 1–2 
months for intention-to-treat (ITT) patients and 4–5 
months for those with high PD-L1 expression, which is 
insufficient to meet clinical expectations.
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Table 4 Summary of ongoing key phase III clinical trials of immunotherapy in G/GEJC

Disease Population 
selection

Line Regimen Primary 
endpoint

Status Sample 
size(estimated)

NCT number

G/GEJC D2/R0 resected Adjuvant Experimental: Chemother-
apy + PD-1 Inhibitors + Chem-
oradiotherapy

3-year DFS Recruiting 433 NCT04997837

pN3 Active Comparator: Chemo-
therapy

G/GEJC D2/R0 resected Adjuvant Experimental: JS001 + Chem-
otherapy

DFS Recruiting 680 NCT05180734

pathological stage 
II (T4aN0M0) 
and stage III

Placebo Comparator: Pla-
cebo + Chemotherapy

G/GEJC MSI/dMMR First-line Experimental: Botensili-
mab + Balstilimab

OS Not yet recruiting 124 NCT06346197

HER-2 negative Active Comparator: Chemo-
therapy + Nivolumab

PD-L1 CPS ≥ 5

G/GEJC HER-2 negative First-line Experimental A: SHR-
1210 + Apatinib + XELOX

OS (all patients, 
PD-L1 positive)

Unknown status 887 NCT03813784

Active Comparator B: XELOX

Experimental C: SHR-
1210 + XELOX

G/GEJC Claudin18.2 posi-
tive

First-line Active Comparator: 
TST001 + PD-1 Inhibi-
tors + Chemotherapy

PFS Not yet recruiting 950 NCT06093425

HER-2 negative Placebo Comparator: 
Placebo + PD-1 Inhibi-
tors + Chemotherapy

PD-L1 positive

G/GEJC CLDN 18.2 positive First-line Experimental: 
ASKB589 + Tisleli-
zumab + Chemotherapy

PFS Recruiting 780 NCT06206733

Suitable for chem-
otherapy com-
bined with PD-1 
inhibitor

Placebo Comparator: Pla-
cebo + Tislelizumab + Chemo-
therapy

Not suitable 
for anti-HER-2 
therapy

G/GEJC FGFR2b positive First-line Experimental: Bemaritu-
zumab + Nivolumab + Chem-
otherapy

OS Recruiting 528 NCT05111626

HER-2 negative Placebo Comparator: Pla-
cebo + Nivolumab + Chemo-
therapy

G/GEJC HER-2 negative Second-line Experimental: Cadonili-
mab + pulocimab + paclitaxel

PFS Recruiting 506 NCT06341335

Active Comparator: Pla-
cebo + paclitaxel

OS

G/GEJC HER-2 negative First-line Experimental: AK104 + Chem-
otherapy

OS Active, not recruit-
ing

610 NCT05008783

Placebo Comparator: Pla-
cebo + Chemotherapy

G/GEJC HER-2 negative First-line Experimental: Domvanali-
mab + Zimberelimab + Chem-
otherapy

OS Active, not recruit-
ing

1040 NCT05568095

Active Comparator: 
Nivolumab + Chemotherapy
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Clinical trials investigating combination therapy never 
stop. The dual blockade of nivolumab plus ipilimumab 
cohort in CheckMate-649 [5] did not demonstrate pro-
longed survival compared to chemotherapy alone, indi-
cating that chemo-free regimens may not be suitable for 
all patients with advanced G/GEJC. COMPASSION-15 
[125] showed that cadonilimab (AK104, a PD-1/CTLA 
bispecific antibody) combined with chemotherapy sig-
nificantly improved mOS compared with placebo com-
bination chemotherapy (15.0 months vs 10.8 months, 
HR 0.62), even in PD-L1 low expression patients (PD-L1 
22C3 CPS < 5), indicating that cadonilimab combined 
with chemotherapy benefits patients regardless of PD-L1 
expression status, providing a new treatment approach 
for HER-2 negative and PD-L1 low expression G/GEJC. 
Additionally, The sequence of medications in treatment 
protocols warrants careful consideration. The JAVELIN 
Gastric 100,103 study [126] evaluated the effect of fus-
ing Avelumab, a PD-L1 monoclonal antibody, as mainte-
nance therapy after a minimum of 12 weeks of first-line 
chemotherapy. While OS benefits were not observed uni-
versally, notable differences were noted among patients 
without metastatic sites after induction chemotherapy 
and a small subset with MSI-H. What’s more, avelumab 
showed favourable safety profiles compared to continu-
ous chemotherapy, offering new insights for maintenance 
therapy in selected subgroups of G/GEJC patients.

Perioperative immunotherapy strategies were yet established
Encouraged by the results of immunotherapy in advanced 
G/GEJC [98], the integration of immunotherapy in front-
line treatments is under investigation recently.

Several phase II studies have demonstrated that neo-
adjuvant chemotherapy combined with immunotherapy 
can improve pCR or major pathologic response (MPR) 
rate [127–129]. KEYNOTE-585 [16] revealed that neo-
adjuvant pembrolizumab combined with chemotherapy 
significantly improved pCR rate. Although long-term 
follow-up did not demonstrate statistical improvement 
in event-free survival (EFS), there was a noticeable trend 
towards delaying disease recurrence. The near-significant 
P-value highlights the importance of statistical design in 
clinical trial research. Further long-term follow-up data 
from MATTERHORN [91] and HLX-10 (NCT04139135) 
neoadjuvant studies are expected.

ATT RAC TION-5 [92] evaluated the efficacy of 
nivolumab in combination with chemotherapy as adju-
vant therapy for phase III G/GEJC, revealing no sig-
nificant improvement in relapse-free survival (RFS). 
However, subgroup analysis indicated benefits from 
immunotherapy for patients with ECOG 1, postopera-
tive pathology stage IIIc, and PD-L1 tumour proportion 
score ≥ 1.

For the perioperative treatment for the special MSI-H 
G/GEJC, GERCOR NEONIPIGA [11] and INFINITY 
[130] preliminarily explored the feasibility of periopera-
tive immunotherapy alone for locally advanced MSI-H 
G/GEJC without chemotherapy, and achieved satisfac-
tory pCR rates of 58.6–60.0%.

All in all, the significant heterogeneity of G/GEJC and 
the complexity of its microenvironment present formi-
dable challenges in advancing immunotherapy. In the era 
of precision medicine, developing strategies to overcome 
this heterogeneity and achieve “high efficiency and low 

Table 4 (continued)

Disease Population 
selection

Line Regimen Primary 
endpoint

Status Sample 
size(estimated)

NCT number

G/GEJC HER-2 negative First-line Experimental: mFOL-
FIRINOX + nivolumab

OS Recruiting 382 NCT05677490

Active Comparator: mFOL-
FOX + nivolumab

G/GEJC HER-2 positive First-line Active Comparator: Arm A PFS Recruiting 918 NCT05152147

Trastuzumab + Chemo-
therapy

OS

Experimental: Arm B

Zanidatamab + Chemo-
therapy

Experimental: Arm C

Zanidatamab + tisleli-
zumab + Chemotherapy

G/GEJC -  ≥ Third-line Experimen-
tal: Regorafenib + nivolumab

OS Active, not recruit-
ing

450 NCT04879368

Active Comparator: Standard 
of Care
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toxicity”, comprehensive management of immunotherapy 
will be crucial for future advancements.

Colorectal cancer
History and current state of immunotherapy for CRC 
Immunotherapy has been utilised against dMMR/MSI-H 
CRC (Table  5). The efficacy of this cancer subtype is 
largely due to the high tumour mutational burden, abun-
dance of neoantigens, and increased immune cell infil-
tration [131, 132]. Compared with that of other tumour 
types, the incidence of MSI-H/dMMR in CRC is rela-
tively high (~ 15%) [132, 133]. MSI-H/dMMR CRC tends 
to be less sensitive to chemotherapy-based treatments 
and has a lower ORR than that of microsatellite stable 
(MSS)/proficient mismatch repair (pMMR) CRC [134–
137]. For later-line treatment of MSI-H/dMMR meta-
static CRC (mCRC), multiple studies have confirmed 
the efficacy of immunotherapy, with PD-1 monotherapy 
showing an ORR of 32.8–40% [138–140]. The results 
from these clinical studies have facilitated the exploration 
of immunotherapy as a first-line option against MSI-H/
dMMR mCRC. The KEYNOTE-177 evaluated the antitu-
mor activity of pembrolizumab (pembro) vs. chemother-
apy ± bevacizumab or cetuximab (chemo) and showed 
that pembro was superior to chemo for mPFS (16.5 m 
vs. 8.2 m; HR 0.60) [141]. Additionally, CheckMate-8HW 

compared nivolumab (NIVO) + ipilimumab (IPI) with 
NIVO or chemotherapy (chemo); NIVO + IPI demon-
strated clinically meaningful and statistically significant 
improvement in PFS vs. chemo, with a 79% reduction in 
the risk of disease progression or death [142]. These trials 
demonstrated that both mono- and dual-immunotherapy 
were superior to chemotherapy in terms of efficacy and 
reducing associated AEs.

Challenges in immunotherapy for MSI‑H/dMMR CRC 
Efficacy‑enhancing strategy remains unclear The retro-
spective study by Chen et al. demonstrated that chemo-
anti–PD-1/PD-L1 therapy was more effective than anti–
PD-1/PD-L1 alone in treating MSI/dMMR GI cancers, 
offering better survival benefits [145]. Another phase III 
trial, COMMIT, is currently assessing the safety and effec-
tiveness of atezolizumab alone versus its combination with 
mFOLFOX6 and bevacizumab as a first-line treatment for 
dMMR/MSI-H mCRC [146]. Wu et  al. investigated the 
efficacy of combining COX inhibitors with ICIs for the 
treatment of dMMR/MSI-H mCRC. The results indicated 
that the mPFS and mOS were not reached, with an ORR 
of 73.3% [147]. Additionally, the results of ongoing Check-
Mate-8HW study comparing NIVO + IPI to Nivolumab 
monotherapy will provide insight into whether first-line 
NIVO + IPI can enhance the therapeutic efficacy over 

Table 5 Summary of key clinical trials of immunotherapy in CRC 

Disease Trial Stage Line Therapy Primary endpoint Outcomes TRAEs

CRC CheckMate-
142(cohort 1 and 2) 
(5-year follow-up) 
[143]

II  ≥ Second-line Cohort 1: Nivolumab
Cohort 2: 
Nivolumab + Ipili-
mumab

ORR ORR:
cohort 1: 39%
cohort 2: 65%
OS:
cohort 1: 44.2 m
cohort 2: not reached
PFS:
cohort 1: 13.8 m
cohort 2: not reached

cohort 1: 27%
cohort 2: 32%

CRC KEYNOTE-164 [140] II  ≥ Third-line(cohort A)
 ≥ Second-line(cohort 
B)

Pembrolizumab ORR ORR:
cohort A: 32.8%
cohort B: 34.9%
OS:
cohort A: 31.4 m
cohort B: 47.0 m
PFS:
cohort A: 2.3 m
cohort B: 4.1 m

 ≥ 2: 12.7%
 ≥ 3: 16.4%

CRC KEYNOTE-177 [136] III First-line Pembrolizumab vs 
Chemotherapy(5-
Fluorouracil–based 
therapy ± Bevacizumab 
or Cetuximab)

PFS; OS ORR: 43.8% vs 33.1%
OS: 77.5 vs 36.7 m, HR 
0.73(0.53–0.99) (5-year 
follow-up)
PFS: 16.5 vs 8.2 m, HR 
0.60 (0.45–0.80)

21.6% vs 
67.1%(5-year 
follow-up)

CRC CheckMate-
142(cohort 3)(64-
month follow-up) 
[144]

II First-line Nivolumab + Ipili-
mumab

ORR ORR: 71%
OS: not reached
PFS: not reached

20%
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NIVO for dMMR/MSI-H mCRC [142]. More clinical tri-
als on ongoing are detailed in the Table 6.

Optimal treatment strategies following progression necessi‑
tates explored A retrospective study analysed 51 patients 
with dMMR/MSI-H GI cancers who continued to receive 
antitumor therapy after progression on immunotherapy. 
Of these patients, 35 cases (68.6%) were mCRC. The study 
concluded that continuing with anti-PD-1/PD-L1 therapy 
along with other drugs significantly improved the dis-
ease control rate, PFS, and OS compared with receiving 
chemotherapy alone or with targeted therapy [148]. The 
ongoing NIPIRESCUE study (NCT05310643) evaluates 
the efficacy of nivolumab and ipilimumab in MSI/dMMR 

mCRC patients following resistance to PD-1 monother-
apy. The results are eagerly anticipated.

Perioperative immunotherapy strategies require fur‑
ther validation Despite no statistical difference in OS 
between the Pembrolizumab group and the Chemo-
therapy group in KEYNOTE-177 [141], a trend towards 
decreased mortality risk was observed, indicating that 
immunotherapy should be utilised early and encouraging 
further investigation of immunotherapy in the periopera-
tive treatment of CRC. The NICHE-1 [149] and NICHE-2 
trial [150], demonstrated effective neoadjuvant outcomes 
for NIVO + IPI, showing pCR rates of 60–67% and MPR 
rates of 95–97%.

Table 6 Summary of ongoing key phase III clinical trials of immunotherapy in CRC 

Disease Population selection Line Regimen Primary 
endpoint

Status Sample 
size(estimated)

NCT number

CRC dMMR/MSI-H First-line Experimental: Pem-
brolizumab
Active Compara-
tor: Standard of Care 
Chemotherapy

PFS Recruiting 100 NCT05239741

CRC dMMR/MSI-H First-line Active Compara-
tor: Arm I (bevaci-
zumab + mFOLFOX6)
Experimental: Arm II 
(atezolizumab)
Experimental: Arm III 
(atezolizumab + beva-
cizumab + mFOL-
FOX6)

PFS Recruiting 120 NCT02997228

CRC dMMR/MSI-H all lines (Part 1 enroll-
ment)
First-line (Part 2 enroll-
ment)

Experimental: Arm A: 
Nivolumab
Experimental: Arm 
B: Nivolumab + Ipili-
mumab
Active Compara-
tor: Arm C: Inves-
tigator’s Choice 
Chemotherapy

PFS Recruiting 831 NCT04008030

CRC MSS/MSI-low Progressed or intoler-
ant to standard-of-
care

Experimental: 
XL092 + atezolizumab
Active Comparator: 
regorafenib

OS Recruiting 874 NCT05425940

CRC PD-L1 positive
pMMR/MSS

Progressed on or after 
or could not tolerate 
standard treatment

Experimental: Faveze-
limab/Pembrolizumab
Active Comparator: 
Regorafenib or TAS-
102

OS Active, not recruiting 432 NCT05064059

CRC pMMR/MSS previously treated 
and has shown 
disease progression 
on or after or could 
not tolerate standard 
treatment

Experimental: len-
vatinib + pembroli-
zumab
Active Comparator: 
regorafenib OR TAS-
102

OS Active, not recruiting 480 NCT04776148

CRC dMMR/MSI-H
Stage III (TanyN + , M0)

Adjuvant Experimental: Sintili-
mab
Experimental: XELOX

DFS Recruiting 323 NCT05236972
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Eventhough the long-term follow-up data was absent, 
the high pCR rates notably preserved organ function and 
enhanced Quality of Life, making this regimen widely 
accepted. Nevertheless, there are still challenges. Given 
the AEs associated with dual immunotherapy, the relia-
bility of mono-immunotherapy and the appropriate treat-
ment duration remain unclear. Efforts to resolve these 
challenges never stop. A phase II MSKCC study explored 
the PD-1 antibody, dostarlimab, for a total of 6-months 
neoadjuvant the results showed that all patients achieved 
cCR (12/12), with manageable safety [151].

Explorations of other combined strategies are ongo-
ing. For example, The phase II study PICC showed the 
possibility of toripalimab in combination with celecoxib 
(COX-2 inhibitor) [152]. What’s more, research is also 
being conducted on adjuvant immunotherapy regimens 
for dMMR/MSI-H CRC [153, 154], and the findings from 
these studies will shed light on whether adjuvant immu-
notherapy can boost survival rates in stage III dMMR/
MSI-H or POLE-mutated CRC, which will significantly 
influence future treatment approaches.

Challenges in immunotherapy for pMMR/MSS CRC 
Most patients with mCRC have pMMR/ MSS tumours, 
which are considered “cold tumours”.The low immuno-
genicity of these tumours makes them less recognizable 
by CD8 + T cells. Cold tumours are characterized by the 
overexpression of innate immune inhibitory oncogenic 
pathways and the presence of numerous immunosup-
pressive factors in the tumour microenvironment [155]. 
Consequently, single-agent immunotherapy often yields 
unsatisfactory results, necessitating the exploration of 
new treatment strategies and the identification of popula-
tions likely to benefit from immunotherapy.

Treatment strategies remain controversial
The primary current explorations mostly focus on com-
bined treatments enhancing the sensitivity of immuno-
therapy [156]. Nevertheless, most of the research is still 
in the early exploratory stage with small samples, and 
the results remain further validation. The LEAP-017 
study suggested that the lenvatinib plus pembrolizumab 
showed no improvement in survival in the pMMR/MSS 
mCRC patients compared with the standard of care 
group, with OS being 9.8 vs. 9.3 months (HR 0.83, 95% CI 
0.68–1.02, P = 0.0379) [157]. A study included 39 pMMR/
MSS mCRC patients who experienced progression fol-
lowing standard chemotherapy and received the RIN reg-
imen (regorafenib + ipilimumab + nivolumab). The RP2D 
cohort’s patients had an ORR, mPFS, and mOS of 27.6%, 
4 months, and 20 months, respectively, which demon-
strated promising prospective of clinical application 
[158]. Segal et  al. included 24 chemotherapy-refractory 

pMMR mCRC patients and administered durvalumab 
and tremelimumab with concurrent radiotherapy, with 
an ORR of 8.3%. The mPFS and mOS were 1.8 month 
and 11.4 months correspondingly, which did not meet 
the prespecified endpoint [159]. Meanwhile, Thibaudin 
et  al. included 57 patients with RAS-mutated mCRC 
treated with first-line durvalumab and tremelimumab 
plus mFOLFOX6. The 3-month PFS for MSS patients 
was 90.7%, with a response rate of 64.5%; mPFS was 8.2 
months, while OS was not reached [160]. The CAPa-
bility-01 study evaluated the efficacy of romidepsin, a 
histone deacetylase inhibitor, plus sintilimab and bevaci-
zumab or romidepsin plus sintilimab in treating patients 
with advanced or metastatic pMMR/MSS CRC who have 
failed at least two lines of prior treatment and reported 
an ORR of 44.0% and a PFS of 7.3 months for the triplet 
group [161]. More clinical trials on ongoing are detailed 
in the Table 6.

Features of potential beneficiaries remain unclear
A study that explored the efficacy of treatment with PD-1, 
BRAF, and MEK inhibition in BRAFV600E CRC patients 
exhibited an ORR of 25% and a DCR of 75%, with a 
mPFS of 5 months in MSS CRC patients [162]. Acquired 
resistance to temozolomide may be associated with the 
onset of hypermutation, facilitating immune sensitisa-
tion. The MAYA study included 33 previously treated 
 O6-methylguanine–DNA methyltransferase silenced 
MSS mCRC patients who received temozolomide fol-
lowed by combination with low-dose ipilimumab and 
nivolumab. The results reported mPFS and mOS of 7.0 
and 18.4 months, respectively, and an ORR of 45% [163]. 
The biomarker analysis from the AtezoTRIBE study indi-
cated that patients with high immunomodulatory signa-
ture scores within the pMMR subgroup derived superior 
benefits from atezolizumab [164]. The CheckMate-9X8 
study reported that MSS/pMMR mCRC patients with 
consensus molecular subtype (CMS) 1 and CMS3 at 
baseline had a higher probability of being progression-
free at 12 months when treated with nivolumab in com-
bination with the standard treatment regimen [165].

Anal carcinoma Anal carcinoma (AC) is a rare malignant 
tumour of the digestive system, accounting for approxi-
mately 2% of all GI cancers, with anal squamous cell 
cancer (ASCC) constituting the majority (approximately 
80%) of AC [166]. The treatment options for advanced 
ASCC are limited, predominantly relying on chemother-
apy; therefore, new therapeutic approaches are warranted 
[167–169]. Unlike EC, G/GEJC, and CRC, human papil-
lomavirus (HPV) infection is closely associated with the 
occurrence of ASCC. The HPV oncoproteins are immu-
nogenic and can trigger the host’s anti-tumour immune 
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response. Therefore, immunotherapy holds promise as a 
treatment strategy for ASCC. However, due to its low inci-
dence, only preliminary exploration has been conducted. 
The results of the studies KEYNOTE-158, POD1UM-202, 
and CAR ACA S, have demonstrated the efficacy of single-
agent ICIs in treating metastatic ASCC that has failed 
previous treatments. The ORR ranged from 10–24%, PFS 
from 2.0–4.1 months, and OS from 10.1–12.8 months in 
these studies [170–173]. There has also been some pre-
liminary exploration into combination therapies in popu-
lations with failed prior treatments.

The NCI ETCTN (NCI9673 Part B) study showed a 
trend towards prolonged PFS and OS with dual immu-
notherapy (nivolumab + ipilimumab) compared with 
nivolumab monotherapy for metastatic ASCC with failed 
previous treatments. However, the differences were not 
statistically significant(PFS: 2.9 vs. 3.7 months, HR 0.80, 
95% CI 0.51–1.24; OS: 15.4 months vs. 20.0 months, HR 
0.86, 95% CI 0.51–1.47) [174]. The CAR ACA S study also 
indicated that for advanced ASCC with failed previous 
treatments, the ORR for PD-L1 antibody avelumab com-
bined with cetuximab was 17%, with PFS at 3.9 months 
and median OS at 7.8 months [171]. Atezolizumab, 
another PD-L1 antibody, combined with bevacizumab, 
showed no superior results to single-agent ICI in treating 
advanced ASCC with failed previous treatments, with an 
ORR of 10%, PFS of 4.1 months, and OS of 11.6 months 
[175]. In the first-line treatment setting, the SCARCE 
study was the first to validate the combination of ICI 
with chemotherapy for first-line treatment of advanced 
ASCC, although failed to meet the primary endpoint, 
with 1-year PFS rates of 45% for atezolizumab + mDCF 
(docetaxel + cisplatin + fluorouracil) and 43% for mDCF 
alone, 12-month OS rates of 77% and 81% respectively, 
and ORRs of 75% and 78% [176]. Several phase III RCT 
studies are currently ongoing [177, 178] to evaluate the 
role of chemotherapy combined with ICI in the first-line 
treatment of advanced ASCC.

In summary, ICI therapy can improve survival for 
patients with advanced ASCC who have previously 
received treatment. However, the role of ICI in the first-
line treatment of advanced ASCC remains unclear. Fur-
thermore, identification of the population that would 
benefit from the treatment remains necessary, as does 
exploration of the optimal combination treatment strat-
egy. For the treatment of locally advanced ASCC, several 
studies are currently in the early stages of exploration 
(NCT04230759 and NCT03233711).

Collectively, immunotherapy has advanced the treat-
ment for EC and G/GEJC with significant breakthroughs 
in CRC, although several challenges remain to be 
addressed, including the diversity and complex molecular 
types in GC, the optimal treatment regimen for MSI-H/

dMMR CRC, the potential for immunotherapy in MSS/
pMMR, and nutritional issues in EC. In addition to the 
specific limitations associated with each tumour type, 
other challenges, including identifying biomarkers and 
the mechanisms underlying resistance to immunother-
apy, optimisation of methods for assessing the efficacy of 
immunotherapy, determination of the best combination 
treatment modalities, and development of new immuno-
therapeutic agents remain to be addressed. With more 
studies, the application of immunotherapy in the field of 
GI cancers will be further optimised, thereby improving 
clinical outcomes.

Biomarkers of immunotherapy
The exploration of biomarkers is crucial for realising 
precise and individualised immunotherapy and has wit-
nessed significant advancements in recent years. This 
progress is primarily evident in two aspects. First, the 
predictive efficacy of classical markers has been validated 
and discussed in large-scale, multi-dimensional studies, 
thereby elucidating their strengths and weaknesses. Sec-
ond, with the development and cost reduction of cutting-
edge technologies, including high-throughput detection, 
visualisation, liquid biopsy, and artificial intelligence, 
researchers have shifted their focus from tumour cells 
to the entire tumour microenvironment, from single to 
multiple dimensions, and from a static to a dynamic pat-
tern. Here, we elaborate on the progress of both classical 
and novel biomarkers based on these two perspectives 
(Fig. 1).

Classic biomarkers
PD‑L1
PD-L1 positivity in EC, G/GEJC, CRC, and immune cells 
has shown variability, ranging from 17.4% to 43.5%, 12.0% 
to 43.6%, 8.1% to 44.0%, and 15.3% to 69.0%, respectively 
[179]. While the predictive utility of PD-L1 expression 
assessed using the CPS appears limited in CRC immuno-
therapy, it demonstrates a robust predictive value in EC 
and G/GEJC. The cut-off values of CPSs in clinical tri-
als are commonly defined as 1, 5, and 10. The ATT RAC 
TION-03 and CheckMate-648 trials revealed nivolumab 
benefited the entire population for advanced EC regard-
less of CPS [31, 180]. Conversely, the KEYNOTE series 
trials of EC demonstrated that pembrolizumab treat-
ment predominantly benefited patients with high PD-L1 
expression (CPS ≥ 10) [181]. Similar to studies on EC, 
the KEYNOTE series of trials on advanced GC has high-
lighted the therapeutic advantages of immunotherapy in 
populations with high PD-L1 expression (CPS ≥ 10) [80], 
while the ChecMate-649 [5, 182] and ORIENT-16 trials 
[6] validated CPS ≥ 5 for identifying patients that would 
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benefit from chemotherapy combined with nivolumab or 
sintilimab, respectively.

However, the use of different detection antibodies and 
assay platforms in various clinical trials has led to con-
fusion and a lack of uniformity in the CPS cut-off values 
used to identify the beneficiary population, and conclu-
sions drawn from existing studies have limited appli-
cability. Several studies have attempted to address this 
variability. A meta-analysis incorporating 6,488 cases of 
advanced GC immunotherapy for PD-L1 demonstrated 
significant survival benefits in patients with CPS ≥ 1, 
regardless of whether they underwent monotherapy or 
combination immunotherapy (single-agent immunother-
apy: OS (hazard ratio (HR) 0.84, 95% confidence inter-
val (CI) 0.74–0.96); combination immunotherapy: OS 
(HR 0.81, 95% CI 0.71–0.92) and PFS (HR 0.77, 95% CI 
0.69–0.86)) [183]. However, another retrospective study 
analysing low-CPS subgroups in CheckMate-649, KEY-
NOTE-062, and KEYNOTE-590 (CPS: 1–4; CPS: 1–9) 
observed that patients with low PD-L1 expression did not 

benefit from chemotherapy combined with ICIs [184]. 
Notably, these findings pertained specifically to advanced 
G/GEJC. Furthermore, the PD-L1 CPS faces additional 
challenges as a critical biomarker of immunotherapy effi-
cacy. First, PD-L1 expression exhibits considerable het-
erogeneity [185] and can be dynamically influenced by 
various therapeutic approaches [186, 187], affecting its 
reliability as a biomarker of efficacy. Second, there is no 
standardised method for PD-L1 testing, leading to low 
consistency among commercially available antibodies. 
For examples, PD-L1 positivity with the Dako 28–8 anti-
body, which is used in the CheckMate-649 trial, is higher 
than that with the Dako 22C3 antibody, which is used in 
the KEYNOTE series of trials. This suggests that with 
a CPS cut-off value of 5, the positivity for Dako 28–8 is 
approximately twice that for Dako 22C3 [188].

Therefore, establishing a consensus on PD-L1 testing 
is essential to standardise diagnostic platforms across 
different clinical trials and accelerate the identification 
of biomarkers for different stages. Integrating various 
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therapeutic drugs, patient clinical characteristics and 
other relevant biomarkers is key to achieving break-
throughs in this field.

MSI‑H/dMMR
MSI-H and dMMR are known to increase somatic cell 
mutations and neoantigen production, often resulting in 
extensive lymphocytic infiltration and elevated expres-
sion of immune checkpoints in the tumour microen-
vironment (TME) [189, 190]. Consequently, patients 
with MSI-H/dMMR exhibit poor response to cytotoxic 
drugs and high sensitivity to immunotherapies. Emerg-
ing evidence suggests that the predictive value of MSI-H/
dMMR for immunotherapy efficacy in GI tract cancers is 
significantly superior to that of other biomarkers. Never-
theless, the incidence of MSI-H/dMMR in EC is relatively 
low. Currently, there are no large-scale clinical trial data 
available, and most studies have focused on GC and CRC.

A retrospective analysis [114] of three trials (KEY-
NOTE-059, 061, and 062) revealed that patients with 
MSI-H advanced G/GEJC benefited significantly from 
first-line to third-line pembrolizumab monotherapy, 
establishing MSI-H as a predictive biomarker for efficacy. 
Similarly, in the KEYNOTE-158 trial, all 24 patients with 
GC and MSI-H/dMMR benefited from pembrolizumab 
treatment [191]. The 3-year follow-up results from the 
CheckMate-649 trial [180] showed that in unselected 
MSI-H subgroup of patients, nivolumab combined with 
chemotherapy versus chemotherapy alone led to an 
improved median OS, further supporting MSI-H as an 
effective biomarker for identifying advanced patients 
with GC for immunotherapy. Several clinical trials on 
perioperative immunotherapy for GC are ongoing, and 
the interim results suggest that MSI status, not PD-L1 
CPS, is the most crucial biomarker for predicting the 
benefit of perioperative pembrolizumab with chemo-
therapy in locally advanced GC [11, 15, 16]. Therefore, 
MSI-H can also serve as a biomarker for the efficacy of 
perioperative immunotherapy in GC, laying the foun-
dation for the exploration of precise treatment patterns 
during the perioperative period with promising applica-
tion prospects.

To date, MSI-H/dMMR is the most important bio-
marker for predicting the efficacy of immunotherapy in 
CRC [138, 139, 192–194], as confirmed by the 5-year 
OS results from KEYNOTE-177 [195] and trials such 
as NICHE-2 [20], NICHE-3 [196], and PICC [21] which 
demonstrate the significant role of MSI-H/dMMR as a 
biomarker of immunotherapy efficacy across different 
CRC stages.

However, several challenges remain for the use of 
MSI-H/dMMR as a biomarker of immunotherapy effi-
cacy. First, MSI-H/dMMR is underrepresented in the 

population, accounting for only 15% of CRC, 7% of GC, 
4% of GEJC, 0.4% of EAC, and 0% of ESCC cases [197, 
198]. Moreover, although the overall percentage of 
patients with MSI-H/dMMR in CRC is 15%, only 5% of 
patients with advanced CRC have MSI-H, greatly limit-
ing its clinical practice as a biomarker of immunother-
apy efficacy. Second, the accuracy of MSI detection and 
interpretation needs to be improved. Currently, immu-
nohistochemistry (IHC) is the main method for detect-
ing MMR protein expression, whereas polymerase chain 
reaction (PCR) and next-generation sequencing (NGS) 
are the main methods used to identify MSI status. PCR 
is the only approved method for detecting MSI in CRC, 
and NGS-based MSI detection methods need to be veri-
fied using more data. Additionally, MSI detection meth-
ods for G/GEJC need to be supported by a large sample 
size and reliable data. In 2022, the College of American 
Pathologists (CAP) released the recommended examina-
tion protocols for MSI/MMR in different tumour types 
[199]: (1) For patients with CRC, the use of either IHC 
to detect MMR or PCR to detect MSI is recommended. 
Although these methods are preferred, an NGS assay 
that has been validated for dMMR could also be used 
to determine the MSI status. (2) For patients with gas-
troesophageal or small intestinal cancer, IHC should be 
used to identify MMR or PCR should be used to identify 
MSI. Although the consistency between MMR-IHC and 
MSI-PCR testing results for various solid cancers is 90.3–
99.4% [200–203], the accuracy of MMR testing and inter-
pretation is affected by several factors, including tumour 
heterogeneity (such as variability between different 
lesions and intra-tumoural heterogeneity), antitumour 
therapies, the experience of the pathologist, and detec-
tion platforms [204]. Currently, any evidence of dMMR 
or MSI should be interpreted as a positive result, thereby 
qualifying patients for immunotherapy. Additionally, 
inconsistent results should be rigorously reviewed to 
ensure they are not due to misjudgement.

Tumour mutational burden
Tumour mutational burden-high (TMB-H) is defined as 
10 or more mutations per Mb, with an incidence of 5% in 
patients with CRC, 8% in patients with GC, 3% in GEJC, 
2% in patients with EAC, and 3% in those with ESSC [198, 
205]. Given its potential to generate immunogenic neo-
antigens, the application of TMB status as a biomarker of 
immunotherapy efficacy has been widely studied. How-
ever, these conclusions remain controversial [206–208].

Based on the findings of KEYNOTE-158 study [191], 
in 2020, the FDA approved the use of pembrolizumab 
in patients with TMB-H cancers. However, a retrospec-
tive analysis of data from 10,000 solid tumour samples 
included in The Cancer Genome Atlas Program (TCGA) 
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[209] revealed that TMB status is not correlated with 
immunotherapy efficacy in GI tract cancers, indicat-
ing distinct immune patterns of GI tract cancers. Fur-
thermore, the study divided cancers into two categories 
based on whether CD8 + T cell infiltration was positively 
correlated with the generation of tumour neoantigens. 
Category I cancers were defined as cancers with CD8 + T 
cell infiltration positively correlated with neoantigens 
productions, while category II exhibited reverse rela-
tionship.TMB-H could facilitate the selection of patients 
that might benefit from immunotherapy for Category 
I tumour but not for Category II cancers; notably, most 
GI cancers were Category II. Therefore, the infiltration of 
antigen-specific immunocytes may be a decisive factor 
underlying the influence of TMB-H on immunotherapy 
efficacy. Moreover, a retrospective study of 48,606 GI 
tract cancers exploring the characteristics of gene muta-
tions associated with TMB-H independent of dMMR/
MSI [205] found that not all gene mutations related to 
TMB-H could play a role in influencing immunotherapy 
efficacy. Based on the mutations that influence immuno-
therapy efficacy, this study established an mTMB model 
and discovered an increase in the infiltration of cells 
associated with antitumour immunity, such as M1 and 
CD8 + T cells, among patients with mTMB-H. Collec-
tively, further division based on immune cell infiltration 
and gene variation in patients with GI tract cancers and 
different TMB statuses is warranted.

Novel biomarkers under‑investigation
Virus and microbiome
EBV
9% of patients with GC have EBVaGC, and 80% of them 
harbour an immune-inflamed microenvironment with 
enriched T-cell and B-cell infiltration [101, 210–212]. 
Consequently, EBV is considered a potential marker for 
the efficacy of GC immunotherapy.

While clinical trials with large sample sizes specifically 
focusing on EBVaGC are mostly ongoing, certain small-
sample studies have indicated that EBVaGC has a rela-
tively high response rate to immunotherapy. For instance, 
a phase II clinical study conducted a retrospective analy-
sis on the use of pembrolizumab for treating advanced 
GC, reporting a 100% response rate and an mOS time 
of 8.5 months among six cases of EBVaGC [213]. In con-
trast, a prospective clinical study enrolling nine patients 
with advanced EBVaGC treated with a combination of 
PD-1 and CTLA-4 inhibitors (including two patients 
receiving first-line treatment, four receiving second-
line treatment, and three receiving third-line treatment) 
found an ORR and DCR of 55.6% and 88.9%, respectively 
[214]. A retrospective study involving 66 patients with 
advanced GC treated with PD-1 and CTLA-4 inhibitors 

indicated that patients with EBV + /pMMR (n = 22) dis-
played significantly superior outcomes than those with 
EBV-/pMMR (n = 44) (ORR: 54.6% vs 17.7%, P = 0.008; 
mPFS: 8.5 months vs 2.0 months, P < 0.001; mOS: not 
reached vs 5.0 months, P = 0.002) [105]. Nevertheless, the 
conclusions drawn by these studies were limited in gen-
eralisability owing to factors such as sample size and the 
presence of other molecular markers (such as PD-L1 and 
MSI), necessitating further validation.

Helicobacter pylori
Helicobacter pylori (H.pylori) considerably contrib-
utes to the pathogenesis of GI tract cancers by produc-
ing the cytotoxins VacA and CagA [215–217]. Among 
patients with GI tract cancers receiving immunother-
apy, those with H.pylori infection exhibited shorter PFS 
and OS [218–220]. However, these studies have sev-
eral limitations, including the small size of the H.pylori 
infection samples, inconsistent methods used to detect 
H.pylori infection, and varied standards for diagnos-
ing H.pylori positivity, that dramatically influenced the 
reliability of the conclusions. In a recent prospective 
observational study involving 10,122 patients with GI 
tract cancers [104], the incidence rates of H.pylori infec-
tion, as detected using the 13C breath test, were 44.19%, 
33.24%, and 42.35% for patients with EC, GC, and CRC, 
respectively. Among the 636 patients with EBV- MSS 
GC receiving anti-PD-1/PD-L1 treatment enrolled in the 
study, patients with H.pylori infection showed a signifi-
cantly better response [PFS: 6.97 months vs. 5.03 months; 
median immune-related overall survival (irOS): 18.30 
months vs. 14.20 months P < 0.01]. of note, the impact 
of H.pylori infection on immunotherapy efficacy appears 
to be organ-specific. Patients with H.pylori infection and 
dMMR/MSI-H CRC and ESSC displayed shorter irPFS 
(dMMR/MSI-H CRC: 16.13 months vs. not reached, 
P = 0.042; ESSC: 5.57 months vs. 6.97 months, P = 0.029). 
The heterogeneity of the modulation of the gut micro-
biome and TME may explain the contrasting role of 
H.pylori in distinct GI tract cancers. Although this study 
provides powerful evidence for H.pylori as a biomarker of 
immunotherapy efficacy for GI tract cancers, the under-
lying mechanisms remain unclear. Considering the diver-
sity and specificity of the microbiome in GI tract cancers, 
further studies should focus on the H.pylori function on 
the microbiome and tumour metabolic features.

Microbiome
The human microbiome, which resides primarily in the 
respiratory, digestive tracts, and skin, finds its high-
est abundance and diversity within the gut. Recent 
advancements in culture-independent microbial analysis 
methods have deepened our understanding of the gut 
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microbiome’s role in cancer’s onset, development and 
treatment. Research increasingly shows that its compo-
sition, diversity, and specific communities modulate can-
cer patients’ immune status, influencing immunotherapy 
outcomes. Compared to healthy individuals, patients 
with digestive tract cancers exhibit markedly diverse gut 
microbiome richness and diversity [221–223]. A reduc-
tion in microbial diversity and stability can compromise 
local immunity in the intestinal mucosa and trigger sys-
temic immune responses via immune cells. This impairs 
both local and systemic immune functions, damages 
the mucosal barrier, and allows microbial elements to 
enter the systemic circulation, altering cytokine profiles 
throughout the body [224]. Moreover, metabolic byprod-
ucts from the gut microbiome, such as short-chain fatty 
acids (SCFAs), indole propionic acid, serotonin, and sec-
ondary bile acids, play crucial roles in regulating bacte-
rial composition and activity [225]. These can permeate 
the intestinal barrier, impact host physiology, and acti-
vate immune responses, with SCFAs being particularly 
influential on host immunity. Studies highlight that the 
gut microbiome and its metabolites are pivotal in modu-
lating innate immunity (including dendritic cells, mac-
rophages, and NK cells), adaptive immunity (involving 
CD8 + T and CD4 + T cells), and tumour cell immuno-
genicity, thus affecting immunotherapy’s effectiveness 
[226]. Research by Zhang et  al. [227] demonstrated the 
impact of PD-1 inhibitors in CRC, which is highly influ-
enced by gut microbiome diversity. Their use of broad-
spectrum antibiotics to erase endogenous bacteria in 
mice diminished the PD-1 inhibitors’ tumuor-sup-
pressing effects, indicating a dependency on microbial 
diversity. Furthermore, studies have found a positive 
correlation between the abundance of Joshi’s lactobacil-
lus in the mouse gut microbiome and the response to 
anti-PD-1 immune checkpoint therapy. Enhancements in 
CD8 + T cell-mediated anti-PD-1 therapy efficacy were 
observed when supplemented with Joshi’s lactobacillus 
or the tryptophan-derived metabolite indole-3-propionic 
acid [228]. An analysis of fecal samples from 106 patients 
with various rare cancers revealed that 22 strains, 
mainly from the phylum Firmicutes, significantly pre-
dict responses to combined anti-PD-1 and anti-CTLA-4 
therapy. Strains that indicate better treatment responses 
are predominantly from the Ruminococcaceae family 
and the Faecalibacterium genus [229]. Additionally, the 
gut microbiome’s predictive capabilities have also been 
validated in GI tract cancer cohorts. For instance, a study 
involving 74 patients with advanced digestive tract can-
cers undergoing PD-1/PD-L1 inhibitor therapy found a 
positive correlation between treatment response and lev-
els of true bacteria, lactobacilli, and streptococci [230]. 
Similarly, another study with 117 patients suffering from 

HER-2-negative advanced GC or GEJC showed those 
with higher lactobacilli abundance experienced greater 
microbial diversity and improved response to anti-PD-1/
PD-L1 therapy, often achieving better PFS [231]. The 
potential of using the gut microbiome for precise sub-
typing of digestive tract tumors was also explored in 
a study covering 77 advanced MSI-H/dMMR GI tract 
patients. By analyzing gut microbiomes, blood metabo-
lomes, and cytokine and chemokine profiles, researchers 
identified specific microbes like B. caccae, V. parvula, V. 
atypica, and Clostridiales bacterium as potential subtyp-
ing markers for MSI-H/dMMR GI tract cancers, offer-
ing predictive insights into immunotherapy responses 
[232]. Despite its promise, the use of gut microbiome 
characteristics as markers for predicting the efficacy of 
ICIs encounters challenge of reproducibility issues, often 
exacerbated by factors like diet, regional differences, and 
ethnicity. Furthermore, the specificity of microbiome 
traits to particular treatment regimens [229] limits their 
clinical utility as reliable markers. Therefore, a compre-
hensive exploration of the gut microbiome spectrum and 
abundance in GI tumours, identification of broad-spec-
trum efficacy characteristic genera, and quantification 
of recognized beneficial or harmful bacteria proportions 
remain critical areas for future research, aiding in the 
realization of precision therapy.

Tumour microenvironment
The TME encompasses the internal environment where 
tumour cells develop, including all non-tumour compo-
nents, metabolites, and secretions. These components 
include the extracellular matrix, fibroblasts, endothelial 
cells, immune cells, mesenchymal stem cells, cytokines, 
and metabolites [183]. The TME is complex, exhibiting 
both tumour-promoting and tumour-inhibiting effects 
[184–189]. Currently, identifying different TME statuses 
from multiple dimensions as biomarkers for the efficacy 
of immunotherapy is a focal area of research, with par-
ticular emphasis on the TIME.

TILs
Tumour-infiltrating lymphocytes (TILs) are integral 
components of the TME. With the integration of spatial 
information in histopathology and other technologies, 
the predictive value of TILs for the response to immuno-
therapy in GI tract cancers has gained attention, particu-
larly focusing on CD8 + and CD4 + T cells.

The importance of CD8 + T cells in predicting thera-
peutic efficacy has been demonstrated in several clini-
cal research cohorts. For example, the EC-CRT-001 
study applied multipanel multiplex immunofluores-
cence to a cohort of patients with EC undergoing 
immunotherapy, revealing a significantly higher density 
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of CD8 + T cells in the CR group than in the non-CR 
group [66]. However, with advancements in multi-
omics technologies, it has become clear that a single 
marker is insufficient to represent the functional char-
acteristics of a cell population. Further in-depth stud-
ies have attempted to reveal the functional CD8 + T 
cell subsets that play an active role in the response to 
immunotherapy. In the PANDA study, for instance, 
researchers discovered significantly higher densi-
ties of PD-1 + CD8 + T cells in responders to immu-
notherapy than in non-responders; such differences 
were not observed for other subsets of CD8 + T cells 
[233]. The NICHE study also identified the infiltration 
of PD-1 + CD8 + T cells as a predictor of response to 
immunotherapy in pMMR cancers [19]. These findings 
indicate that in the context of GI tract cancers, which 
are highly heterogeneous, CD8 + T cells can be predic-
tive markers for the efficacy of immunotherapy and that 
differentiating these cells into subsets can provide more 
precise guidance for predictions [71]. CD4 + T cells 
primarily mediate the function and maintenance of 
CD8 + T cells [234]. FOXP3 + CD4 + T cells (Tregs) are 
believed to contribute to the inhibition of antitumour 
immunity and maintenance of immunological toler-
ance via immune checkpoints and high levels of anti-
inflammatory cytokines, thus exerting adverse effects 
on prognosis [235]. However, further research has 
shown that an increased abundance of Tregs is not nec-
essarily a poor prognostic indicator in GI tract cancers; 
in many cases, it is predictive of a superior prognosis. 
The SPACE study reported a correlation between high 
Treg infiltration and a more favourable prognosis [236]. 
Conversely, other clinical studies argued that Tregs 
level is not an effective predictor of immunotherapy 
efficacy. For instance, the NICHE study found no dif-
ference in baseline Tregs densities between responders 
and non-responders [19], and the PANDA study illus-
trated a lack of correlation between FOXP3 expression 
and therapeutic responses [233]. As these contradictory 
results indicate that Tregs consist of multiple subsets 
that vary substantially in terms of function and influ-
ence treatment responses, further dividing Tregs into 
more precise subsets may be necessary to better under-
stand their impact on treatment outcomes. For exam-
ple, Masuda et  al. conducted single-cell sequencing of 
CRC samples and found that while total Tregs are asso-
ciated with a more favourable prognosis, CD38 + Tregs 
exhibit a highly suppressive phenotype and are associ-
ated with a poor prognosis [237]. In an early clinical 
study of durvalumab and tremelimumab combined with 
chemotherapy, FOXP3- CD25 + CD4 + T cells were the 
only subset of CD25 + CD4 + T cells that correlated 

with survival;FOXP3 + CD25 + CD4 + T cells did not 
correlate with treatment outcomes [238].

Despite extensive research on TILs in GI cancer 
immunotherapy and the identification of numerous TIL 
subgroups with established links to immunotherapy 
response, TILs have yet to be used in clinical practice like 
PD-L1, MMR, and TMB. This can be attributed to several 
factors: (1) The plethora of detection methods for TILs 
complicates standardization. Current techniques include 
hematoxylin and eosin (HE) staining, IHC, mIHC, tissue 
microarray technology, multiphoton microscopy. Crucial 
yet rare TIL subgroups require identification and detec-
tion through advanced methods such as single-cell RNA 
sequencing and tumor tissue flow cytometry. Although 
HE and IHC staining are routinely used clinically, other 
methods demand high sample volume and viability, are 
expensive, and thus limit clinical application. Addition-
ally, these methods involve lengthy testing and analysis 
cycles, taking at least a month from sample collection to 
result interpretation, which fails to meet urgent patient 
treatment timelines. (2) The challenge of standardizing 
interpretation methods and criteria. While HE staining 
and IHC are commonly employed in clinical settings, 
standardized interpretation methods and criteria are 
lacking. Efforts to standardize the clinical application of 
TILs commenced with breast cancer, highlighted by the 
International TILs Working Group’s 2014 consensus on 
manual interpretation standards based on HE staining 
[239]. This consensus outlined experimental procedures, 
calculation formulas, and interpretation criteria. Fur-
thermore, studies indicated that stromal TILs (sTILs) are 
more abundant and consistently measurable than intra-
tumoral TILs (iTILs), leading to recommendations from 
the International Immuno-Biological Markers Collabora-
tion to prioritize sTILs in experimental research and clin-
ical applications [240]. The combinatory predictive value 
of TILs and PD-L1 has been validated in multiple clinical 
trials, leading to their inclusion in the NCCN guidelines 
for breast cancer, offering insights for GI tract tumours. 
With advancements in visualization technology and arti-
ficial intelligence (AI), developing algorithms for analyz-
ing tumour TILs based on pathological slice images and 
supporting pathologists in interpretation through com-
puter assistance remains an active area of research.

Cytokines
Cytokines—including interferons (IFNs), interleukins 
(ILs), tumour necrosis factors (TNFs), and chemokines—
produced by multiple immune cells have been suggested 
to be closely linked to immunotherapy for GI tract 
cancers.

IFNs are crucial inflammatory cytokines that activate 
the PD-1 signalling axis of tumour and stromal cells 
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by upregulating PD-L1 expression [241]. A phase Ib 
study on neoadjuvant adebrelimab treatment for locally 
advanced ESCC reported a significantly higher level of 
IFN-γ expression among responders, along with a nota-
ble correlation between the IFN score and pathological 
regression [71]. Similar conclusions were drawn for EAC 
based on the findings of the PERFECT study [65]. Addi-
tionally, the KEYNOTE-028 study analysed the IFN-γ 
gene-expression profile of six genes and demonstrated 
that patients with higher expression could benefit more 
from pembrolizumab treatment [242].

ILs are soluble proteins secreted by leukocytes that are 
primarily involved in regulating immune cell functions. 
A meta-analysis summarising 14 studies on immuno-
therapy involving 3,190 participants indicate that indi-
viduals with high IL-8 levels exhibited lower ORR, OS, 
and PFS than those with low IL-8 levels [243]. Similarly, 
a phase IB/II clinical study of durvalumab and tremeli-
mumab plus chemotherapy for advanced CRC revealed 
that high levels of IL-6 and IL-8 were correlated with 
lower response rates [238]. Additionally, a phase II clini-
cal study of combined anti-PD-1 and anti-VEGF therapy 
for pMMR CRC showed a significantly increased level of 
cytokine signalling in responders compared with in non-
responders [244].

Chemokines primarily coordinate cell movement dur-
ing inflammation and induce directional migration of 
leukocytes and endothelial cells. However, studies on 
the relationship between chemokines and immunother-
apeutic responses in GI tract cancers are currently lim-
ited. The MEDITREME study, which included patients 
with mCRC undergoing immunotherapy, reported that 
CXCL9, CXCL10, and CXCL11 expression levels were 
correlated with a more favourable PFS [238]. Similarly, 
in the PANDA study, responders exhibited a significant 
increase in CXCL13 expression compared with non-
responders [233].

Currently, research on cytokines and chemokines pri-
marily uses peripheral blood from patients, which neces-
sitates small sample sizes and relatively uncomplicated 
detection techniques, predominantly ELISA, ELISPOT, 
and microscopy. These approaches facilitate dynamic 
and real-time monitoring of therapeutic efficacy. How-
ever, unlike emerging efficacy biomarkers like TILs under 
investigation, the utility of cytokines and chemokines in 
guiding the clinical practice of immunotherapy for GI 
tract cancers is limited by their low specificity and the 
challenges associated with establishing abnormal cut-
off values. The levels of cytokines and chemokines are 
affected by a variety of factors, including infectious dis-
eases, hormonal changes, trauma, general patient status, 
and treatment regimen, which significantly diminishes 
their specificity in reflecting tumour status. Moreover, 

current research predominantly relies on small cohorts 
and lacks extensive expression profiles of cytokines and 
chemokines in healthy populations and cancer patients, 
including the range of fluctuations following different 
treatments. Consequently, the application prospects of 
cytokines and chemokines should primarily focus on 
supplementing mainstream biomarkers to predict thera-
peutic efficacy and monitor disease status.

Owing to the complexity and diverse functions of the 
TME, a single-marker classification is insufficient to pre-
dict the efficacy of immunotherapy in patients with GI 
tract cancers. To address this, researchers have utilised 
data from the TCGA database of GI cancers, classifying 
the TME based on immune cell infiltration or distinct 
gene expression features, and developed a TME score 
to predict immunotherapy outcomes. Patients who ben-
efit from immunotherapy typically harbour TME sub-
types characterised by M1 macrophages, infiltration of 
CD8 + T cells, elevated expression of immune check-
points, and robust T cell activity [245–251]. Tertiary 
lymphoid structures (TLS), ectopic lymphoid organs 
comprising B cells, plasma cells, CD4 + T cells, CD8 + T 
cells, DCs, macrophages, and neutrophils, are associ-
ated with improved OS in patients with GI tract can-
cers characterised by high infiltration of CD3 + T cells, 
CD8 + T cells, and M1 macrophage infiltration [252]. 
However, conclusive evidence based on large-scale stud-
ies correlating TLS with immunotherapy efficacy in GI 
tract cancers is still lacking [253, 254]. Additionally, the 
spatial distribution of immune cells relative to the immu-
notherapy response has been increasingly emphasised. 
Chen et al. analysed immune cell infiltration and its two-
dimensional spatial distribution characteristics related 
to immunotherapy efficacy in 80 patients with GC using 
multiple immunofluorescence markers (immune check-
points including PD-1, CTLA-4, TIM-3, LAG-3, and 
immune cell infiltration markers such as T, B cells, and 
macrophages). They established an infiltrating immune 
cells (TIICs) model, which included CD4 + FoxP3-PD-
L1 + , CD8 + PD-1 -, the density of CD8 + PD-1-LAG3 -, 
and CD68 + STING + cells, as well as the spatial distribu-
tion of CD8 + PD-1 + LAG3-T cells. This study revealed 
that patients with low TIIC scores have better immuno-
therapy outcomes [10]. Moreover, in dMMR CRC, the 
proximity between PD-1 + cells and PD-L1 + cells can 
also serve as a positive marker of immunotherapy effi-
cacy [255]. Furthermore, a study on the construction of a 
mathematical framework for cancer immunotherapy out-
comes found that the increase in oxygen content caused 
by vascular normalisation promoted the polarisation of 
M1 cells and infiltration of immune cells, thereby pro-
moting tumour cell killing and improving immunother-
apy efficacy. Hence, mathematical models incorporating 
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tumour cells, immune cells (M1, M2, CD4 + T, CD8 + T, 
Tregs), vascular and perivascular cells, and anti-angio-
genic/pro-angiogenic-related molecules (including Ang1, 
Ang2, PDGF-B, VEGF, and CXCL12) effectively predict 
immunotherapy efficacy [256].

In addition to the TIME, the TME of GI tract cancers 
is also affected by perineural invasion, which is closely 
related to immunotherapy efficacy. A study involving 
3,236 patients with GI cancers constructed a neuroin-
flammatory infiltration (NII) scoring system based on 
26 PNI-related specific inflammatory genes. This study 
found that cancers with low NII scores infiltrated more 
immunosuppressive cells. Patients with PNI and high NII 
scores usually benefit from immunotherapy [257].

The advancement of cutting-edge techniques has ena-
bled researchers to comprehensively characterise the 
TME in patients with GI. For instance, single-cell detec-
tion technology has been utilised to identify new cell 
subsets related to immunotherapy efficacy [212, 253]. 
High-resolution technology has facilitated the explora-
tion of immune cell infiltration and spatial distribution. 
Moreover, the combination of multiomics detection and 
AI techniques has contributed to the extraction of key 
features influencing immunotherapy efficacy from exten-
sive data [258, 259], aiding in the construction of predic-
tive models.

Peripheral components
Liquid biopsy troika, consisting of circulating tumour 
DNA (ctDNA), circulating tumour cells (CTCs), and 
extracellular vesicles (EVs), offers several advantages for 
longitudinal monitoring of disease progression, mini-
mally invasive sampling, and providing a holistic reflec-
tion of whole cancers. As a result, they are widely utilised 
for predicting therapeutic efficacy and prognosis and 
monitoring disease progression in GI cancers [260–272].

Profiling gene variation using NGS of baseline ctDNA 
as a biomarker has been universally explored. Gene sub-
sets, including RAS, AKT, PTEN, PI3KCA, BRAF, ERBB2, 
MET, RAS, BRACA, POLE, POLD‑1, TGFB2, RHOA, and 
PREX2 variations are reportedly related to immunothera-
peutic efficacy in GI tract cancers [273–277].

Additionally, peripheral PD-L1is is an important bio-
marker for immunotherapy, with PD-L1 expression on 
CTCs or EVs during treatment playing diverse roles in 
predicting immunotherapy outcomes. The presence of 
PD-L1 expression on CTCs at baseline indicated a supe-
rior response to anti-PD-1/PD-L1 therapy, whereas. 
post-treatment PD-L1 + CTCs were specifically associ-
ated with resistance in GI tract cancers. Furthermore, 
pre-treatment PD-L1 + CTCs were considered to indicate 
the presence of druggable tumour cells, whereas post-
treatment PD-L1 + CTCs contribute to immune evasion 

[278–282]. Baseline exosomal PD-L1 was regarded as an 
indicator of exhausted T cells, and thus unable to react to 
PD-1 inhibitors, whereas exosomal-PD-L1 released after 
treatment is thought to be relevant to the elevated activ-
ity of T cells [283, 284].

With the advancement of high-throughput detection 
of trace samples, an increasing number of studies have 
explored multi-omics features identified by analysing 
peripheral components as biomarkers for immunother-
apy. For instance, Zhang et al. conducted a retrospective 
analysis of immune-related protein expression in plasma 
EVs from 112 patients with GC who received ICI therapy. 
They developed a predictive model (EV score) based on 
the expression of PD-L1, PD-L2, CD3, and Arg1 on EVs, 
showing that patients with higher EV-score have supe-
rior ICI outcomes [206]. Additionally, biomarkers from 
plasma proteomics and metabolomics analyses are cur-
rently under intense investigation. Components such as 
peripheral leukaemia inhibitory factor (LIF) [285], pro-
teins associated with the complement cascade pathway, 
lipid metabolites [286], and glutathione metabolism 
[287] are closely associated with immunotherapeutic 
responses.

However, there are still limitations to the universal clin-
ical application of peripheral components. Factors such 
as the techniques used for sampling, storage protocols, 
diagnostic standards, and cost should be considered for 
further exploration.

Epigenetics and gene variation
Epigenetics modification
Epigenetics alterations, including DNA methylation, his-
tone modification, and regulation of non-coding RNA, 
significantly modulate gene expression. Hence, distinct 
epigenetic modifications result in various therapeutic 
efficacies.

Methylation is the most common epigenetic modifica-
tion, with specific gene methylation levels significantly 
impacting immune responses. In GI tract cancers, alter-
ations in m6A regulatory factors have been shown to 
modulate the infiltration of various TIICs, thereby lead-
ing to heterogeneity observed in the efficacy of immu-
notherapy [246, 288–290]. Furthermore, researchers 
have identified molecular subtypes based on epigeneti-
cally regulated gene expression profiles in CRC and GC, 
which exhibit varying sensitivities to immunotherapy 
[291, 292]. Notably, methylation levels change with 
treatment; in a single-arm phase II clinical trial involv-
ing mCRC, treatment with pembrolizumab plus azaciti-
dine led to a decrease in global methylation, particularly 
at promoter sites, enhancing universal gene expression 
[293]. Beyond methylation, the glycosylation and ubiq-
uitination levels of certain genes have also been shown 
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to influence immunotherapy outcomes in GI tract can-
cers [294, 295]. Numerous studies have explored non-
coding RNA, including lncRNA, miRNA and circRNA, 
as biomarkers for predicting immunotherapy outcomes. 
These non-coding RNAs may exert their effects through 
mechanisms such as modulating m6A regulatory factor 
expression [296], PD-L1 expression [297], immune cell 
infiltration [298], and cell proliferation [299, 300].

Genetic variation
In advanced GC, CDH1, JAK2, AXIN1, and PTCH1 
mutations have been identified as adverse factors for 
immunotherapy efficacy [301]. Conversely, in EC, ERBB2 
mutation has been negatively associated with neoad-
juvant immunotherapy response [302]. POLE/POLD1 
mutations in patients with CRC exhibited a better 
response to immunotherapy, even in patients with MSS 
CRC, highlighting their strong predictive value [303, 
304]. Furthermore, approximately 11–25% of patients 
with CRC harbour KRAS mutations. However, several 
analyses (such as KEYNOTE-177 and CheckMate-142) 
demonstrated that pembrolizumab has low efficacy in 
patients with mCRC harbouring KRAS/NRAS mutations 
[7, 139]. Nonetheless, findings from the KEYNOTE-164 
study showed that the ORR among patients with mCRC 
receiving pembrolizumab is similar regardless of RAS 
status (37.0% vs. 42.0%) [305]. Therefore, further large-
scale explorations are warranted.

Given the intricate nature and spatial–temporal het-
erogeneity of GI tract cancers, the dysfunction of a 
single gene cannot be applied as a general biomarker. 
Therefore, it is essential to develop prediction models 
based on subsets of epigenetic alterations or gene varia-
tions. For instance, in GI tract cancers, a study analysed 
the genomic profiles of 227 patients treated with immu-
notherapy across multiple centres and devised a GIPS 
model based on the status of six crucial genes (RNF43, 
CREBBP, CDKN2A, TP53, SPEN, NOTCH3). GIPS can 
independently serve as an excellent prognostic factor for 
immunotherapy [306].

Resistance to immunotherapy
Resistance to immunotherapy is one of the main chal-
lenges associated with GI tract cancers owing to the 
insufficient response to immune checkpoint blockade 
(ICB)‐based immunotherapy. Even in patients who ini-
tially benefited from immunotherapy, 46.4% of them 
developed acquired resistance, most of which occurred 
within 24 months [307]. In this section, we discuss the 
recent research progress. First, we discuss emerging 
advancements in immune, metabolism, microbiota and 
epigenetics-mediated immunotherapy resistance mech-
anisms, mainly in GI tract cancers. Second, we review 

strategies to overcome immunotherapy resistance by 
combining them with other regimens and aligning efforts 
with clinical evidence (Fig. 2).

Mechanisms of resistance
Suppressed activation of T cells
Loss of PD‑L1 expression
Considering the reactive anti-tumour immunity of ICIs 
by blocking the binding of PD-1 and PD-L1, the loss of 
PD-L1 expression is a contributing factor to ICI resist-
ance. Genetic alterations, such as mutations or loss of 
function in the JAK/STAT pathway, can diminish PD-L1 
expression in cancer cells, leading to both primary and 
acquired resistance to anti-PD-1 antibodies [307]. Espe-
cially in MSI-H cancers, JAK1 frameshifts (loss of func-
tion alterations) were observed in 6% (9/158) and 15% 
(4/27) of MSI-H colorectal and gastric cancers in the 
TCGA database, respectively, and exhibited decreased 
expression of IFN-associated genes [308]. In addition to 
external signalling alterations, internal modifications in 
CD274 also contributed to the loss of PD-L1 expression.

Among 13 patients with MSS metastatic CRC possess-
ing high-affinity Fcγ receptor 3a (FcγR3a), 3 developed 
tumour subclones harbouring PD-L1 mutations selec-
tively. These mutations led to the loss of tumour PD-L1 
expression following treatment with the PD-L1 antibody 
avelumab, either through nonsense-mediated RNA decay 
in the case of PD-L1 K162fs mutation or protein degrada-
tion in the case of PD-L1 L88S mutation [309].

Downregulation of IFN‑γ signalling
Alterations in the IFN-γ-JAK/STAT signalling pathway at 
the epigenetic, transcriptional, posttranscriptional, and 
posttranslational levels are associated with ICI resistance 
[310]. In CRC, mutations of JAK1/2 and B2M and lack 
of the IFN-γ receptor [311, 312] have been identified as 
contributors to ICI resistance. Research on therapeutic 
strategies that target the genetic, epigenetic, and meta-
bolic elements regulating IFN-γ signalling is underway.

Expression of immune checkpoints beyond PD‑1/PD‑L1
The compensatory upregulation of alternative checkpoint 
proteins, such as lymphocyte-activation gene-3 (LAG-3), 
is a potential mechanism involved in acquired resistance 
to anti–PD-L1 therapy [313, 314]; LAG-3 is an immu-
nomodulatory receptor that regulates effector T-cell 
(Teff) homeostasis, proliferation, activation and the sup-
pressive activity of Treg cells [315]. A pioneering human 
study demonstrated that a combination therapy of favez-
elimab, an anti-LAG-3 antibody, plus pembrolizumab 
improved exploratory efficacy in terms of survival and 
DOR among patients with MSS mCRC [316]. Klapholz 
et  al. found that patients with MSS CRC displayed 
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immune exhaustion signatures (MSS-ImmEx) character-
ised by the accumulation of Tim-3 + PD-1 + CD8 + TILs, 
which exhibited a dysfunctional or “exhausted” pheno-
type [317]. Therefore, dual blockade of Tim-3 and PD-1 
may have additive or synergistic anti-tumour effects on 
patients with GI. Another immune checkpoint, T-cell 

immunoglobulin and ITIM domain (TIGIT), is associ-
ated with CD8 + T-cell exhaustion. Exhausted T cells 
develop resistance to anti-PD-1 when completing the 
exhausted transcriptional program [318, 319]. A study 
involving patients with CRC showed that anti-TIGIT 
combined with anti-PD-L1 therapy restores the functions 
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Fig. 2 The summary of immunotherapy resistant mechanisms and overcoming strategies in patients with GI tract cancers. This algorithm provides 
guidance for developing strategies overcoming resistance in patients with GI tract cancers
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of intratumoural CD4 and CD8 T cells, irrespective of 
microsatellite status, in either primary tumour or liver 
metastasis [320]. Moreover, an alkaline phosphatase 
(ALP)-responsive and transformable supramolecular 
bis-specific cell engager (Supra-BiCE), consisting of both 
SA-P (a phosphorylated peptide targeting and block-
ing PD-L1) and SA-T (a phosphorylated peptide target-
ing and blocking TIGIT), achieved a tumour suppression 
rate of 98.27% in a CRC model, providing a promising 
tool for engaging NK and T-cells for cancer immunother-
apy [321].

Loss of antigen
Cancer immunoediting occurs during tumour evolu-
tion and in the anti-PD-1 therapy process, leading to 
the downregulation or loss of target antigen, a common 
mechanism of resistance to immunotherapies [322–324]. 
Likewise, cancers with low TMB and immunogenicity 
cancers, such as MSS CRC and pancreatic ductal adeno-
carcinoma (PDAC), tend to be primary refractory to ICIs 
[325, 326]. Therapeutic combinations with agonistic anti-
bodies against the CD40 receptor (αCD40) are efficacious 
in preclinical mouse models, which can rescue and gen-
erate new T-cell responses against weak affinity or poorly 
expressed neoantigens or against tumour-associated 
self-antigens that lack high-affinity T-cell clones owing to 
central tolerance. Hence, there is therapeutic potential in 
combining αCD40 with ICI, particularly for treating MSS 
CRC and other immunologically cold cancers, especially 
cancers that developed resistance to immunotherapy 
through antigen loss [325, 326].

Defective antigen presentation
Patients with MSI-H CRC exhibit a favourable response 
to ICIs due to the TMB-H and the presence of neoanti-
gens [327–330]. Contrastingly, frequent mutations in the 
B2M and HLA-ABC genes cause defects in antigen pres-
entation [328, 331, 332], thus impairing the recognition 
of tumour cells by cytotoxic CD8 + T cells and resulting 
in acquired resistance to ICIs [333–335]. Currently, CAR-
T-based therapy that bypasses self-MHC restriction and 
targets nonrestricted cell surface antigens is the viable 
immunotherapeutic option for overcoming genome-level 
defects during antigen processing and presentation path-
way components [336].

Suppressive tumour immune environment
Inadequate T‑cell infiltration
The critical function of ICIs is to reinvigorate the 
exhausted T cells. A notable resistance mechanism in the 
TME is the absence of T cells, indicating a target-miss-
ing situation [337]. Several factors, including the pres-
ence of abundant cancer-associated fibroblasts (CAF), 

regulatory T cells (Tregs) and myeloid-derived suppres-
sor cells (MDSCs) [338], expression of immune check-
points beyond PD-1/PD-L1 (such as TIM-3) [339], and 
elevated lactate level, can induce T-cell exhaustion [340]. 
Additionally, specific genetic mutations and alterations 
in signalling pathways impact T-cell infiltration in GI 
tract cancers. For instance, mutations in the phosphatase 
domain of PTEN, which reduce protein expression, have 
been linked to the reduced levels of intratumoral CD8 + T 
cells and resistance to anti-PD-1 therapy in dMMR/
MSI-H GI tract cancers [341]. Interestingly, the immuno-
suppressive effect of PTEN loss may not be through the 
regulation of the PI3K/AKT pathway but rather related 
to the release of cytokines and chemokines that pro-
mote the proliferation and differentiation of MDSC and 
M2 macrophages and expansion of Tregs and reduce NK 
cell infiltration [342–344]. Furthermore, WNT signalling 
activation through CTNNB1 mutation, which encodes 
β-catenin, is associated with a low T-cell infiltration rate 
[345].

A retrospective analysis of data from the KEYNOTE 
177 trial revealed that the highly cytotoxic CD8 infiltra-
tion in hypermutated CRC is facilitated by the low acti-
vation of the WNT pathway, resulting in an immune hot 
environment favourable for immune response [346].

Immunosuppressive cells
MDSCs are one of the primary immunosuppressive fac-
tions in the TME, as they directly target and release solu-
ble mediators to regulate immune responses [347–349], 
thereby influencing therapeutic efficacy and the progno-
sis of patients with GI tract cancers [350–354]. Tsutsumi 
et  al. analysed single-cell RNA sequencing (scRNA-seq) 
data derived from human GC specimens following anti-
PD-1-antibody therapy and proposed that tumour-infil-
trating MDSCs, particularly those expressing immediate 
early response 3 (IER3), play a predominant role in the 
development of the immunosuppressive and ICI-resist-
ant GC tumour immune microenvironment (TIME) 
[355]. IER3 is involved in protecting cells from apopto-
sis [356, 357], which suggests that IER3 + M-MDSCs are 
less susceptible to apoptosis and subsequently differen-
tiate into immunosuppressive macrophages. Although 
MDSCs represent promising therapeutic targets, devel-
oping MDSC-specific treatments remains challenging.

The proportions of circulating and tumour-infiltrat-
ing MDSCs could be reduced by chemotherapy [358, 
359], targeted therapy [360, 361], all-trans retinoic acid 
(ATRA) [362], and blockade of chemokine receptors on 
MDSCs. MDSCs infiltrate into the cancers induced by 
various cytokines. Under the extreme conditions within 
cancers, such as low oxygen levels, high oxidative stress, 
and nutrient deficiency, the MDSCs undergo functional 
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and differentiation changes, transforming into tumour-
associated macrophages (TAMs). TAMs play a signifi-
cant role in promoting the occurrence and progression 
of GC and are inversely associated with patient progno-
sis. In particular, CD204-positive TAMs, M2-polarized 
macrophages, are a critical risk factor for the progression 
from gastric adenoma to adenocarcinoma [363–366]. 
Existing studies have focused on the “reprogramming” 
of TAMs from “tumour-support cells” to “tumour-killer 
cells” [367, 368]. For instance, Cao et  al. investigated 
the reprogramming of TAM through V-domain immu-
noglobulin suppressor of T-cell activation (VISTA), an 
immune checkpoint associated with immunotherapeutic 
resistance, across eight independent cohorts involving a 
total of 1,403 patients with GC. The blockade of VISTA 
successfully reprogrammed TAMs to a proinflammatory 
phenotype, enhanced T cell-mediated antitumour immu-
nity, and improved the efficacy of PD-1 inhibitors [369].

Tregs modulate immune homeostasis and, at the same 
time, inhibit immune responses in cancer patients. Tregs 
secrete IFN-γ, which enhances the efficacy of ICIs [370] 
but produces inhibitory cytokines, such as IL-10 and 
transforming growth factor-β (TGF-β) [371], which are 
correlated with ICI resistance [372]. The opposite func-
tions of Tregs can be attributed to the heterogeneity of 
their subsets [373]. C–C motif chemokine receptor 8 
(CCR8) is a marker of activated Tregs expressed on Tregs 
infiltrated in tumour rather than peripheral Tregs [372].

The inhibition of CCR8 expression is a promising strat-
egy in cancer immunotherapy, specifically for enhancing 
anti-tumour immunity in colon cancer by modulating 
tumour-resident Tregs. [374]. Furthermore, LM-108, 
a monoclonal antibody targeting CCR8, is currently 
being evaluated for its efficacy in treating patients with 
advanced solid cancers. The treatment groups involved 
anti-CCR8 monotherapy or in combination with anti-
PD-1 therapy (CTR20221680).

Tumour-associated neutrophil (TAN) populations are 
associated with unfavourable prognosis in patients with 
cancer [375]. Single-cell transcriptomic analyses have 
unveiled the striking cellular heterogeneity of neutrophils 
under pathological conditions and identified their diverse 
roles in cancer progression. Specifically, pro-tumour 
TAN-expressing markers, such as CCL3, CCL4, SPP1, 
and PD-L1, are promising targets for immunotherapy. 
These TAN subtypes can potentially be targeted either 
alone or in combination with ICIs to devise more effec-
tive cancer treatment strategies [375, 376].

The role of mesenchymal stem cells (MSCs) in can-
cer remains controversial, as evidence of both pro- and 
anti-tumour effects has been reported [377, 378]. A 
potential explanation for these conflicting observa-
tions, as suggested by Cascio et  al., may be the origin 

of MSCs and the degree of “cancer education” [379]. In 
particular, MSCs from local tissues can be epigeneti-
cally reprogrammed by the TME into cancer-associ-
ated MSCs (CA-MSCs), which drive tumour immune 
exclusion and resistance to immunotherapy. In GC, 
MSCs mediate immunosuppression via the CXCR2/
HK2 (Hexokinase II)/PD-L1 pathway, blocking GCM-
SCs-derived IL-8/CXCR2 pathway can reduce PD-L1 
expression and lactate production, thereby improving 
the anti-tumour efficacy of anti-PD-1 immunotherapy; 
therefore, it may be a promising target for treating 
advanced GC [380]. MSCs modulate multiple biological 
processes in cancer, extending beyond immune modu-
lation to immunotherapeutic resistance. Specifically, 
the exosomes secreted by MSCs can facilitate resist-
ance to immunotherapy [381–384].

In conclusion, the intimate crosstalk between cancer 
cells and their surrounding immunosuppressive cells 
plays a critical role in cancer progression and resistance 
to therapies. Understanding these interactions will help 
advance cancer research and treatment. Future studies 
may ultimately enhance the efficacy of anti-PD-1 ther-
apy by identifying and targeting a particular cell subset 
or specific inhibitory molecule that broadly neutralises 
the effect of anti-PD-1 therapy on GI cancer patients 
[385, 386].

Secreted immunosuppressive factors and extracellular matrix
Immunosuppressive factors secreted by tumour, 
immune, and stromal cells significantly contribute to 
the formation of an immunosuppressive TME [387, 
388]. Notably, the TGF-β released by cancer cells and 
CAFs is pivotal to facilitating tumour immune evasion 
[389], while that released into the TME acts as a chem-
oattractant factor for fibroblasts to induce the forma-
tion of CAFs [390]. Therefore, the repression of TGF-β 
signalling is critical to enhancing the efficacy of current 
and forthcoming immunotherapies, although potential 
adverse effects should be carefully monitored [391]. The 
composition of the extracellular matrix within the TME 
also influences resistance [392, 393], as the stiffened 
extracellular matrices could impede the infiltration of 
drugs and immune cells into the tumour and induce 
disorganised neovascular vessels with low drug-deliv-
ery efficiency [394]. The interleukin (IL) family plays an 
important role in the immune cell signalling of GI tract 
cancers. High levels of IL-6 promote epithelial-mesen-
chymal transition (EMT), clonogenicity, and immuno-
suppressive phenotype of EC cells. IL-10, potentially 
in conjunction with IL-35, can be derived from Tregs, 
promoting the exhaustion of CD8 + TILs and impeding 
anti-tumour immunity [395, 396].
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Metabolism‑mediated resistance
Reprogramming of cellular metabolism is a hallmark of 
cancers impacting TME, immune landscape and therapy 
resistance [397, 398]. Microenvironmental ammonia 
induces T-cell exhaustion in CRC, while the accumulation 
of lactate suppresses the activity of cytotoxic T lympho-
cytes [399]. The metabolic processes of tumour cells con-
tribute to an immunosuppressive TME through various 
mechanisms, including nutrient competition, hypoxia, 
and acidity. Immunotherapy reshapes the features of 
metabolism. For instance, anti-PD-1 therapy restores glu-
cose levels in the TME, thereby facilitating T-cell glyco-
lysis and IFN-γ production [400]. Recent advancements 
in single-cell technologies and analytical algorithms have 
enhanced the exploration of immune metabolism. Hart-
mann et  al. uncovered the spatial organisation of meta-
bolic programs in human CRC and revealed that T cells 
expanding within cancers exhibit distinct metabolic 
profiles compared with excluded T cells at the tumour-
immune boundary [401]. Despite these insights, the effi-
cacy of targeted metabolic therapies in enhancing T-cell 
function and promoting anti-tumour immune responses 
remains unproven. Unfortunately, the most promising 
metabolic therapy targeting IDO1 failed in a phase III 
clinical trial, even when combined with anti-PD-1 ther-
apy [402]. Contrastingly, beyond ICIs, preclinical studies 
that incorporated metabolic targeting alongside adoptive 
transfer protocols of autologous T-cells and oncolytic 
viruses have shown potential, necessitating further explo-
ration [403].

Epigenetics‑mediated resistance
Epigenetic alterations in cancer cells affect the TIME. 
Sundar et al. showed that epigenetic promoter alterations 
in GI tract cancers mediate immune editing and resist-
ance to immune checkpoint inhibition by generating 5′ 
truncated protein isoforms missing immunogenic N-ter-
minal peptides. Moreover, a high alternate promoter 
burden resulted in an immune-depleted TME and con-
tributed to the resistance to ICIs [404]. Xu et  al. found 
that IL-1β-associated nicotinamide nucleotide transhy-
drogenase (NNT) acetylation leads to iron-sulphur clus-
ter maintenance and immunotherapy primary resistance, 
both in advanced and locally advanced GC. The blockage 
of NNT acetylation by IL-1β neutralisation synergises 
with anti-PD-1 therapy in  vivo [405]. Epigenetic modi-
fication can also affect the efficacy of immunotherapy 
by modifying tumour cells [406]. Current research sug-
gests that aberrant alterations in the activities of histone-
modifying enzymes [407] and epigenetic modification 
by histone deacetylase 8 [408, 409] overexpression play 
a crucial role in resistance to hepatocellular carcinoma 

immunotherapy. Epigenetic alterations are potential bio-
markers for predicting the efficacy of immunotherapy 
and promising targets for overcoming ICI resistance. 
The mechanisms driving the resistance remain to be 
elucidated.

However, there are heterogeneity among the possi-
ble mechanisms of resistance to immunotherapy in dif-
ferent GI cancers or in different histological types. In 
the previous study of our center, H. pylori infection is a 
beneficial factor for GC immunotherapy by shaping hot 
tumor microenvironments. However, in dMMR/MSI-H 
colorectal adenocarcinoma and ESCC patients, H. pylori 
adversely affects the efficacy of immunotherapy [104]. 
Besides, EC, especially ESCC, is an extremely high TMB 
tumour, comparable to lung cancer and melanoma, gen-
erating specific neoantigens [410]. But the incidence of 
EAC is rapidly rising worldwide [411], which are highly 
heterogeneous and surrounded by a largely immunosup-
pressive TME, resulting disparate sensibility to immu-
notherapy [412]. Therefore, GI cancers from different 
regions, histological types, molecular subtypes as GC 
TCGA and CRC CMS, microbial infection status may 
have disparate TME, sensitivity and resistance to ICB.

Interestingly, we consider that unique microenviron-
ment of GI tract cancer, corresponding therapy strate-
gies and treatment resistance of which may due to the 
particular molecular subtypes when compared to other 
systems. Most GCs are immunologically ‘cold’, in com-
parison, EBV (+) GC represents a unique subgroup of 
GC which is heavily infiltrated by active T/B cells associ-
ated with antitumour immunity, making it more sensitive 
to ICB. In refractory EBV (+) GC tumours after stand-
ard chomoimmunotherapy, LAG-3 is upregulated on 
exhausted T cells, underscores a new promising immu-
notherapeutic target for EBV (+) GC [120].

AFPGC and HAS are special and rare subtypes of gas-
tric cancer [413]. ScRNA-seq on HAS tumour showed 
that cytotoxic CD8 + T cells exhibited remarkable het-
erogeneity in their functional states, with a vast major-
ity of cells following the trend of activation-coupled 
exhaustion, exemplified by high expression of activation 
markers GZMA and IFNG and of exhaustion markers 
PDCD1 and CTLA-4. This suggests that immunotherapy 
may have a good therapeutic effect on HAS. In a real-
world study, anti-PD-1 plus chemotherapy could benefit 
AFPGC and HAS patients. Because of the small sample 
size, it is difficult to analyze the efficacy-related predic-
tors such as PD-L1. However, one patient with high 
expression of PD-L1 exhibited hyperprogressive disease, 
suggesting the existence of particular resistant mecha-
nism and necessity of further investigation [414].

A negative association between CLDN18.2 expres-
sion and the prognosis of anti-PD-1/PD-L1 therapy was 
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reported in a study. This correlation might be due to the 
unique tumour microenvironment of CLDN18.2-positive 
GC, specifically the lack of PD-1/PD-L1-positive lym-
phocytes in CLDN18.2-positive GC limited its chance 
to benefit from PD-1/PD-L1 inhibitors, while infiltrating 
neutrophils may also augment this negative therapeutic 
response. But CLDN18.2-targeted CAR-T cell therapy 
may be a promising treatment strategy in CLDN18.2-
postive patients because of the non-exhausted CD8 + T 
cells surrounding tumour cells [415].

Higher expression of PD-L1 has been found in trastu-
zumab-resistant HER-2-positive cells [416], but devel-
opment of resistance during anti-HER-2 plus anti-PD-1 
therapy remains unclear. Based on liquid biopsy, the 
presence of PD-L1 + CTCs/CECs and their impact on 
therapy were explored using longitudinal analyses in 
patients receiving anti-HER-2 plus anti-PD-1 therapy. 
Study showed that triploid-PD-L1 + CTCs participated in 
primary and acquired therapeutic resistance before and 
after treatment. As for PD-L1 + CECs, intratherapeuti-
cally detected multiploid PD-L1 + CECs demonstrated a 
superior clinical response, when triploidy and tetraploidy 
contributed to acquired resistance [282].

Efforts to overcome resistance to immunotherapy
While efforts have been made to classify the resistance 
mechanisms of immunotherapy into distinct categories, 
resistance is a complex and dynamic process with vari-
ous interrelated mechanisms in the real world [385]. The 
most promising strategy appears to reverse resistance 
through strategic combination with other treatments 
[417] (Table  7). Overcoming resistance to immuno-
therapy is accomplished by understanding the specific 
resistance mechanisms rather than relying on arbitrary 
combinations.

Combination with chemotherapy
Chemotherapy increases the TMB through DNA dam-
age, subsequently enhancing antigen presentation, 
eliminates immunosuppressive cells, and enhances the 
function of effector cells, thereby reprograming the TME 
and augmenting the immune response [418, 419]. The 
combination of chemotherapy with anti-PD-1/PD-L1 is 
a standard-of-care option for GI owing to the synergistic 
effects.

Combination with radiotherapy
Radiotherapy eliminates local lesions, stimulates the sys-
temic antitumor immune response (also known as absco-
pal effects) [420], and synergises with anti-PD-1/PD-L1 
therapy. Furthermore, radiotherapy promotes T-cell 
infiltration and expands T-cell receptor (TCR) reper-
toire [421], upregulates PD-L1 on tumour cells targeted 

by anti-PD-1/PD-L1 [422], increases MHC-I expression 
on tumour cells, and alleviates resistance to anti-PD-1/
PD-L1 [423]. These promising pre-clinical attributes 
have been substantiated in prospective studies. A phase 
II trial (NCT03104439) that combined radiation with 
ipilimumab and nivolumab to treat primary immuno-
therapy-resistant cancers as MSS CRC and PDAC dem-
onstrated notable clinical benefits and prolonged disease 
control [424]. Furthermore, as a local therapy and an 
immunomodulator, radiotherapy can also synergise with 
immunotherapy in oligometastatic ESCC patients who 
have either failed previous immunotherapy or acquired 
immunotherapy resistance. This combination has shown 
responses even in unirradiated lesions [425]. By repro-
gramming the TME in cancers with minimal immune 
infiltration, radiotherapy, combined with immunother-
apy, induces a potent mobilisation of both innate and 
adaptive immunity [426]. However, the optimal combi-
nation strategies, including precise timing, optimal dose, 
fractionation schedule and target sites, remain to be 
determined [425].

Combination with anti‑angiogenesis therapy
Combined antiangiogenic and anti-PD-1/PD-L1 ther-
apy has demonstrated a synergistic effect [427, 428] in 
enhancing antitumor immunity by inducing vascular nor-
malisation [429]. Following the promising findings from 
the REGONIVO study, the combination of regorafenib, a 
VEGFR inhibitor, and PD-1 inhibitors has been consid-
ered as a treatment for refractory pMMR/MSS mCRC 
patients, particularly those with CPS < 1 and low TMB 
[430]. Nevertheless, patients with liver metastasis could 
not benefit from this treatment strategy, which neces-
sitates further investigations. A combination of VEGFR 
inhibitors can potentially extend the applicability of 
PD-L1/PD-1 inhibitors beyond patients with dMMR/
MSI-H mCRC. Moreover, patients with AFPGC, which 
is characterised by high invasiveness, early metastasis, 
rapid progression [431], and elevated VEGF-C expression 
[432], may benefit from targeting the VEGF-C-VEGFR2 
pathway. Recent data presented at the 2024 ASCO 
meeting highlighted the efficacy of apatinib, a VEGFR2 
tyrosine kinase inhibitor, combined with anti-PD-1 and 
chemotherapy in patients with AFPGC (NCT04609176). 
Encouragingly, the study reported an ORR of 55.6%, a 
DCR of 86.1%, and an improved prognosis with a 1-year 
PFS of 42.1% and a 1-year OS of 63%.

Combination with targeted therapy beyond VEGF
Intracellular signal transduction pathways that medi-
ate resistance to immunotherapy are potential targets 
for combination therapy. TGF-β not only suppresses the 
immune response but also promotes angiogenesis and 
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Table 7 Summary of the clinical trials of anti-PD-1/L1 combined with other agents in GI tract cancers

Combined 
strategy

ICI Combined target Agent Tumour Sample size Outcome/
ongoing

References

Radiotherapy PD-1 low dose radio-
therapy

LDRT ESCC 49 ORR:40.8%, 
DCR:75.5%, 
mPFS:6.9 m, 
mOS:12.8 m

ChiCTR2000040533

PD-1 + CTLA-4 low dose radio-
therapy

LDRT MSS CRC, PDAC 65 CRC ORR:10%, 
DCR:25%, 
mPFS:2.4 m, 
mOS:7.1

NCT03104439

PD-L1 Stereotactic Body 
Radiotherapy

SBRT PDAC 59 ORR:5.1% /

Targeted therapy PD-L1 TGF-βRII M7824 EAC 30 ORR:20%, 
DCR:33.3%, 
mDOR:4.3 m

NCT02517398

PD-L1 TGF-βRII M7824 ESCC 30 ORR:10%, 
DCR:30%, 
DOR:7.0 m

NCT02699515

PD-L1 TGF-βRII M7824 GC/GEJ 31 ORR:16%, 
DCR:26%, 
DOR:8.7 m

NCT02699515

PD-1 Histone deacety-
lase inhibitor

CXD101 MSS CRC 55 ORR:9%, DCR:48%, 
mOS:7.0 m

EudraCT NUMBER 
2017–004509-42

PD-L1 PARP Olaparib MSS CRC, PDAC 90 / NCT03851614

PD-L1 ATR ceralasertib GC 31 ORR:22.6%, 
DCR:58.1%, 
mPFS:3.0 m, 
mOS:6.7 m

NCT03780608

PD-1 VEGFR apatinib GC/GEJC 25 ORR:17.4%, 
DCR:78.3%, 
mPFS:2.9 m, 
mOS:11.4 m

NCT02942329

PD-1 VEGFR Regorafenib GC, CRC 50 GC: ORR 44%, 
mPFS 5.6 m, CRC: 
ORR 36%, mPFS 
7.9 m

NCT03406871

PD-1 VEGFR Regorafenib MSS CRC 70 ORR:7%, 
mPFS:1.8 m, mOS: 
11.9 m

NCT04126733

PD-1 VEGF bevacizumab MSS CRC 29 ORR:9%, DCR:61% NCT03396926

Other ICIs PD-L1 CTLA-4 tremelimumab CRC 117 ORR:0%, 
DCR:22.7%, 
mPFS:1.8 m, 
mOS:6.6 m

NCT02870920

PD-L1 CTLA-4 cadonilimab ESCC, HCC 46 ESCC: ORR 18.2%, 
DCR 50%, mDOR 
10.2 m, mPFS 
3.5 m, mOS 9.4 m

NCT03852251

PD-L1 CTLA-4 cadonilimab GC/GEJ 610 / NCT05008783

PD-1 LAG3 relatlimab GC/GEJ 16 pCR:21.4%, 
MPR:57.1%

NCT03044613

PD-L1 LAG3 FS118 solid tumour 43 DCR:46.5% NCT03440437

PD-1 TIM3 Sabatolimab solid tumour 86 ORR:6%, DCR:44% NCT02608268

Immuno-modu-
lators

PD-1 TLR9 activator pixatimod MSS CRC, PDAC 58 CRC: ORR 12%, 
DCR 44%, PDAC: 
ORR 0%, DCR:11%

NCT05061017

PD-L1 IL-17 + TGF-βRII AIN457 MSS CRC / NCT04298320

PD-L1 4-1BB GEN1046 solid tumor 61 DCR:65.6% NCT03917381

PD-1 ICOS KY1044 advanced malig-
nancies

65 ORR:6.25% NCT03829501
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activates CAFs. M7824 (also known as Bintrafusp alfa) is 
an anti-PD-L1/TGF-β receptor II (TGF-βRII) trap agent 
[433]. Despite the limited efficacy of first-line treatment 
for post-platinum biliary tract cancer patients [434], 
M7824 has shown remarkable results in post-chemo-
therapy EAC [434] and ESCC [435], with ORR of 83% 
and 100% in patients with immune-excluded phenotype, 
respectively. Similarly, another dual PD-L1/TGF-β inhib-
itor, Retlirafusp alfa (SHR-1701), is undergoing evalua-
tion in phase III studies in patients with G/GEJC.

Moreover, DNA damage repair defects may enhance 
cancer sensitivity to ICI treatment [189]. Therefore, 
the combination of ICIs and DNA-damaging therapy 
could theoretically reduce immunotherapy resistance 
and improve efficacy [436]. Ceralasertib (AZD6738), an 
ataxia telangiectasia and Rad3-related protein kinase 
inhibitor, plus durvalumab displayed promising efficacy 
with an ORR of 22.6% and a DCR of 58.1% in patients 
with refractory advanced GC. Accompanying transla-
tional research during the treatment highlighted the acti-
vation of both innate and adaptive immune responses in 
responders [437].

Combination with other ICIs
Dual blockade of two checkpoints could potently reduce 
the probability of resistance and has been demonstrated 
in abundant preclinical studies [438]. Anti-PD-1 plus 
anti-CTLA-4 has achieved a prolonged mOS of 6.6 
months in patients with “cold” cancers, such as pMMR/
MSS CRC, but without ORR and significant improve-
ment in PFS. Further subgroup analyses indicated that 
patients with TMB > 28 and those classified as CMS2 may 
benefit from the therapy [439]. Cadonilimab (AK104), 
an anti-PD-1/CTLA-4 bispecific antibody, showed an 
encouraging tumour response rate with a manageable 
safety profile in ESCC and HCC [440]. A phase III study 
of cadonilimab in first-line treatment of G/GEJ adenocar-
cinoma is underway (NCT05008783). Moreover, a phase 
I first-in-human study evaluating the activity of FS118, a 
bispecific antibody targeting LAG-3 and PD-L1, showed 
clinical benefit in 43 patients (including 5 patients with 
CRC) resistant to anti-PD-(L)1-based therapy earlier. SD 

was also observed in patients with previous ICI as their 
most recent therapy and/or co-expression of LAG-3 
and PD-L1. An increase was observed in the counts of 
CD4 + and CD8 + T cells following treatment in patients 
with SD (NCT03440437) [441].

Combination with immune modulators
Combining immune modulators with PD-(L)1 target-
ing agents is a promising strategy for patients with 
PD-(L)1–refractory disease [442]. In addition to co-
inhibitory pathways such as PD-1 and CTLA-4, co-stim-
ulatory pathways, including CD40/CD40L, CD27/CD70, 
4-1BB/4-1BBL, GITR/GITRL, and ICOS/ICOSL, are cru-
cial in regulating T-cell function [443]. Agonists targeting 
co-stimulatory pathways have demonstrated the poten-
tial to boost T-cell activity and elicit antitumor immune 
responses [444]. The TNF receptor superfamily member 
9 (CD137 or 4-1BB) is an inducible T-cell costimulatory 
receptor expressed on activated CD4 + , CD8 + T cells, 
and NK cells [442]. In a phase I trial involving 12 (19.7%) 
CRC and 6 (9.8%) PDAC patients, a bispecific antibody 
targeting PD-L1 and 4-1BB (GEN1046) achieved a DCR 
of 65.6%. Notably, two patients who had previously pro-
gressed on anti-PD-(L)1 therapy achieved PR. IL-17 
affects the infiltration and exhaustion of immune cells 
that contribute to the formation of an immunosuppres-
sive microenvironment [445, 446]; therefore, targeting 
IL-17 is a promising strategy for overcoming immune 
suppression and enhancing the sensitivity of anti-PD-1 
therapy [447, 448]. The synergistic effect of anti-IL-17 
and anti-PD-1 is being verified in several ongoing clinical 
trials (NCT05061017).

Combination with faecal microbiota transplantation
Findings have proved the efficacy of responder-derived 
faecal microbiota transplantation (FMT) in reversing 
resistance to ICIs in patients with melanoma, induced 
an ORR up to 30% after anti-PD-1 was restarted [449, 
450]. Responding patients had an increased frequency 
of activated dendritic cells, type I interferon signalling 
and CD8 + T cells in the TME. In GI tract cancers, the 
attempts of FMT are concentrated in colorectal cancers. 

Table 7 (continued)

Combined 
strategy

ICI Combined target Agent Tumour Sample size Outcome/
ongoing

References

PD-1 GITR GWN323 solid tumor 53 ORR:7.5%, 
DCR:34%

NCT02740270

FMT PD-1 feacal microbial 
transplantation

FMT MSS CRC 20 ORR:20%, 
DCR:95%, 
mDOR:8.1 m, 
mPFS:9.6 m, 
mOS:13.7 m

/
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In a small sample size, phase II trial (RENMIN-215), 
responder-derived FMT plus anti-PD-1 and fruquintinib 
as third-line or above treatment showed inspiring mPFS 
with 9.6 months in refractory MSS mCRC. Peripheral 
blood expanded TCRs exhibited the characteristics of 
antigen-driven responses in responders [451]. There are 
a few points need to discuss, first, FM is usually derived 
from the responders, but an additional study found that 
FMT from untreated healthy donors led to an ORR of 
65% in ICB-naive patients with melanoma [452]. Sec-
ondly, mechanisms by which FMT improves efficacy or 
overcome resistance. Based on the elevated DC in mela-
noma and the expanded TCRs in CRC, we hypothesized 
that FMT might promote the antigen presentation pro-
cess. Besides, dosage forms, administration timing et al. 
warrant further study yet.

New attempts to overcome immunotherapy resistance
Treatment strategy following the true progression of 
immunotherapy is yet to be elucidated, given the lim-
ited evidence currently available. In a study of acquired 
immunotherapy resistance in GI cancer, chemotherapy 
was the main post-resistant regimen (23.7%), followed 
by maintaining the original immunotherapy (12.7%) 
[307]. In addition to combination strategies to overcome 

immunotherapy resistance, targeted intervention of the 
key links of immunotherapy tolerance is another poten-
tially effective strategy. To date, this attempt has mainly 
included CAR-modified cell therapies, herbal medicines, 
monomeric drugs, ovs, and other biological agents.

Novel immunotherapy for GI tract cancers
Although immunotherapy of GI has made break-
throughs, the conventional strategies focused on immune 
cells alone, especially immune checkpoints, have limited 
benefits. Therefore, the development of novel immuno-
therapy has explored the whole process of anti-tumour 
response. First, the transfusion of expanded immune cells 
has shown great potential in GI tract cancers recently. 
Second, tumour antigens must be presented to T cells 
by antigen-presenting cells (APCs) so that they can be 
recognised by T cells, which makes cancer vaccines an 
attractive strategy to elicit anti-tumour response. Third, 
T cells are inhibited by immune checkpoints in cancers. 
Novel ICIs to rescue the second signal, which is essen-
tial to T-cell activation, remains to be identified. Further-
more, oncolytic viruses killing tumour cells in versatile 
ways, which is far beyond directly lysing tumour cells 
(Fig. 3).

Fig. 3 Novel strategies of GI immunotherapy. We summarized four directions of the development of novel immunotherapy including 1. Transfusion 
of immune cells, including T cells and innate immune cells, which are edited by gene engineering to recognize tumour antigen such as HER-2, 
CLDN18.2, and exert potent killing effect;2. Novel immune checkpoint inhibitors can rescue cytotoxic T cells from inhibitory signalling induced 
by the combination of legend with PD-1, LAG3, TIGIT;3. cancer vaccines, including peptide vaccine and dendritic cells vaccine, can present tumour 
antigen peptides to activate T cells; 4. Novel tumour virus not only lyses tumour cells, but also provide a versatile platform to kill cancer cells, such 
as encoding PD-L1 antibody
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Transfusion of killer cells
T cells beyond classic cytotoxic T cells
One form of adoptive immunotherapy is the use of 
viruses to introduce genes encoding novel types of recep-
tors, known as CAR, into the T cells of patients. T-cells 
expressing CAR have made breakthroughs in the treat-
ment of GI tract cancers.

Qi et al. reported the interim analysis of a phase I clini-
cal trial of Claudin18.2 (CLDN18.2)-targeted CAR-T cells 
(CT041) in patients with previously treated CLDN18.2-
positive digestive system cancers (NCT03874897). The 
author reported promising efficacy against CLDN18.2-
positive digestive cancers, particularly in GC [24]. In 
another study, CT041 was administered to two patients 
with metastatic pancreatic cancer. They responded 
remarkably to CT041. One of the patients achieved par-
tial regression (PR), whereas the other achieved CR of 
lung metastasis [453].

However, autologous CAR-T cell therapies necessitate 
an extended period prior to transfusion due to manufac-
turing time. In contrast, allogeneic donor-derived CAR-T 
cells, which can be banked for immediate use, address 
the critical temporal limitation. CYAD-101, an allogeneic 
CAR-T using a non-gene edited, peptide-based technol-
ogy to mitigate graft versus host disease (GvHD) is com-
bined with a NKG2D-based CAR. Pre-clinical studies 
have confirmed that CYAD-101 could maintain CAR-
directed anti-tumour activity without inducing GvHD 
[454]. Clinical grade CYAD-101 cells were produced 
for the phase I trial (NCT03692429) enrolling fifteen 
patients with refractory mCRC patients, among whom, 
two patients achieved PR, nine patients achieved stable 
disease (SD), and the mPFS was 3.9 months [455]. Based 
on the encouraging results, KEYNOTE-B79, a phase Ib 
clinical tiral (NCT04991948) conducted in MSS/pMMR 
mCRC patients with CYAD-101 is under investigation.

Another challenge faced by CAR-T cell therapy is the 
limited number of safely targetable cancer antigens on the 
cell surface. Several tumour antigens, including neoanti-
gens and shared antigens, are derived from intracellular 
proteins. Therefore, the development of TCR-T cell  tar-
geting intracellular antigens may be a prospective treat-
ment option. KRAS is one of the most frequently mutated 
proto-oncogenes in human cancers. The prevailing onco-
genic mutations observed in KRAS involve single amino 
acid substitutions at codon 12, specifically G12D and 
G12V. These mutations are highly prevalent, accounting 
for approximately 60% to 70% of PDAC and 20% to 30% 
of CRC. Neoantigens related to KRAS mutation can elicit 
a strong immune response, making it a potential target 
for TCR. Wang et  al. employed HLA-peptide predic-
tion algorithms and determined the potential of HLA-
A*11:01 to present mutated variants of KRAS [456]. The 

researchers extracted murine T cells and subsequently 
isolated TCR specific to the mutated KRAS variants 
G12V and G12D. Peripheral blood lymphocytes (PBL), 
upon transduction with these specific TCR, exhibited a 
remarkable ability to discern multiple HLA-A*11:01( +) 
tumour cell lines harbouring the KRAS G12D and G12V. 
Adoptive transfusion of these transduced PBLs showed 
potent killing effects of G12D-mutated pancreatic cancer 
in vivo, which facilitated relevant clinical trials.

A phase I/II study (NCT03745326) involving the 
administration of PBLs transduced with a murine 
TCR recognising the G12D variant of mutated RAS 
in HLA-A*11:01 patients is currently recruiting at 
National Cancer Institute. Similarly, Chen et  al. evalu-
ated the preliminary efficacy and safety of HLA-A*11:01 
KRAS G12V, G12D, and G12C mutant antigen-specific 
TCR-T cells in the treatment of patients with advanced 
pancreatic cancer, lung cancer, and colorectal cancer 
(ChiCTR2200057171).

Innate immune cells
Innate immune cells are responsible for nonspecific 
immune responses, whereas the adaptive anti-tumour 
response is T-cell-dependent. Although cytotoxic T-cells 
are the most important killer cells in fighting against 
cancer, innate immune cells play an irreplaceable role 
in anti-tumour processes. Mesothelin (MSLN) is an 
immunotherapeutic target in GC. Cao et al. constructed 
anti-MSLN CAR NK cells which could specifically kill 
MSLN-positive GC cells in  vitro and in  vivo, showing 
excellent potential for clinic application [457].

Recently, rapid progress has been made in adoptive 
cell therapy using macrophages as effector cells owing to 
their phagocytotic, antigen presentation, and high pen-
etration capabilities. Dong et al. generated a novel CAR-
Macrophage (CAR-M) based on genetically modified 
human peritoneal macrophages (PMs) expressing a HER-
2-FcεR1γ-CAR (HF-CAR). The researchers observed that 
HF-CAR-PMs specifically targeted the HER-2-express-
ing GC cells and that intraperitoneal administration of 
HF-CAR-PMs significantly facilitated HER-2-positive 
tumour regression in a peritoneal carcinomatosis (PC) 
mouse model and prolonged the OS [458]. However, the 
clinical trial (NCT06224738) has not yet been conducted.

Cancer vaccines
T cells exert killing effects following induction by APCs 
carrying tumour antigen peptides, which is the first sig-
nal of T-cell activation. Cacner vaccines include cancer 
peptide vaccines and cell vaccines. Peptide-based cancer 
vaccines typically consist of 20–30 amino acids contain-
ing specific epitopes from highly immunogenic antigens 
to induce the desired immune response by stimulating 
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specific immune responses against cancer cells. Dendritic 
cells (DCs) are APCs with a unique ability to induce pri-
mary immune response. DCs play an important role in 
adaptive immunity. Neoantigen-based DC vaccines pre-
sent tumour neoantigens to naïve cytotoxic T cells and 
stimulate potent immune response. Taken together, ther-
apeutic vaccines hold promise for providing long-term 
clinical benefits to patients with cancer.

Peptide‑based cancer vaccines
EBV latent proteins are expressed in multiple EBV-
associated cancers, play a significant role in carcinogen-
esis and thus represent vital therapeutic targets for these 
malignancies. Zhao et.al developed mRNA-based thera-
peutic vaccines designed to express the T-cell-epitope-
rich domain of truncated EBV latent proteins. These 
vaccines effectively activated both cellular and humoral 
immunity in tumour-bearing mice, leading to suppressed 
tumour progression [459]. Peng et. al conducted a clini-
cal trial (NCT05714748) to investigate the efficacy of 
EBV mRNA vaccine against tumours. What’s more, wGc-
043 as a mRNA cancer vaccine, recently received FDA 
approval for clinical trials which was the first granted 
EBV related mRNA therapeutic cancer vaccine, rep-
resenting a milestone advancement in the research of 
future cancer treatments.

An ongoing phase III study (NCT03639714) is assess-
ing the safety, tolerability, and recommended phase 
II dose of an individualised heterologous chimpanzee 
adenovirus (ChAd68) and self-amplifying mRNA-based 
neoantigen vaccine in combination with nivolumab and 
ipilimumab in patients with advanced metastatic solid 
cancers. The individualised vaccine regimens were well 
tolerated, with no dose-limiting toxicities. In addition, 
the vaccine induces long-lasting neoantigen-specific 
CD8 + T-cell responses. Despite limitations due to the 
small study size, the observed increase in OS in MSS 
CRC warrants further exploration in large-scale rand-
omized studies [460].

However, challenges remain before the vaccine can be 
widely applied in clinical practice owing to their high 
level of individualisation. In an ongoing phase I/II study 
(NCT03953235), Rappaport et  al. constructed a thera-
peutic vaccine encoding 20 shared neoantigens derived 
from selected common oncogenic driver mutations. The 
vaccine was administered in combination with the ICIs 
ipilimumab and nivolumab to patients with advanced/
metastatic solid cancers expressing one of the human 
leukocyte antigen-matched tumour mutations included 
in the vaccine. Almost all patients (18/19) harboured 
KRAS mutations. Unfortunately, the ORR was 0%, and 
the mPFS and OS were 1.9 and 7.9 months, respectively. 
A notable preference was observed for TP53 neoantigens 

encoded in the vaccine, suggesting an unidentified 
immunodominance hierarchy which might influence the 
efficacy of multi-epitope-shared neoantigen vaccines. 
Therefore, a more effective vaccination specifically tar-
geting KRAS-derived neoantigens is currently under 
development and assesment in a subset of patients in a 
phase II trial [461].

Neoantigen‑based dendritic cell vaccines
Tumour antigens include tumour-associated antigens 
(TAAs) and tumour-specific antigens (TSAs). As they are 
expressed in both tumour and normal cells, TAAs rarely 
provoke evident cellular immune responses. In con-
trast, TSAs exclusive to cancer cells can trigger a robust 
immune response. Tumour antigens must be captured 
by DCs and cross-presented to CD8 + T cells to initiate 
their activation. Subsequently, antigens must be directly 
presented to tumour cells for recognition by cytotoxic 
T-cells. Therefore, neoantigen-based DC vaccines hold 
the potential to induce robust anti-tumour immune 
responses, with the efficacy and safety confirmed.

Guo et al. documented a case in which a patient with 
metastatic GC who received a personalised neoantigen-
loaded monocyte-derived DC (Neo-MoDC) vaccine fol-
lowed by combination therapy of the Neo-MoDC and an 
ICI. The patient developed T-cell responses against neo-
antigens after receiving the Neo-MoDC vaccine alone. 
Subsequent combination therapy triggered a stronger 
immune response and mediated the complete regres-
sion of all cancers for over 25 months. Peripheral blood 
mononuclear cells recognised most of the vaccine neoan-
tigens. The frequency of neoantigen-specific T-cell clones 
significantly increased post-vaccination (NCT03185429) 
[462].

Whole‑cell vaccines
The whole-cell cancer vaccine, which incorporates a 
comprehensive array of TSAs, shows great potential in 
preventing tumour development, progression, and recur-
rence. Its primary function is to provoke the immune sys-
tem into identifying and eradicating tumour cells instead 
of  cytotoxic effects on the tumour cells. Researchers 
have developed a whole-cell tumour vaccine named 
GVAX. This allogeneic vaccine is modified to gener-
ate granulocyte–macrophage colony-stimulating factor 
(GM-CSF), crucial for triggering immune responses. A 
phase II study (NCT02981524) evaluated the combina-
tion of GVAX, cyclophosphamide, and pembrolizumab 
in patients with advanced pMMR CRC. Results indi-
cated that the combination of GVAX/cyclophosphamide 
and pembrolizumab is well tolerated and induces carci-
noembryonic antigen (CEA) decrease, without radio-
graphic changes. In this small cohort, PFS and OS rates 
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appeared favourable compared to controls. Notably, CEA 
responses were absent in the anti-PD-1 monotherapy 
group, suggesting GVAX’s potential to enhance the anti-
tumour immune response.

Chen et al. employed the CRISPR-Cas9 system to dis-
able the interferon-β (IFN-β) specific receptor in live 
tumour cells, subsequently engineering them to produce 
IFN-β. This strategy effectively inhibited tumour growth 
and angiogenesis. Furthermore, these engineered tumour 
cells were manipulated to express GM-CSF to modulate 
immune responses. This bifunctional tumour cell vaccine 
directly induced caspase-mediated tumour cell apopto-
sis while activating and sustaining long-term immunity. 
Nonetheless, the safety of using living tumour cell vac-
cines remains under verification, necessitating further 
evidence and precautions against potential secondary 
tumours [463].

Tumour cell‑derived cancer nano vaccines
Tumour cell-derived cancer nano vaccines introduce 
tumour cell-derived components as functional units that 
endow the nano vaccine systems with antitumor func-
tion. Liang et. al generated an endoplasmic reticulum 
stress inducer α-mangostin (αM) into tumour cells and 
harvested biologically self-assembled tumour cell-derived 
cancer nano vaccines (αM-Exos) based on the biological 
process of tumour cell exocytosing nanoparticles through 
exosomes. Following subcutaneous injection, αM-Exos 
efficiently migrated to lymphonodes and was expedi-
tiously endocytosed by DCs, delivering tumour antigens 
and adjuvants to DCs synchronously, which then power-
fully triggered antitumor immune responses and estab-
lished long-term immune memory [464].

ICIs beyond PD‑1/PD‑L1
T‑cell immunoreceptors with Ig and ITIM domains
T-cell immunoreceptors with Ig and ITIM domains 
(TIGIT) are immunosuppressive receptors expressed on 
immune cells, predominantly found on the surface of 
T- and NK cells. TIGIT is significantly overexpressed in 
tumour-infiltrating lymphocytes across various malig-
nancies [465, 466]. The ligands CD155, CD112, and 
CD113 are associated with TIGIT, with CD155 and 
CD112 being notably overexpressed in many tumour 
types. Zhu et  al. observed that the TAMs from CRC 
showed robustly higher expression of CD155 than the 
macrophages from adjacent normal tissues. TAM-spe-
cific CD155 contributes to M2-phenotype transition, 
immunosuppression, and progression [467]. CD155/
TIGIT signalling regulates CD8 + T-cell metabolism, 
promoting the progression of GC [468]. TIGIT exerts its 
immunosuppressive function by competitively binding to 
CD155, which is also a ligand of CD226, a co-stimulatory 

receptor on T cells [469]. Specifically, the novel ligand 
Nectin-4 (PRR4 and PVRL4) exclusively interacts with 
TIGIT, thereby inactivating NK cells [470].

Domvanalimab, an Fc-silenced IgG1 monoclonal anti-
body targeting TIGIT, blocks the interaction between 
CD155 and TIGIT, so that CD155 in turn binds to the 
CD226 protein and rescues immune activation signal-
ling. An ongoing global multi-arm EDGE-Gastric study 
(NCT05329766) investigates the safety and efficacy of 
the combination of domvanalimab (D) and zimbereli-
mab (Z) in patients with locally advanced unresectable 
or metastatic G/GEJC. As the primary results revealed at 
2023 ASCO, the ORR and 6-month PFS rate in the ITT 
patients was 59% and 77% respectively. Notably, patients 
with high-PD-L1 expression(TAP ≥ 5%) exhibited supe-
rior response (ORR:80% vs.46%;6 m-PFS rate in ITT:93% 
vs.68%). The regimen was well-tolerated, with a compara-
ble AEs profile to that of anti-PD-1 + FOLFOX. In conclu-
sion, the D + Z + FOLFOX regimen showed encouraging 
ORR and 6  months-PFS rates, particularly in patients 
with high PD-L1 expression(TAP ≥ 5%). STAR-221,a 
randomised phase III first-line clinical trial comparing 
D + Z + chemotherapy with Nivolumab + chemotherapy 
is currently in progress [471].

B7‑H3
B7-H3, a notable target for cancer owing to its restricted 
expression in normal cells, is typically overexpressed in 
multiple solid cancers [472–476]. In addition, B7-H3 
participates in the metabolism, migration, invasion, and 
endothelial-to-mesenchymal transition of cancer cells 
[477–481]. Deregulated B7-H3 expression is closely asso-
ciated with worse outcomes of GI cancers [482]. In addi-
tion, emerging evidence points to an immune-evasive 
phenotype due to B7-H3 overexpression, such as inhibi-
tion of CD4 + and CD8 + T-cell activation and prolifera-
tion, reduction in IL-2 and IFN-γ production [483, 484], 
and promotion of tumour immune evasion [485].

Zekri et  al. generated B7-H3xCD3 bispecific antibody 
(bsAb) that showed superior tumour cell elimination, 
enhanced T-cell activation, proliferation, and mem-
ory formation in  vitro and in  vivo [486]. Unfortunately, 
the clinical trial of B7-H3xCD3 (NCT02628535) was 
terminated.

LAG‑3
Recently, Kelly et  al. reported a phase Ib trial 
(NCT03044613) that evaluated the efficacy of neoadju-
vant nivolumab (Arm A, n = 16) or nivolumab-relatlimab 
(Arm B, n = 16) in combination with chemoradiother-
apy CRT in 32 patients with resectable stage II/stage III 
GEJC. The results showed overall  2-year RFS and OS 
rates of 72.5% and 82.6%, respectively. Baseline PD-L1 
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and LAG-3 expression were positively associated with 
pathological responses. These findings provide valuable 
insights into the safety profile and promising efficacy of 
combining PD-1 and LAG-3 inhibitors in neoadjuvant 
immune therapy for GEJC [487, 488].

MICA/B
NKG2D is an activation receptor expressed on natural 
killer (NK) cells, natural killer T (NKT) cells, γδT cells, 
and naïve CD8 + T cells that plays a vital role in the kill-
ing of tumour cells. Eight different NKG2D ligands 
(NKG2DL), including the MICA/MICB (MICA/B) and 
ULBP1–6 proteins, have been described in humans [489]. 
NKG2D/NKG2DL axis is important for tumour immu-
nity, as NKG2DL are upregulated by DNA damage and 
cGAS-STING signalling, which are rarely observed in 
healthy cells [490, 491]. Evidence suggests that NKG2DL 
is frequently detected in malignant cancers. Gener-
ally, upregulation of NKG2DLs results in the tagging of 
stressed cells for elimination by cytotoxic lymphocytes. 
However, proteolytic shedding of MICA/B on tumour 
cells results in immune escape [492, 493]. Evidence shows 
that deficient signal of NKG2D leads to an increased sus-
ceptibility to spontaneous tumour development and pro-
gression in mice models [494].

As illustrated above, MICA/B is a suitable target for 
cancer therapy. Due to its complicated mechanisms in 
immune evasion, MICA/B monoclonal antibody (mAb) 
is another strategy, besides cell therapy, targeting the 
NKG2D/NKG2DL axis. Treating human cancer cell lines 
with MICA/B mAb substantially increases the surface 
density of these NKG2DLs and induces their killing by 
human NK cells [495]. Capuano et al. illustrated that the 
CD16 receptor on NK cells could further enhance the 
therapeutic activity of MICA/B mAb by inducing NK-
cell activation through both NKG2D and CD16 recep-
tors [496], while Courau et  al. observed that MICA/B 
mAb enhanced the destruction of CRC tumour spheroid 
by increasing NK-cell infiltration and activation. NKG2A 
expression was increased after anti-MICA/B treatment, 
and the combination of anti-MICA/B and anti-NKG2A 
was synergistic [497]. A phase I dose-escalation study 
(NCT05117476) investigating the safety and efficacy of 
CLN-619 (anti-MICA/B antibody) alone and in combina-
tion with pembrolizumab in patients with advanced solid 
cancers is currently recruiting.

Novel immune modulators
CD8 + T cells require a third signal, along with the first 
signal and co-stimulating signal, to generate an active 
response and avoid death and/or tolerance induction. 
IL-12 and Type I IFN (IFNα/β) are the predominant con-
tributors to the third signal in various responses. Priming 

CD8 + T-cells in the absence of IL-12 renders them unre-
sponsive to the same antigen [498]. Curtsinger et al. illus-
trated that the third signal regulates the CD8 + T cells by 
promoting chromatin remodelling to maintain the tran-
scription of numerous genes needed for differentiation 
and effector functions [499].

Razak et  al. administered the anti-colony-stimulating 
factor 1 receptor (anti-CSF1R) monoclonal antibody 
AMG 820 in combination with pembrolizumab to pMMR 
patients with refractory in CRC and PDAC. The primary 
endpoints were the incidence of dose-limiting toxicities 
and AEs and the ORR per immune-related response eval-
uation criteria in solid cancers at the recommended com-
bination dose. Although pharmacodynamic effects were 
observed, the anti-tumour activity was insufficient for 
further evaluation of this combination in larger patient 
populations (NCT02713529) [500].

Novel oncolytic viruses
Oncolytic viruses (Ovs) are natural or modified viruses 
that effectively and selectively infect and lyse cancer cells. 
Natural viruses have limited tumour specificity. With 
the advancement of gene engineering, modified Ovs can 
attack cancer cells with high selectivity and versatility. 
Ovs directly eliminate cancer cells through their cyto-
cidal effects and activate the immune system directly 
by stimulating immune cells and indirectly by releas-
ing tumour antigens from dead cancer cells. A phase II 
clinical trial illustrated that the oncolytic H-1 parvovirus 
significantly activated the immune system with excellent 
tolerability in patients with metastatic PDAC [501].

Additionally, novel Ovs reshape the TME through anti-
angiogenesis, metabolic reprogramming, and decompo-
sition of the extracellular matrix. Novel Ovs have been 
adopted as delivery systems for other anti-tumour drugs. 
LOAd703 is an oncolytic adenovirus loaded with a cyto-
megalovirus-driven transgene cassette encoding CD40L 
and 4-1BBL (manufactured by Baylor College of Medi-
cine, Houston, TX, USA on behalf of Lokon Pharma). 
Preclinical models have illustrated that LOAd703-medi-
ated oncolysis is cancer-selective and that LOAd703 can 
infect adjacent immune and stromal cells, leading to 
the expression of CD40L and 4-1BBL and the secretion 
of chemokines [502]. A non-randomised, single-centre, 
phase I/II study conducted by the same team combining 
LOAd703 with chemotherapy in patients with advanced 
PDAC (LOKON001) concluded that this regimen is 
feasible and safe. Arm 2 of this trial, which combines 
LOAd703, chemotherapy, and ICIs, is ongoing [503]. 
VG161 is the first recombinant oncolytic herpes simplex 
virus type 1 that carries multiple synergistic anti-tumour 
immunomodulatory factors (IL12, IL15/15RA, and PD-
L1-blocking peptide). VG161 can systematically activate 
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acquired and innate immunity in PDAC models and 
remodel the TIME, indicating strong anti-tumour poten-
tial. The anti-tumour effects and safety of VG161 require 
further investigation prior to clinical application [504].

Although novel immunotherapy has demonstrated sub-
stantial outcomes in preclinical studies, as indicated in 
Table 8, it is hindered by prolonged research duration and 
high resource consumption. Furthermore, despite some 
drugs advancing to early clinical trials, challenges such as 
high toxicity, poor efficacy, and elevated failure rates per-
sist. Consequently, most novel immunotherapies remain 
confined to the preclinical and early clinical trial phases. 
Moreover, the majority of current studies predominantly 
designed for solid cancers, including lung, breast, and 
prostate cancer, with few novel methods developed based 
on the characteristics of GI cancers. Therefore, develop-
ing efficient novel immunotherapy strategies with a high 
clinical translation rate, tailored to GI features, within a 
truncated timeframe, represents a critical challenge that 
must be addressed in future research.

Challenges and Future directions
The immunotherapy of GI tract cancers has made mon-
umental progress in recent years and the efficacy is 
encouraging and promising. However, opportunities are 
always accompanied by challenges in realising precise 
and individual immunotherapy for GI tract cancers.

Despite numerous explorations on novel immune 
related targets in GI tract cancers, there are still few drug-
gable targets available. Digestive tract cancers including 
EC, G/GEJC and CRC, are hollow organ cancers, charac-
terized by significant genetic and molecular spatiotem-
poral heterogeneity and complexity, thus identification 
of universal targets is extremely limited. Mutations of 
targets and activation of alternative signalling pathways 
commonly occur in GI tract cancers which remarkably 
impair the efficacy. Besides, TME in GI tract cancers 
tends to be highly suppressive making it challenging to 
find targets that reliably evoke anti-tumour immunity. 
In addition, the absence of organ-specific and tumour-
specific antigens resulting in on-target, off-tumour tox-
icities, further limiting the clinical application of targets. 
Therefore, to improve the success rates of targets trans-
formation, integrating multi-omics massive data for tar-
get mining and employing preclinical research models 
that more accurately mirror the overall characteristics 
of the human TME for validation, represent the pivotal 
research directions for future exploration of new targets.

Progress has been made in identifying immunothera-
peutic markers for GI tract cancers, with PD-L1 and 
MSI/dMMR serving as primary biomarkers for EC, G/
GEJC and CRC. While substantial potential beneficiaries 
are still unidentified, there is still a long journey ahead in 

selecting patients precisely. Relying on a single biomarker 
fails to stratify patients accurately and precisely. In recent 
years, research on GI immunotherapy biomarkers has 
expanded across multiple dimensions with attempts to 
construct predictive models for outcomes and AEs that 
integrate multi-omics data using AI techniques. Moreo-
ver, current research utilizing baseline specimens does 
not adequately capture the transformative effects of 
immunotherapy on the TME. Therefore, incorporating 
specimens collected post-therapy for dynamic detection 
represents a trend in future biomarker exploration neces-
sitating an increase in specimen collection frequency. 
Develop minimally invasive sampling methods and 
multi-omics detection using trace specimens techniques, 
such as nuclear marker-labelled PET-CT, liquid biopsy, 
and gut microbiota analysis, that reflect the TME from 
multi-dimensions are urgently anticipated.

Additionally, the integration of clinical trials and trans-
lational research with high efficiency and quality is an 
important project worthy of further exploration. As 
shown in Fig. 4, “Dynamic-Recycle-Closed loop” research 
model is recommended. A biomarker-driven clinical 
trial involves patients with biomarker-positive expres-
sion, therefore, optimising efficacy and reducing the 
waste of medical resources. Moreover, the results from 
the Rationale 305 trial, which focused on OS in the PD-
L1-positive population (tumour area positivity ≥ 5) as the 
primary endpoint, suggest that tislelizumab combined 
with chemotherapy leads to statistically and clinically sig-
nificant OS improvements, with the final results highly 
anticipated [87]. Developing new treatments based on 
resistance mechanisms, integrated analysis of datasets, 
and multi-omics information of specimens will contrib-
ute to the rapid mutual transformation between clinical 
and laboratory data. Patients will be more precisely dis-
tinguished and ultimately enrolled in corresponding clin-
ical trials. All research in the model is closely connected, 
time-transformed, and mutually optimised to form a 
closed loop.

In the era of precision and individual immunotherapy, 
the comprehensive management mode for patients with 
GI tract cancers is undergoing revolutionary changes. 
Traditional and classic treatment modalities and man-
agement are facing challenges. In the context of sig-
nificantly increased rates of successful transformation 
surgery for patients with locally advanced GI tract can-
cers undergoing neoadjuvant immunotherapy, issues that 
still need to be explored include: (1) whether it is possi-
ble for patients with rectal cancer to achieve clinical CR 
and further adopting “Watch and Wait” treatment strat-
egy to avoid surgery-related adverse; (2) for patients with 
EC or G/GEJC benefit to neoadjuvant immunotherapy, it 
is necessary to evaluate whether extensive lymph nodes 
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Table 8 Summary of under-investigation novel immunotherapies involving GI tract cancers

Strategy Category Target Regimen Status Sample 
size(estimated)

NCT number

Cell therapy CAR-T cells CLDN18.2 AZD6422 Recruiting 96 NCT05981235

EpCAM EPCAM CAR-T cells Recruiting 48 NCT05028933

GCC IM96 CAR-T cells Recruiting 19 NCT05287165

GCC LCAR-G08 cells Recruiting 42 NCT06197178

CEA CEA CAR-T cells Recruiting 36 NCT06010862

LGR5 LGR5-targeted CAR-T 
Cells

Recruiting 45 NCT05759728

MSLN αPD-1-MSLN-CAR T 
Cells

Recruiting 30 NCT05089266

B7-H3 anti-CD276 CAR T cells Recruiting 100 NCT04432649

CAR-T/TCR-T cells NY-ESO-1, DR5, EGFR 
vIII, Mesothelin

CAR-T/TCR-T cells unknown 50 NCT03941626

Muti-targets Cyclophosphamide/
Fludarabine + CAR-T/
TCR-T cells

unknown 73 NCT03638206

TCR-T cells NY-ESO-1 TBI-1301 + Cyclo-
phosphamide/TBI-
1301 + Cyclophospha-
mide + Fludarabine

unknown 9 NCT02366546

PRAME IMA203/IMA203CD8 
product

Recruiting 186 NCT03686124

CAR-NK92 cells NKG2D NKG2D-CAR-NK92 cells Recruiting 20 NCT05528341

CAR-macrophage cells HER-2 HER-2-targeted CAR-M 
cell

Not yet recurting 9 NCT06224738

Tumour vaccine mRNA vaccine Personalized Neoan-
tigen

Neoantigen tumor 
vaccine with or without 
PD-1/L1

Recruiting 30 NCT05192460

Personalized Neoan-
tigen

SW1115C3 Recruiting 30 NCT05198752

Personalized Neoan-
tigen

RO7198457 Recruiting 229 NCT04486378

Personalized Neoan-
tigen

Cyclophospha-
mide + personalized 
neoantigen vac-
cine + Pembrolizumab

Recruiting 36 NCT05269381

Dendritic Cell Vaccine Neoantigen Neoantigen DC Vaccine 
and Nivolumab

Recruiting 60 NCT04912765

ICIs Beyond PD-1/L1 ICIs Beyond PD-1/L1 TIGIT A: Tislelizumab plus Oci-
perlimab B: Tislelizumab 
plus Placebo

Completed 125 (actual) NCT04732494

TIGIT Pembrolizumab/Vibos-
tolimab

Recruiting 610 NCT05007106

TIGIT BAT6005 Recruiting 36 NCT05116709

LAG3 BMS-986213 + chemo-
therapy

Completed 274 (actual) NCT03662659

LAG3 IBI 110 ± sintilimab Recruiting 268 NCT04085185

CTLA-4 Pembrolizumab/
Quavonlimab

Recruiting 320 NCT04895722

MICA/B CLN619 + Pembroli-
zumab

Recruiting 410 NCT05117476

Oncolytic viruses Oncolytic viruses Oncolytic virus IDOV-SAFE Recruiting 60 NCT06380309

Oncolytic virus HX008 Recruiting 300 NCT03866525

Oncolytic virus R130 Recruiting 20 NCT05961111

Oncolytic virus T3011 Recruiting 233 NCT05602792
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dissection is still required and whether the scope of sur-
gery can be minimized to preserve organ function. Addi-
tionally, given the notable improvement in long-term 
survival rates in patients with advanced GI tract cancers 
receiving immunotherapy, it is crucial to integrating mul-
tidisciplinary wisdom for future development. Estab-
lish joint decision-making platforms for physicians and 
patients based on Chat GPT 4.0 and utilize intelligent 
techniques to realize long-term AE management and 
follow-up of survival. Moreover, leveraging technologies 
such as Digital Twins in the intelligent design of clinical 
trials advocates for conducting prospective multi-cohort 
clinical studies more efficiently, cost-effectively, and with 
minimal patient involvement while maintaining the reli-
ability of outcomes, which represents a promising direc-
tion for future development.

Conclusion
Collectively, immunotherapy has pioneered a new chap-
ter in the treatment of GI tract cancers. However, sig-
nificant challenges, including limited treatment options, 
undefined beneficiary groups, complex drug resistance 
mechanisms, and low success rates of new drug research 
and development, remain in achieving precise immuno-
therapy. We anticipate breakthroughs in basic, transla-
tional, and early clinical research on new drugs.
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Fig. 4 Dynamic-Recycle-Closed loop research model. We designed a novel research pattern especially for the precise and individual 
immunotherapy in GI tract cancers. Three parts “biomarker-driven clinical trials”, “exploration of new treatments driven by resistance mechanisms” 
and “diversified and full-cycle in formation analysis for target mining” are mutually linked, and formed a recycle closed loop. The final goal 
is achieving “precise and efficient immunotherapy”
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CKs  Chemokines
Ovs  Oncolytic viruses
AI  Artificial Intelligence
BRAF  B-Raf proto-oncogene
CDH1  Cadherin 1
CDKN2A  Cyclin-dependent kinase inhibitor 2A
CRC   Colorectal Cancer
CREBBP  CREB-binding protein
CT  Chemotherapy
CTC   Circulating Tumour Cell
CTLA-4  Cytotoxic T-Lymphocyte-Associated protein 4
CRT   Chemoradiotherapy
CXCL  Chemokine (C-X-C motif ) ligand
DC  Dendritic Cell
DCR  Disease Control Rate
DNA  Deoxyribonucleic Acid
dMMR  Deficient Mismatch Repair
EC  Oesophageal Cancer
EAC  Oesophageal Adenocarcinoma
EBV  Epstein-Barr Virus
EBVaGC  Epstein-Barr Virus-associated Gastric Cancer
EV  Extracellular Vesicle
FOXP3  Forkhead box P3
GC  Gastric Cancer
GEJC  Gastric and gastroesophageal junction cancer
GIPS  Genomic Immunotherapy Prognostic Score
H.pylori  Helicobacter pylori
ICIs  Immune Checkpoint Inhibitors
IFN  Interferon
IL  Interleukin
irOS  Immune-related Overall Survival
JAK2  Janus Kinase 2
KRAS  Kirsten Rat Sarcoma viral oncogene homolog
LIF  Leukaemia Inhibitory Factor
LA-ESCC  Resectable locally advanced ESCC
lncRNA  Long non-coding RNA
m6A  N6-methyladenosine
mCRC   Metastatic Colorectal Cancer
MET  MET proto-oncogene
mOS  Median Overall Survival
mPFS  Median Progression-Free Survival
MSS  Microsatellite Stable
MSI  Microsatellite Instability
MSI-H  Microsatellite Instability-High
nCRT   Neoadjuvant chemoradiotherapy
NICHE  Neoadjuvant Immunotherapy for Colon Cancer Patients with Mis-

match Repair Deficiency
NGS  Next-Generation Sequencing
NII  Neuroinflammatory Infiltration
ORR  Objective Response Rate
PD-L1  Programmed Death-Ligand 1
PD-L2  Programmed Death-Ligand 2
PDGF-B  Platelet-Derived Growth Factor-B
PI3KCA  Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

alpha
PNI  Perineural Invasion
POLE  DNA Polymerase Epsilon
POLD-1  DNA Polymerase Delta 1
PTCH1  Patched 1
PTEN  Phosphatase and Tensin Homolog
RAS  Rat Sarcoma viral oncogene homolog
RCTs  Randomized controlled trials
RHOA  Ras Homolog Family Member A
RNF43  Ring Finger Protein 43
SPEN  Spen Family Transcriptional Repressor
TP  Taxane plus platinum
TCGA   The Cancer Genome Atlas
TIL  Tumour-Infiltrating Lymphocyte
TIME  Tumour Immune Microenvironment
TIIC  Tumour-Infiltrating Immune Cell
TLS  Tertiary Lymphoid Structure

TME  Tumour Microenvironment
TMB  Tumour Mutational Burden
TMB-H  Tumour Mutational Burden-High
TNF  Tumour Necrosis Factor
VEGF  Vascular Endothelial Growth Factor
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