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Abstract 

Autologous anti‑CD19 chimeric antigen receptor (CAR) T cells are now used in routine practice for relapsed/refrac‑
tory (R/R) large B‑cell lymphoma (LBCL). Severe (grade ≥ 3) cytokine release syndrome (CRS) and immune effector 
cell‑associated neurotoxicity (ICANS) are still the most concerning acute toxicities leading to frequent intensive care 
unit (ICU) admission, prolonging hospitalization, and adding significant cost to treatment. We report on the incidence 
of CRS and ICANS and the outcomes in a large cohort of 925 patients with LBCL treated with axicabtagene ciloleucel 
(axi‑cel) or tisagenlecleucel (tisa‑cel) in France based on patient data captured through the DESCAR‑T registry. CRS 
of any grade occurred in 778 patients (84.1%), with 74 patients (8.0%) with grade 3 CRS or higher, while ICANS of any 
grade occurred in 375 patients (40.5%), with 112 patients (12.1%) with grade ≥ 3 ICANS. Based on the parameters 
selected by multivariable analyses, two independent prognostic scoring systems (PSS) were derived, one for grade ≥ 3 
CRS and one for grade ≥ 3 ICANS. CRS‑PSS included bulky disease, a platelet count < 150 G/L, a C‑reactive protein 
(CRP) level > 30 mg/L and no bridging therapy or stable or progressive disease (SD/PD) after bridging. Patients 
with a CRS‑PSS score > 2 had significantly higher risk to develop grade ≥ 3 CRS. ICANS‑PSS included female sex, low 
level of platelets (< 150 G/L), use of axi‑cel and no bridging therapy or SD/PD after bridging. Patients with a CRS‑PSS 
score > 2 had significantly higher risk to develop grade ≥ 3 ICANS. Both scores were externally validated in interna‑
tional cohorts of patients treated with tisa‑cel or axi‑cel.
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Purpose
Chimeric antigen receptor (CAR) T cells directed against 
the CD19 antigen have emerged as one of the most 
potent treatments for relapsed/refractory (R/R) large 
B-cell lymphoma (LBCL) [1–9]. Axicabtagene ciloleu-
cel (axi-cel) and lisocabtagene maraleucel (liso-cel) are 
now approved for second-line or subsequent lines of 
treatment, while tisagenlecleucel (tisa-cel) is approved 
after at least 2 previous lines. However, CAR T cells are 
associated with some early-onset specific toxicities, such 
as cytokine release syndrome (CRS) and immune effec-
tor cell-associated neurotoxicity (ICANS), which can be 
life-threatening [10–12]. Moreover, severe (i.e. grade ≥ 3) 
CRS and ICANS can lead to intensive care unit (ICU) 
admission in up to 30% of these patients, significantly 
prolong hospitalization, and add to the already significant 
cost of treatment [13].

Recently, many real-world evidence (RWE) studies have 
confirmed similar efficacy as in trials [14–20]. Grade ≥ 3 
CRS still occurs in real life in approximately 5–15% of 
patients regardless of the CAR T product (axi-cel or tisa-
cel), and grade ≥ 3 ICANS occurs in 15–40% of patients 
treated with axi-cel compared with approximately 5–15% 
of patients treated with tisa-cel.

Several attempts to discover robust predictors of severe 
CRS or ICANS have been made [15, 16, 19, 20]. The early 
identification of patients at high risk of severe toxicity has 
become of utmost importance now that CAR T cells are 
broadly used in routine practice and are still associated 
with significant morbidity, medical costs and complex 
patient flow [1, 10–18].

Several scoring systems have been proposed to pre-
dict the risk of CRS or ICANS. The m-EASIX (modified 
Endothelial Activation and Stress Index) and the s-EASIX 
(simplified EASIX) based on the EASIX score designed 
for graft-versus-host disease prediction have been pro-
posed to identify patients who subsequently develop 
severe CRS or ICANS [21, 22]. In the present study, we 
report on the specific toxicities of CAR T cells (i.e., CRS 
and ICANS) in a large RWE patient population treated 
with axi-cel or tisa-cel for R/R LBCL from the French 
DESCAR-T registry, retrospectively capturing exhaustive 
data for all patients treated with CAR T cells in France. 
We propose two externally validated prognostic scoring 
systems (PSSs) to refine the identification of patients at 
low or high risk of severe CRS or ICANS before any CAR 
T-cell infusion.

Patients and methods
Study design and patients
All patients treated in France with axi-cel or tisa-cel 
from December 2019 to April 2022 and included in 

the DESCAR-T registry were considered. Data were 
exported from the registry in May 2022. All patients with 
LBCL for whom CAR T-cell therapy with tisa-cel or axi-
cel was infused in the setting of the first European Medi-
cines Agency (EMA) approval label (i.e., after at least 2 
prior lines of treatment) were considered. The protocol 
was approved by national ethic committee and the data 
protection agency, and the study was undertaken in 
accordance with the Declaration of Helsinki. DESCAR-
T is registered under the ClinicalTrials.gov identifier 
NCT04328298. The study was sponsored by the Lym-
phoma Academic Research Organization (LYSARC).

External validation patient cohorts
Individual patient data from 3 previously published 
cohorts from Spain, the United Kingdom (UK), Germany 
and the United States (US) were extracted and served as 
an external international validation series [18, 19, 23–25]. 
The characteristics of patients in each cohort are pre-
sented in the corresponding initial publication [18, 19, 
23]. A patient flow diagram is presented in Supplemen-
tary Figure S1. Definition of bulky disease remains vari-
able in hematology. Tumor diameters from 5 to 10  cm 
were used in different clinical trials. Of note, the cut-
off for bulky disease was set at 5 cm in the training and 
internal validation cohorts from the DESCAR-T registry, 
while it was 7  cm in the Spanish dataset, and 10  cm in 
the UK as well as in the joint dataset from Germany and 
the US. Since the longest diameter of the largest node 
or mass was not captured as a continuous parameter in 
these datasets, recalculation with a 5 cm cutoff could not 
be performed, and bulky disease was therefore consid-
ered in the external validation set with different cutoffs.

Outcomes
Response was assessed according to the Lugano 2014 
criteria based on 18fluoro-deoxyglucose positron emis-
sion tomography (FDG-PET) after CAR T-cell infusion 
[26]. FDG-PET was performed at least before lymphode-
pletion and after 1, 3, 6, 9 and 12 months for all patients 
according to follow-up duration. For all survival analyses, 
a landmark time was set at 28 days after CAR T-cell infu-
sion to assess the prognostic impact of CRS and ICANS 
on outcome. PFS was defined from the landmark time to 
the date of first documented relapse, progressive disease, 
date of last follow-up or death from any cause, which-
ever came first. Overall survival (OS) was defined from 
the landmark time to the date of death from any cause or 
the date of last follow-up. CRS and ICANS were graded 
according to the consensus criteria from the Ameri-
can Society for Transplantation and Cellular Therapy 
(ASTCT) [4].
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Statistical methods
For PSS computation, the dataset was split into a train-
ing set (60% randomly selected, N = 555) to derive opti-
mal predictive models and an internal validation set (the 
remaining 40% of records, N = 370) to test the validity of 
the selected models. In the training set, the predictive 
value of each variable was assessed by 1000 bootstrap 
replications performing univariable logistic regressions 
for each toxicity outcome (i.e., grade ≥ 3 CRS or ICANS). 
Variables that were found to be significant (P < 0.05) in at 
least 50% of the replication sets were eligible for inclusion 
in multivariable analyses. This approach was applied to 
select the most consistently predictive parameters. Mul-
tivariable analyses were performed following stepwise 
selection (entry-level P = 0.1, retain level P = 0.05) in 1000 
bootstrap replications for each toxicity endpoint. Based 
on the multivariable model most frequently selected via 
the bootstrap procedure above, a simplified risk score 
was calculated using the rounded median parameter esti-
mates of the bootstrap replications for grade ≥ 3 CRS and 
ICANS   [27]. The optimal cutoff for risk score dichoto-
mization was considered based on the receiver operating 
characteristic (ROC) curve and was selected using the 
value that maximized the Youden’s index (J = sensitiv-
ity + specificity − 1), defined as the overall correct classi-
fication rate minus 1 at the considered cutoff point. No 
imputation was performed for missing data.

Regarding previously validated predictive scores for 
CRS and ICANS in the literature, the EASIX score 
(LDH*creatinine/platelets), the modified EASIX score 
(m-EASIX: CRP*creatinine/platelets) and the simplified 
EASIX score (s-EASIX: LDH/platelets) were assessed in 
our cohort, and the performance of each was compared 
in both the training and internal validation sets using the 
AUC of the ROC curve [21].

The PSSs were externally validated using an independ-
ent cohort of patients combining data from the UK, Ger-
many, Spain and the US. Overall, data from 725 and 760 
patients were available for CRS and ICANS prediction 
score computation, respectively. Fisher’s exact test or χ2 
test were used when appropriate for comparing CRS and 
ICANS incidences according to patient risk category.

Landmark analyses on day 28 were used to assess the 
prognostic impact of post-infusion parameters (i.e., 
CRS, ICANS) on subsequent PFS and OS. Survival dis-
tributions were compared using the log-rank test. The 
cumulative incidence of progression and relapse or of 
non relapse mortality (NRM) was evaluated using com-
petitive risk models, and comparisons between distribu-
tions were statistically performed using Gray’s test. A 
two-sided P value of less than 0.05 was considered signif-
icant. No adjustment was performed for multiple testing. 
Survival curves were generated using the Kaplan–Meier 

estimation method. Statistical analyses were performed 
using SAS software version 9.4.

Results
Patient characteristics and toxicities
Between December 2019 and April 2022, 925 patients 
from 27 French centers with R/R LBCL after at least 
two lines of previous therapy underwent a commercial 
CAR T-cell infusion with axi-cel or tisa-cel treatment 
and were registered in the French DESCAR-T registry. 
Patient characteristics are presented in Table 1. Toxicities 
and their management are presented in Table 2. Tisa-cel 
was administered in 38% of patients (n = 351), and axi-
cel was administered in 62% of patients (n = 574). CRS 
of any grade occurred in 778 patients (84.1%), with 74 
patients (8.0%) with grade 3 CRS or higher. ICANS of any 
grade occurred in 375 patients (40.5%), with 112 patients 
(12.1%) experiencing grade ≥ 3 ICANS.

Survival according to CRS or ICANS severity
Toxic mortality related to CRS and ICANS (grade 5) dur-
ing the first 28  days following CAR T-cell infusion was 
only reported in 5 patients, all due to CRS (Table 2). Two 
cases of grade 5 ICANS were recorded, occurring on 
days 29 and 97 post-infusion (with onset following infu-
sion and worsening over time). No deaths related to CRS 
occurred after day 28. In a competitive risk analysis, the 
cumulative incidence of NRM was not statistically differ-
ent between axi-cel and tisa-cel while the rate of relapse 
and death due to lymphoma was significantly higher 
with tisa-cel (P < 0.0001, Gray’s test, Supplementary Fig-
ure S2A and B).

The prognostic significance of CRS and ICANS severity 
on subsequent PFS and OS was analyzed using a 28-day 
landmark time according to each CAR T product. For 
patients treated with tisa-cel, no significant impact of 
CRS severity on PFS or OS was observed (Fig.  1A, B). 
While no significant association was observed between 
ICANS severity and PFS, a direct and highly significant 
correlation between ICANS grade and OS was seen 
(P < 0001, Fig.  1C, D). For axi-cel, patients who expe-
rienced mild (grade 1–2) ICANS showed significantly 
prolonged PFS compared with patients without or with 
severe ICANS (P = 0.011, Fig. 2C) due to a lower cumula-
tive incidence of progression or death due to lymphoma 
with no NRM difference (Supplementary Figure S3A and 
B). No OS difference according to ICANS severity was 
observed (Fig.  2D). Significant associations (i.e. worse 
OS in case of moderate or severe ICANS for tisa-cel and 
improved PFS for moderate ICANS for axi-cel) were 
maintained when considering multivariable models tak-
ing into account potential confounding parameters (Sup-
plementary Table S1).
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In sensitivity analyses, subsequent outcome after day 
28 were similar for patients experiencing CRS or ICANS 
grade 1 or grade 2 whatever the CAR T received (axi-cel 
or tisa-cel) or the survival endpoint (PFS or OS) (Supple-
mentary Figures S4 and S5).

Prognostic analysis of toxicity and scoring systems
To build PSS for grade ≥ 3 CRS and ICANS, the cohort 
was randomly split into a (60%) training set and a (40%) 
validation set. No statistically significant differences were 
observed between the training and validation sets regard-
ing toxicity outcomes or patient characteristics (Sup-
plementary Tables S2 and S3). All biological parameters 
were considered at lymphodepletion. For CRS, in uni-
variable analyses and when using a bootstrap approach, 
bulky disease with a largest node or mass > 5 cm, a CRP 
level > 30  mg/L, a lactate dehydrogenase (LDH) level > 2 
times the upper limit of normal (ULN), and a plate-
let count < 150 G/L were significantly associated with a 
higher risk of grade ≥ 3 CRS (Supplementary Table  S4). 
In contrast, achieving a complete response (CR) or a 
partial response (PR) after bridging was predictive of a 
decreased risk of grade ≥ 3 CRS (compared with patients 
who did not receive any bridging therapy or those with 
stable disease (SD) or progressive disease (PD) after 
bridging). For ICANS, the female sex, the use of axi-cel 
and a platelet count < 150  G/L were significantly associ-
ated with grade ≥ 3 ICANS (Supplementary Table  S5). 
Achieving a CR or a PR after bridging was also predictive 
of a decreased risk of grade ≥ 3 ICANS.

Table 1 Patient characteristics in the DESCAR‑T cohort (at 
lymphodepletion)

DESCAR-T cohort 
(N = 925)
N (%)

Age at time of CAR T‑cell infusion (yrs)

 Median (min–max) 63 (18–82)

 ≥ 65 yrs 401 (43.3)

Sex

 Male 567 (61.3)

 Female 358 (38.7)

Histological diagnosis

 De novo aggressive large B‑cell lymphoma

  DLBCL NOS or HGBCL 675 (73.8)

  PMBCL 42 (4.6)

  T/HRLBCL 12 (1.3)

  Systemic relapse of PCNSL 5 (0.5)

  DLBCL, leg type 5 (0.5)

 tFL 135 (14.7)

 tMZL 22 (2.4)

 Other transformed indolent non‑Hodgkin 
lymphomas

19 (2)

 Missing data 10

Number of prior treatment lines

 Median (min;max) 3 (2;10)

 ≥ 3 prior lines 436 (47.3)

 Missing data 3

ECOG PS

 0–1 748 (85.9)

 ≥ 2 123 (14.1)

 Missing data 55

Ann Arbor Stage

 I–II 174 (19.5)

 III–IV 717 (80.5)

 Missing data 34

aaIPI

 0 61 (7.3)

 1 289 (34.5)

 2 433 (51.7)

 3 54 (6.5)

 Missing data 88

Bulk (with a cutoff at 5 cm)

 No 671 (73.2)

 Yes 246 (26.8)

 Missing 8

Platelets

 < 150 G/L 326 (35.9)

 ≥ 150 G/L 582 (64.1)

 Missing data 18

LDH

 ≤ UNL 341 (44.0)

 > UNL 434 (56.0)

Table 1 (continued)

DESCAR-T cohort 
(N = 925)
N (%)

 Missing data 150

CRP

 ≤ 30 mg  L−1 619 (76.2)

 > 30 mg  L−1 193 (23.8)

 Missing data 113

Bridging and response to bridging

 No bridging 142 (15.8)

 Response to bridging (PR or CR) 249 (27.7)

 No response to bridging (SD or PD) 507 (56.4)

 Missing data 27

Sum may not equal 100% because of rounding

aaIPI age-adjusted international prognostic index, CR complete response, DLBCL 
diffuse large B-cell lymphoma, ECOG Eastern Cooperative Oncology Group, LDH 
lactate dehydrogenase, NA not applicable, PMBCL primary mediastinal B-cell 
lymphoma, PD progressive disease, PCNSL primary central nervous system 
lymphoma, PR partial response, PS performance status, SD stable disease, T/
HRLBCL T-cell/histiocyte-rich large B-cell lymphoma, tFL transformed follicular 
lymphoma, tMZL transformed marginal zone lymphoma, UNL upper normal 
limit, yrs years
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In multivariable analyses, based on parameters that 
were most frequently selected by bootstrap analy-
sis, bulky disease, a platelet count < 150  G/L and a CRP 
level > 30 mg/L were significantly associated with a higher 
risk of grade ≥ 3 CRS, while achieving a CR or a PR after 
bridging (compared with no bridging therapy or SD/PD 
after bridging) was predictive of a decreased risk (Sup-
plementary Table  S6). All parameters selected in the 

univariable analysis were retained in the multivariable 
analysis for the prediction of grade ≥ 3 ICANS (female 
sex, platelets < 150 G/L, use of axi-cel and response after 
bridging) (Supplementary Table S7).

Based on the parameters selected and the associated 
weighted coefficients by multivariable analyses, two inde-
pendent PSSs were derived, one for grade ≥ 3 CRS and 
one for grade ≥ 3 ICANS, and were termed CRS-PSS 

Table 2 Toxicity after anti‑CD19 CAR T‑cell infusion

Toxicities were graded according to CTCAE version 5.0 for cytopenia and according to the consensus grading from the ASTCT for CRS and ICANS. Only data for 
patients who experienced at least grade ≥ 1 toxicity are reported in the table

CRS cytokine release syndrome, ICANS immune effector cell-associated neurotoxicity syndrome, ICU intensive care unit, IQR interquartile range, NA not available

All patients 
(N = 925)
N (%)

Tisa-cel 
(N = 351)
N (%)

Axi-cel 
(N = 574)
N (%)

CRS

 All grades 778 (84.1) 266 (75.8) 512 (89)

 Grade ≥ 3 74 (8.1) 25 (7.1) 49 (8.5)

 Grade 5 5 (0.5) 4 (1.1) 1 (0.2)

 Median time to onset—days (IQR) 2 (1–4) 2 (1–3) 3 (1–4)

 Median time to resolution—days (IQR) 6 (4–9) 5 (4–7) 6 (4–9)

 Missing data 3 1 2

ICANS

 All grades 375 (40.5) 77 (21.9) 298 (51.8)

 Grade ≥ 3 112 (12.1) 10 (2.8) 102 (17.8)

 Grade 5 2 (0.3) 0 (0) 2 (0.3)

 Median time to onset—days (IQR) 6 (4–9) 5 (3–6) 6 (5–9)

 Median time to resolution—days (IQR) 6.5 (4–11) 6 (3–9) 7 (4–11)

 Missing data 3 1 2

Tocilizumab use (anti‑IL‑6 receptor) 548 (59.2) 170 (48.4) 378 (65.8)

 Median dose tocilizumab—mg (IQR) 983 (600–1614) 800 (582–1388) 1104 (600–1800)

 Median duration—days (IQR) 2 (1–3) 2 (1–2) 2 (1–3)

Steroids use (dexamethasone equivalent) 386 (41.7) 100 (28.5) 286 (49.8)

 Median dose steroids—mg (IQR) 120 (40–230) 49 (20–170) 125 (40–237)

 Median duration—days (IQR) 6 (3–10) 6 (2–9) 6 (4–10)

Anakinra use (anti IL‑1) 36 (3.9) 4 (1.1) 32 (5.6)

 Median dose anakinra—mg (IQR) 600 (200–999) 450 (100–800) 600 (200–1000)

 Median duration—days (IQR) 7 (4–10) 7 (4–10) 7 (4–9)

Indication for use

 Persistent CRS 6 (16.6) NA NA

 Persistent ICANS 30 (83) NA NA

Siltuximab use (anti IL‑6) 22 5 17

 Median dose siltuximab—mg (IQR) 880 (600–990) 550 (500–550) 890 (700–1045)

 Median duration—days (IQR) 1 (1–1) 1 (1–1) 1 (1–1)

Indication for use

 Persistent CRS 16 (73) NA NA

 Persistent ICANS 6 (27) NA NA

Intensive care unit admission 220 (24.1) 64 (18.4) 156 (27.5)

 Mean ICU stay, days (IQR) 2.1 (0–2) 1.7 (0–1) 2.3 (0–3)

 Missing data 12 4 8
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Fig. 1 Day 28 landmark survival analysis according to toxicity grade for patients treated with tisa‑cel. A PFS according to CRS grade. B OS according 
to CRS grade. C PFS according to ICANS grade. D OS according to ICANS grade

Fig. 2 Day 28 landmark survival analysis according to toxicity grade for patients treated with axi‑cel. A PFS according to CRS grade. B OS according 
to CRS grade. C PFS according to ICANS grade. D OS according to ICANS grade
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(4-point scale) and ICANS-PSS (5-point scale), respec-
tively (Table 3). Each score was subsequently divided into 
2 classes for convenient routine use with an optimal cut-
off set at 2 (value that maximized the Youden’s index). For 
severe CRS, the incidence was 5.9% in the low-risk cate-
gory (i.e., CRS-PSS ≤ 2) compared with 19.8% in the high-
risk category (i.e., CRS-PSS > 2). For severe ICANS, the 
incidence was 2.6% in the low-risk category (i.e., ICANS-
PSS ≤ 2) compared with 18.3% in the high-risk category 
(i.e., ICANS-PSS > 2). While positive predictive values 
(PPVs) for both CRS- and ICANS-PSS did not exceed 
20%, high negative predictive values (NPVs) of more than 
95% were achieved for both scoring systems. The statisti-
cal prognostic significance of both CRS-PSS and ICANS-
PSS was confirmed in the DESCAR-T internal validation 
cohort (Table 3). CRS-PSS and ICANS-PSS showed con-
sistently better performances with higher AUC of the 
ROC curve than the EASIX, m-EASIX and s-EASIX in 
the validation cohort (Supplementary Table S8).

The two scoring systems were then externally vali-
dated in an international set of patients from previously 
published series in Spain, the UK, the US and Germany 
(Table  3, Supplementary Figure  S1 and Supplementary 
Table  S9) [18, 19, 23–25]. In total, data for score com-
putation were available for 725 and 760 patients for 
CRS-PSS and ICANS-PSS, respectively. In this external 
validation set, 6.0% of patients with a low CRS-PSS score 
developed severe CRS compared with 14.8% of those 

with a high CRS-PSS score (P < 0.001). Regarding ICANS, 
4.3% and 19.1% of patients in the low- and high-risk 
groups, respectively, developed severe toxicity (P < 0.001).

Discussion
Anti-CD19 CAR T cells have dramatically altered 
the therapeutic armamentarium and the prognosis of 
patients with R/R LBCL in the last few years [4–9]. 
Despite notable improvement in toxicity management 
following early mitigation strategies with anti-IL6R and 
steroids, CRS and ICANS, two specific side effects, are 
still the leading causes of acute morbidity, ICU transfer 
and prolonged hospitalization [10, 13]. In this multi-
center RWE study based on the French DESCAR-T reg-
istry encompassing nearly a thousand patients treated 
with commercial tisa-cel or axi-cel after at least 2 lines 
of treatment, we identified several parameters associ-
ated with grade ≥ 3 CRS or ICANS. As expected, bulky or 
uncontrolled disease before lymphodepletion and a high 
LDH or CRP level were associated with a significantly 
more frequent incidence of grade ≥ 3 CRS. Moreover, a 
platelet count below 150 G/L, already identified in the 
context of graft-versus-host disease and whose valid-
ity has been confirmed by others in predicting severe 
CRS, was indeed found to be significantly associated 
with severe CRS in our series [21, 22]. The absence of a 
response following bridging therapy and a low plate-
let count were associated with grade ≥ 3 ICANS as well. 

Table 3 CRS‑PSS (prognostic scoring system) and ICANS‑PSS in the training and validation sets

a At lymphodepletion
b Numbers of patients differ between the CRS-PSS and ICANS-PSS because of various missing parameters between the 2 scores
c P < 0.0001 for both CRS-PSS and ICANS-PSS
d P = 0.030 for CRS-PSS and P < 0.001 for ICANS-PSS
e Aggregated retrospective data from Spain, Germany, UK and US (See Supplementary Table S8). P < 0.001 for CRS-PSS and P < 0.001 for ICANS-PSS
f Bridge failure is defined by a stable or progressive disease after bridging

Factors and score  computationa Category n/N (%) of grade ≥ 3  AEb (CRS for CRS-PSS and ICANS for ICANS-
PSS)

Training  setc (N = 533) DESCAR-T 
validation  setd 
(N = 351)

External 
validation  sete 
(N = 725)

CRS‑PSS 4 points Bulk (> 5 cm) + 1 Low (0–2) 26/442 (5.9%) 15/283 (5.3%) 33/549 (6.0%)

Platelets < 150 G/L + 1

No bridge or bridge  failuref + 1 High (> 2) 18/91 (19.8%) 9/68 (13.2%) 26/176 (14.8%)

CRP > 30 mg/L + 1

Category Training  setc (N = 554) DESCAR-T 
validation  setd 
(N = 369)

External 
validation  sete 
(N = 760)

ICANS‑PSS 5 points Female sex + 1 Low (0–2) 6/232 (2.6%) 5/149 (3.3%) 13/299 (4.3%)

Platelets < 150 G/L + 1

No bridge or bridge  failuref + 1 High (> 2) 59/322 (18.3%) 40/220 (18.2%) 88/461 (19.1%)

Axi‑cel + 2
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Surprisingly, the absence of bridging therapy was also 
associated with a significantly higher risk of severe CRS 
and/or ICANS, similar to stable or progressive disease 
after bridging, indicating that bridging therapy could 
limit severe toxicity following infusion by limiting tumor 
burden progression or by another mechanism that has 
yet to be identified. Other recent reports have found 
an increased risk of any-grade ICANS in the absence 
of response to bridging therapy or in case of untreated 
relapse [28, 29]. It is intriguing given that observed toxic-
ity following axi-cel treatment in real-world data, where 
bridging is largely used, is indeed found at a much lower 
rate than in pivotal trials in which only corticosteroids 
were allowed. As expected, the most predictive param-
eter for severe ICANS was the use of axi-cel compared 
with tisa-cel. Unexpectedly, the female sex was robustly 
associated with severe ICANS. Such an observation was 
also of borderline significance in the univariable analy-
sis in a study by Nastoupil and colleagues considering 
patients treated with axi-cel [15]. Of note, ferritin levels 
are not abstracted in the DESCAR-T registry and were 
not assessable for use in the prognostic models. Based on 
independent prognostic parameters, two scoring systems 
were built and robustly identified patients with a higher 
risk of grade ≥ 3 CRS or ICANS. The two scoring sys-
tems were found to be more discriminant than the pre-
viously proposed EASIX, modified EASIX and simplified 
EASIX scoring systems. Whether the 2 scoring systems 
will remain valid in the 2nd line setting and consider-
ing liso-cel instead of tisa-cel (associated with a simi-
larly low rate of severe toxicity) needs to be confirmed. 
We acknowledge that retrospective data collection might 
have led to specific biases compared to prospective trials. 
It must also be recognized that even in the high-risk cat-
egories, only 15–20% of patients experienced grade ≥ 3 
CRS and ICANS in the training and validation cohorts. 
This is reflected by the high NPV but limited PPV of the 
scoring systems, consistent with other predictive models 
of CAR T-cell toxicity [30]. However, from the perspec-
tive of potential future outpatient CAR T-cell infusions, 
the NPV would prevail over the PPV. This also highlights 
how a substantial number of biological and intrinsic fea-
tures of CAR T-cell products associated with severe tox-
icity are likely not fully captured by baseline patient and 
disease characteristics. The cut-off was set at 2 due to 
the choice of the best trade-off between identifying most 
patients that could be managed on an outpatient setting 
(with low-score risk) and increasing the population that 
could benefit from the use of early mitigation strategies 
like tocilizumab and dexamethasone (in case of high-
risk score). Depending on the clinical context, physician 
could use a higher cut-off above 2 for increasing PPV for 
instance. Another limitation of the present work is the 

different cutoffs used in the training and the external val-
idation sets for bulk definition. Various cutoffs were used 
throughout different nationwide registries and continu-
ous measurement was not captured to allow for retro-
spective computation. However, a cutoff set at 5 cm was 
internally validated in the DESCAR-T registry and mar-
ginal differences were observed in the external validation 
set with comparable patient repartition in the low- and 
high-risk categories. We advocate for using a 5  cm cut-
off for bulk definition for score computation, but 7.5 cm 
and 10 cm would likely perform similarly at a population 
level.

Divergent data exist regarding the impact of acute 
toxicity and therapeutic intervention on subsequent 
outcomes [19, 31–34]. The incidence of grade 5 CRS or 
ICANS was extremely low in the present cohort. Inter-
estingly, in the 28-day landmark analyses, divergent 
prognostic associations with PFS and OS were observed 
according to CAR T-cell product. ICANS severity had 
a major impact on OS in patients treated with tisa-cel, 
while no difference was observed in those treated with 
axi-cel. Surprisingly, patients treated with axi-cel pre-
senting low-grade (1–2) ICANS had a significantly pro-
longed PFS compared with patients experiencing no or 
severe neurotoxicity. This could reflect a higher CAR 
T-cell proliferation peak, in line with previous reports 
showing better disease control in cases of low-grade tox-
icity [33, 34]. In addition to similar patient management 
for grade 1 or 2 CRS and ICANS without usual need for 
ICU transfer, subsequent PFS and OS were also compa-
rable justifying grouping grade 1 and 2 versus 3 and 4 for 
prognostic scoring development in the study.

In conclusion, our study provides RWE estimates of 
CRS and ICANS incidence and severity, as well as the 
impact of toxicities on subsequent outcomes based on a 
large cohort of patients. We propose two validated and 
easy-to-use preinfusion scoring systems that allow for 
the identification of patients at very low risk of severe 
CRS or ICANS for tailored medical management.
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