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Abstract

Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells.
Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated
with the mitochondrial tricarboxylic acid cycle and the loss of iron—sulfur cluster proteins, ultimately resulting in pro-
teotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due
to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecu-
lar mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the cur-
rent drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds,
and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy

to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome
tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested

that targeting cuproptosis could open new avenues for developing tumor therapy.

Keywords Copper, Cuproptosis, Cancer, Tumor therapy, Drug resistance, Tumor immunotherapy

Introduction

Copper (Cu) is an essential trace metal element for nor-
mal physiological functions primarily obtained from
dietary supplements. In biological systems, Cu exists
predominantly in two oxidative states: divalent copper
ions (Cu®*) and monovalent copper ions (Cut). Cu* is
the principal oxidative form and plays a significant role
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in physiological and pathological regulation within cells
[1-3]. Disruptions in Cu homeostasis can induce disease
onset; for instance, Cu overload may lead to Wilson’s dis-
ease [4], while Cu deficiency can cause Menkes disease
[5]. Furthermore, previous studies have demonstrated
that Cu could promote tumor cell proliferation, angio-
genesis, and metastasis and reduces the efficacy of tumor
treatments [6].

However, excess Cu in the cells can also cause cellular
damage. Researchers observed that using Cu ionophores
to elevate Cu levels within tumor cells could cause cell
death [7, 8]. Although subsequent studies have exten-
sively investigated the molecular mechanisms underlying
Cu-induced cell death, such as the association of this type
of cell death with reactive oxygen species (ROS), apop-
tosis, and ferroptosis-related signaling pathways, the key
mechanisms remain unclear. Tsvetkov et al. termed the
Cu-induced cell death cuproptosis in 2022 based on their
findings that this form of cell death depends on the aggre-
gation of lipoylated dihydrolipoamide S-acetyltransferase
(DLAT) and the reduction of iron—sulfur cluster (Fe-S)
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proteins, triggered by Cu accumulation in mitochondria,
leading to proteotoxic stress, and cell death [9].

With the concept and mechanism of cuproptosis estab-
lished, researchers have increasingly focused on cuprop-
tosis in cancer therapy and demonstrated that Cu-based
treatments play a pivotal role in inhibiting tumor growth.
In this review, we summarized the core molecular mech-
anisms of cuproptosis and discussed the relationship
between it and other forms of cell death. Moreover, we
systematically summarized the current understanding of
targeting cuproptosis for tumor therapy, including using
Cu ionophores, small compounds, and nanomedicine to
induce cuproptosis and targeting cell metabolism or cer-
tain genes to sensitize cuproptosis. Additionally, we dis-
cussed the potential of targeting cuproptosis to overcome
tumor drug resistance in chemotherapy, targeted therapy,
and immunotherapy. We also discussed the opportunities
and challenges in targeting cuproptosis-associated can-
cer therapy.

Cu metabolism

Cu homeostasis is essential for the normal physiological
functioning of human life. In humans, Cu uptake, distri-
bution, transport, and elimination are meticulously regu-
lated (Fig. 1A), which is crucial to prevent deficiency or
excessive Cu accumulation in various tissues and cells,
thereby averting disease onset [10]. Humans predomi-
nantly acquire Cu through their diet, with an adult daily
requirement ranging from 0.8 to 2.4 mg [3]. Following
digestion in the stomach and duodenum, Cu is primar-
ily absorbed in the small intestine, where Cu*" is reduced
to Cu' by metalloreductases, such as six-transmem-
brane epithelial antigen of the prostate (STEAP) [11]
and duodenal cytochrome b (DCYTB) [12], before being
transported into enterocytes by Cu transport protein 1
(CTR1), also known as the solute carrier family 31 mem-
ber 1 (SLC31A1) [13], located at the apical membrane of
enterocytes. Subsequently, Cu is exported to the intersti-
tial fluid or bloodstream by the protein ATPase copper
transporting alpha (ATP7A) [14]. Cu in the bloodstream
usually binds to plasma proteins, such as ceruloplasmin
and human serum albumin, and is transported to the
liver, the primary Cu storage organ, via the portal system
[15]. Metallothionein1/2 (MT1/2), a thiol-rich protein,
binds to and stores Cu in hepatocytes [16]. Hepatocytes
can excrete excess Cu into the bile via ATP7B. Beyond
the liver, Cu in the bloodstream can also be absorbed
by other tissues and organs, including the heart and the
brain [15].

After being transported into cells by transmembrane
proteins, such as CTR1 and divalent metal transporter
1 (DMT1), Cu can be stored by binding to intracellular
Cu chaperones, such as MT1/2 and glutathione (GSH),
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thereby preventing cellular damage [1, 17]. Concur-
rently, Cu can be delivered to other cellular structures or
proteins via Cu chaperones to maintain normal cellular
function (Fig. 1B). For example, the Cu chaperone for
superoxide dismutase (CCS) binds to Cu and delivers it
to superoxide dismutase 1 (SOD1), catalyzing the conver-
sion of superoxide radicals to H,O,, thus maintaining cel-
lular ROS homeostasis [18]. Abnormal SOD1 expression
is considered to be linked to tumor development [19].
Additionally, the Cu chaperone antioxidant 1 (ATOX1),
which binds Cu* via two cysteine residues, can trans-
port cytosolic Cu' to the ATP7A/ATP7B, located in the
Golgi network [20, 21]. Excess Cu* enters the trans-Golgi
network (TGN) and can be expelled from the cell via the
vesicular system [20, 21]. The absence of ATOX1 leads to
perinatal lethality induced by Cu dyshomeostasis [22].
Moreover, increased intracellular Cu levels can promote
the distribution of ATP7A and ATP7B within the TGN,
thereby facilitating Cu efflux [23]. These studies highlight
significant regulatory roles of ATOX1 and ATP7A/B in
intracellular Cu homeostasis.

The mitochondria are the primary targets of intracellu-
lar Cu (Fig. 1B). Cu contributes to ATP production within
the mitochondria by ensuring the catalytic function of
cytochrome oxidase (COX) during oxidative phospho-
rylation (OXPHOS). Cytosolic Cu™ can be transported to
the mitochondrial intermembrane space by a Cu ligand
(CuL), a non-proteinaceous low-molecular-weight com-
plex, where it can enter the mitochondrial matrix via sol-
ute carrier family 25 member 3 (SLC25A3) located in the
inner mitochondrial membrane (IMM) [24, 25]. Cu in the
matrix is transported back across the IMM to intermem-
brane space (IMS) by an unknown transporter, where it is
delivered to COX and SOD1 [26]. Additionally, COX17
can transfer cytosolic Cut to the mitochondrial inter-
membrane space and deliver Cu® to other Cu chaperone
molecules, such as COX11 and synthesis of cytochrome
c oxidase 1/2 (SCO1/2), which then deliver Cut to COX1
and COX2, respectively [27, 28].

Cu and cancer

The role of Cu in tumorigenesis and tumor therapy has
been of great concern. Compared to the healthy popula-
tion, elevated Cu levels have been observed in the tumors
or serum of patients with various types of cancers, includ-
ing breast [29, 30], prostate [31], lung [32], cervical [33],
and bladder [34], thyroid [35], and oral cancers [36, 37].
Cu can promote the onset and development of tumors,
termed cuproplasia, by activating oncogenic signaling
pathways [6]. For instance, Cu can directly bind mitogen-
activated extracellular signal-regulated kinase (MEK) and
activate its downstream mitogen-activated protein kinase
(MAPK) pathway to promote tumor cell growth [38, 39].
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Fig. 1 Cu metabolism. A. Cu homeostasis in physiological systems. Dietary Cu®* is reduced to Cu™ by the STEAP family members

and subsequently transported into enterocytes via SLC31TA1. Within enterocytes, Cu™ is released into the bloodstream by ATP7A, where it

typically binds to soluble chaperones such as albumin and ceruloplasmin. Hepatocytes uptake Cu* from the bloodstream through SLC31A1

on their cell membrane. In hepatocytes, Cu* can be delivered to MT or GSH for storage, or to ATP7B for re-entry into the bloodstream for uptake

by other tissues and organs. Additionally, ATP7B in hepatocytes can excrete excess Cu* into the bile duct. B. Cu metabolism at the cellular levels.
Extracellular Cu* is taken up by SLC31A1 on the cell membrane, while Cu?* can be transported into the cell by SLC11A2. Intracellular Cu* can be
sequestered by MT1/2 and GSH or bound to other Cu chaperones such as CCS, COX17, and ATOX1 for further trafficking to proteins. CCS delivers
Cu™ to cytosolic SOD1, COX17 transports Cu™ to mitochondrial COX11 or SCO1, and ATOX1 delivers Cu™ to ATP7A/B located on the Golgi membrane
in the TGN, ultimately secreting it outside the cell. Cu* can also form a non-proteinaceous low-molecular-weight complex, Cul, which transports
Cu* into mitochondrion. Cu* can be transported into the mitochondrial matrix via solute carrier family 25 member 3 (SLC25A3) located in inner
mitochondrial membrane. Cu in the matrix is transported back across the IMM to intermembrane space (IMS) by an unknown transporter. Histones
H3/H4 in the nucleus can reduce Cu?* to Cu*. STEAP, six-transmembrane epithelial antigen of the prostate; SLC31AT1, the solute carrier family 31
member 1; ATP7A, ATPase copper transporting alpha; MT1/2, Metallothionein1/2; GSH, glutathione; CCS, Cu chaperone for superoxide dismutase;
COX, cytochrome oxidase; SOD1, superoxide dismutase 1; ATOX1, antioxidant 1; TGN, trans-Golgi network; SLC25A3, solute carrier family 25 member
3
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In melanoma driven by BRAFY®E chelating Cu can
inhibit MAPK signal and reduce tumor cell resistance to
BRAFY®E and MEK1/2 inhibitors [40]. Moreover, Cu
is considered to contribute to tumor metastasis. Cu can
act on metalloenzymes in the extracellular matrix, such
as lysyl oxidase (LOX) [41] and secreted protein acidic
and rich in cysteine (SPARC) [42], altering cell-matrix

and cell-cell interactions, thereby promoting tumor
cell migration and metastasis. In breast cancer cells, Cu
can bind to the mediator of ErbB2-driven cell motility
1 (MEMOL1) and activate its oxidase activity promoting
0% production and enhancing tumor cell migration and
invasion [43, 44]. Additionally, Cu can promote angio-
genesis, essential for tumor growth and progression,
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by activating pro-angiogenic factors, such as fibroblast
growth factors (FGFs), vascular endothelial growth factor
(VEGEF), tumor necrosis factor alpha (TNF-a), interleu-
kin (IL)-1, IL-6, and IL-8 [45—48]. Taken together, Cu is a
critical trace metal element in tumor development. Elu-
cidating the molecular mechanisms by which Cu drives
tumorigenesis will aid the discovery of new therapeutic
targets for cancer.

Cuproptosis

Although Cu-induced cell death has been investigated
for decades, the concept of ‘cuproptosis’ was not pro-
posed until 2022 by Tsvetkov and colleagues [9]. A sig-
nificant feature of Cu ionophores and Cu-treated cells
is a sharp increase in ROS levels, which has long been
considered the main cause of cell death. ROS scaven-
gers, such as N-acetylcysteine (NAC), can mitigate the
extent of Cu-induced cell death in some cells [49-53].
However, eliminating ROS does not always inhibit cell
death induced by Cu [9, 54], suggesting that ROS are
not primary mediators of Cu-induced cell death. Tsvet-
kov et al. also observed that antioxidants, such as NAC,
JP4-039, ebselen, and a-tocopherol, were unable to res-
cue cells from elesclomol (a Cu ionophore)-Cu-induced
cellular damage, whereas agents that chelate Cu, such
as GSH and ammonium tetrathiomolybdate (TTM),
could prevent the lethality of elesclomol-Cu to cells [9].
This type of cellular damage could not be rescued by
inhibitors of other types of cell death, such as apoptosis,
ferroptosis, and necrosis. Tsvetkov et al. found that eles-
clomol could transport Cu** across membranes into the
mitochondria, where Cu** was reduced to Cu™ by ferre-
doxin 1 (FDX1) [9], a mitochondrial matrix reductase.
However, excess mitochondrial Cu* can directly bind to
lipoylated DLAT, an essential component of mitochon-
drial TCA cycle, causing DLAT aggregation and cytotox-
icity [9]. Additionally, excess mitochondrial Cu™ reduces
the stability of the Fe—S cluster proteins [9], which play
an important role in OXPHOS-related electron trans-
port. These induce proteotoxic stress, ultimately lead-
ing to cell death (Fig. 2). Pharmacological inhibition of
the electron transport chain (ETC) and pyruvate uptake
could reverse elesclomol-Cu-induced cell death [9],
indicating that cuproptosis depends on mitochondrial
respiration. Additionally, whole-genome CRISPR-Cas9
screening, combined with single-gene knockout valida-
tion experiments, showed that proteins in the lipoic acid
(LA) pathway, such as FDX1, LA synthase (LIAS), lipoyl
transferase 1 (LIPT1), and dihydrolipoamide dehydro-
genase (DLD), and genes in the pyruvate dehydrogenase
complex, such as DLAT, pyruvate dehydrogenase E1 sub-
unit alpha 1 (PDHA1), pyruvate dehydrogenase E1 subu-
nit beta (PDHB), metal-regulatory transcription factor-1
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(MTF1), glutaminase (GLS), and cyclin-dependent
kinase inhibitor 2A (CDKN2A), are important regulators
of cuproptosis (Fig. 2) [9]. These results also ascertain the
significance of FDX1 and its regulation of mitochondrial
protein lipoylation in cuproptosis.

Cuproptosis and regulated cell death

Although Cu ionophores combined with Cu can induce
cuproptosis, previous studies have also found that exces-
sive Cu in cells can cause other ways of regulated cell
death (RCD) (Fig. 3), suggesting a molecular mechanism
crosstalk between cuproptosis and other forms of cell
death. Understanding the role of Cu in other cell death
modes can help develop more reasonable tumor treat-
ment strategies targeting cuproptosis.

Cuproptosis and ferroptosis

Ferroptosis is a form of programmed cell death induced
by disrupting iron homeostasis and accumulating ROS
in lipids. Although Tsvetkov and colleagues found that
the ferroptosis inhibitor ferrostatin-1 did not rescue
cells from growth inhibition induced by elesclomol-Cu,
Gao et al. observed that ferrostatin-1 and liproxstatin-1,
another ferroptosis inhibitor, could inhibit elesclomol-
Cu-induced cell damage in colorectal cancer (CRC)
cells [55]. Gao et al. demonstrated that elesclomol alone
treatment could reduce the ATP7A expression levels in
CRC cells, potentially mediating the degradation of sol-
ute carrier family 7 membrane 11 (SLC7A11), a cysteine-
glutamate transporter, resulting in lipid peroxidation and
ferroptosis, suggesting that it is unclear whether elesclo-
mol-Cu-induced ferroptosis depends on Cu [55]. Fur-
thermore, previous studies have reported that reducing
the Fe-S cluster proteins, which are the main features of
cuproptosis, can induce ferroptosis [56]. Cu can exacer-
bate erastin-induced ferroptotic cell death in pancreatic
ductal adenocarcinoma (PDAC) cells through increasing
ubiquitination and aggregation of glutathione peroxidase
4, a protein blocking ferroptosis by eliminating phospho-
lipid hydroperoxides, promoting its macroautophagic
degradation [57].

These studies indicate a close interplay between
cuproptosis and ferroptosis, with a key intersection
being mitochondrial metabolism. As essential energy
sources for cells, mitochondria play critical roles in reg-
ulating ferroptosis [58]. Cellular energy metabolic path-
ways, such as the TCA cycle and glycolysis, are involved
in this regulation. For instance, blocking the TCA cycle
or loss of glutamine can attenuate cystine-deprivation
or erastin-induced ferroptosis [59], suggesting that the
TCA cycle and glutaminolysis are required for ferrop-
tosis. Similarly, in the process of cuproptosis, the TCA
cycle in mitochondria is crucial [9]. The aggregation of
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Fig. 2 Mechanisms of cuproptosis. The transportation of Cu?* by Cu ionophores and the uptake of Cu™ by SLC31A1 lead to the excessive
accumulation of Cu within cells. Cu ionophores, such as elesclomol, can transport Cu®* into mitochondria, where Cu®* is reduced to Cu* by FDX1.
FDX1 is a crucial regulatory protein for the lipoylation of mitochondrial TCA cycle enzymes, particularly DLAT. Accumulated Cu* in mitochondria
induces DLAT aggregation by directly binding to lipoylated DLAT and destabilizes Fe-S cluster proteins, ultimately triggering mitochondrial
proteotoxic stress and resulting in cuproptosis. Key positive regulators of cuproptosis include LIAS, DLD, LIPT1, and FDX1 from the LA pathway,

as well as DLAT, PDHAT, and PDHB from the PDH complex. Important inhibitors of cuproptosis include MTF1, GLS, and CDKN2A. FDX1 promotes
G6PD degradation by binding to it, resulting in GSH reduction and intensified cuproptosis. METTL16 enhances cuproptosis by promoting FDX1
accumulation via m6A modification on FDXT mRNA, a process inhibited by SIRT2 through delactylating METTL16 at K229. MELK increases DLAT
expression through the PI3K/mTOR signaling pathway, enhancing mitochondrial function and cuproptosis. AMPK activated by elesclomol-Cu
facilitates cuproptosis. Elesclomol-Cu upregulates PPPT1R15A to promote proteotoxic stress by enhancing EIF2S1 and 4E-BP1-associated translation
initiation, thereby enhancing cuproptosis. p32 enhances elesclomol-Cu-induced cuproptosis by promoting lipo-DLAT oligomerization. MUC20
induces cuproptosis by inhibiting CDKN2A expression. GAPDH and ARIDTA inhibit cuproptosis by promoting cellular glycolysis, while SLC7A11
inhibits cuproptosis by upregulating intracellular GSH. SLC31A1, the solute carrier family 31 member 1; FDX1, ferredoxin 1; ES, elesclomol; Disulfiram,
disulfiram; DLAT, dihydrolipoamide S-acetyltransferase; TCA, tricarboxylic acid; LIAS, LA synthase; LIPT1, lipoyl transferase 1; DLD, dihydrolipoamide
dehydrogenase; PDHAT, pyruvate dehydrogenase E1 subunit alpha 1; PDHB, pyruvate dehydrogenase E1 subunit beta; MTF1, metal-regulatory
transcription factor-1; GLS, glutaminase; CDKN2A, cyclin-dependent kinase inhibitor 2A;G6PD, glucose-6-phosphate dehydrogenease; GSH,
glutathione; SIRT2, Sirtuin 2; SLC7A11, solute carrier family 7 membrane 11; MUC20, Mucin 20; MELK, maternal embryonic leucine zipper kinase;
ARID1A, AT-rich interactive domain 1A; AMPK, adenosine 5'-monophosphate (AMP)-activated protein kinase; TIGD1, trigger transposable
element-derived 1; WASF2, Wiskott-Aldrich syndrome protein family member 2
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lipoylated DLAT in the TCA cycle is a major inducer of
elesclomol-Cu-mediated cell death [9]. Furthermore,
cysteine-deprivation-induced ferroptosis is affected by
a-ketoglutarate and other intermediates of the TCA
cycle, such as succinate and fumarate [58]. Inhibition of
ETC complexes can attenuate cystine-deprivation and
erastin-induced lipid peroxidation and cell death [59].
Interestingly, inhibition of ETC complexes can also miti-
gate elesclomol-Cu-induced cuproptosis [9], suggesting
that cuproptosis and ferroptosis share the same mito-
chondrial energy dependency.

Another important hub for cuproptosis and fer-
roptosis is GSH, a crucial antioxidant. GSH acts as an
inhibitor of both ferroptosis and cuproptosis, indicat-
ing that it serves as a significant co-regulator in these
processes. Both Cu and iron (Fe) promote the oxidation
and subsequent consumption of GSH by binding to it
[60]. Additionally, GSH chelates Fe and Cu to reduce
metal ion toxicity [60]. Since Fe can consume GSH,
over accumulation of Fe in cells may trigger cupropto-
sis by inhibiting GSH. GSH is also a necessary cofac-
tor for GPX4, which reduces cytotoxic lipid peroxides
(L-OOH) to corresponding alcohols (L-OH) while con-
verting reduced GSH to oxidized glutathione (GSSG),
thus reducing lipid peroxidation and inhibiting ferrop-
tosis [61]. The accumulation of Cu in cells promotes
the consumption of GSH, creating favorable conditions
for ferroptosis. SLC7A11 transports glutamate outside
and cystine inside cells. Cystine is then converted to
cysteine, a component of GSH. SLC7A11 inhibitors,
such as sorafenib and erastin, are commonly used to
induce ferroptosis by reducing intracellular cysteine

(See figure on next page.)
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levels and GSH synthesis, which also makes cupropto-
sis more likely. Indeed, Wang et al. recently observed
that sorafenib and erastin can induce cuproptosis in
primary liver cancer cells by primarily reducing intra-
cellular GSH synthesis and increasing Cu-dependent
lipoylated protein aggregation [62]. Additionally, BSO,
an inhibitor of GSH synthesis known to induce fer-
roptosis, has also been found to induce cuproptosis
[9]. These studies indicate that GSH is a critical mol-
ecule mediating the crosstalk between ferroptosis and
cuproptosis. Targeting GSH could be a potential strat-
egy to simultaneously induce ferroptosis and cupropto-
sis in tumor cells.

ROS are also critical factors in understanding the
crosstalk between ferroptosis and cuproptosis. Both
Fe and Cu can produce ROS through the Fenton reac-
tion, while rapid GSH depletion mediated by these
metals can further exacerbate cellular ROS accumula-
tion. Excessive ROS promotes lipid peroxidation and
ferroptosis [63]. Although in elesclomol-Cu-induced
cuproptosis, Cu toxicity primarily results from the
aggregation of lipoylated proteins in the mitochondria
rather than ROS production [9], excessive Cu-mediated
ROS generation and GSH depletion can also contrib-
ute to ferroptosis onset. In summary, while cupropto-
sis and ferroptosis have distinct initiation mechanisms
and molecular characteristics, they mutually influence
each other, creating favorable conditions for both pro-
cesses. This interplay adds complexity to their regula-
tory mechanisms but also offers potential advantages
for cancer therapy.

Fig. 3 Cuproptosis and regulated cell death. A Excess Cu triggers ferroptosis. Accumulation of Cu in mitochondria generates ROS, which
promotes lipid peroxidation and induces ferroptosis. Cu enhances the ubiquitination of GPX4, a protein that blocks ferroptosis by eliminating
phospholipid hydroperoxides, facilitating its autophagic degradation and exacerbating ferroptotic cell death. Ferroptosis inducers, such as sorafenib
and erastin, can induce cuproptosis by upregulating FDX1 protein levels, promoting lipoylated protein aggregation, and downregulating GSH.

The reduction of Fe-S cluster proteins mediated by excessive Cu in mitochondrion further promotes ferroptosis. B Excess Cu triggers apoptosis.
Intracellular accumulation of Cu generates ROS via the Fenton reaction, which induces apoptosis. Mitochondrial Cu accumulation causes
mitochondrial stress, leading to the localization of pro-apoptotic proteins (such as BAX and BAK) to the outer mitochondrial membrane, resulting
in the release of cytochrome c from mitochondria. Cytosolic cytochrome c induces the formation of the apoptosome, which activates the caspases
signaling axis, mediating apoptosis. Cu can inhibit proteasome activity either by directly binding to the proteasome or by causing NPL4/p97
aggregation, inducing ER stress and ultimately leading to apoptosis. Additionally, Cu can activate the MAPK-JNK signaling pathway to trigger

cell apoptosis. € Cu regulates autophagy. Cu activates ULK1/2 by directly binding to them, promoting phagophore assembly and subsequently
autophagosome formation. Cu can also inhibit mTOR by activating AMPK, facilitating phagophore formation. Excess Cu in cells upregulates

the expression of autophagy-related genes, such as MAP1LC3 and ATGS. Cu inhibits the cysteine protease activity of ATG4B by directly binding

to it, thus preventing the delipidation of MAP1LC3 and consequently blocking cellular autophagy. Cu promotes the fusion of lysosomes

and autophagosomes, enhancing cellular autophagic flux. D. Excess Cu induces pyroptosis. Cu induces ROS production and ER stress, promoting
the formation of the NLRP3 inflammasome, which activates caspase 1. Caspase 1 cleaves GSDMD to generate the N-terminal domain that creates
membrane pores, promoting pyroptosis. ROS, reactive oxygen species; GPX4, glutathione Peroxidase 4; FDX1, ferredoxin 1; GSH, glutathione; ER,
endoplasmic reticulum; BAX, BCL2 Associated X; BAK, BCL2 antagonist/killer 1; cyto.c, cytochrome ¢; MAPK, mitogen-activated protein kinase; JNK,
Jun N-terminal kinase; ULK1/2, Unc-51-like autophagy activating kinase 1/2; mTOR, mechanistic target of rapamycin kinase; AMPK, adenosine 5
‘“monophosphate (AMP)-activated protein kinase; MAP1LC3, microtubule-associated protein 1 light chain 3; ATG5, autophagy related 5; NLRP3,

NOD-, LRR- and pyrin domain-containing protein 3; GSDMD, gasdermin D
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Cuproptosis and apoptosis

Excessive Cu accumulation in cells has also been linked
to apoptosis. For instance, treatment with CuSO, can
upregulate the C/EBP homologous protein (CHOP), Jun
N-terminal kinase (JNK), and caspase-12 expression
levels in mouse liver cells, thereby enhancing cell apop-
tosis-related signaling pathways, such as endoplasmic
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reticulum (ER) stress [64]. Liu et al. also found that
treatment with CuSO, can increase the ROS levels and
protein carbonyl compounds in cells and decrease GSH
levels, thereby activating the mitochondrial pathway of
apoptosis signaling, such as cytochrome c release into
the cytosol and cleavage of caspase-9 and caspase-3 [65].
In myeloma cells and osteosarcoma, disulfiram, another
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Cu ionophore, combined with Cu, can induce apoptosis
by activating ROS and JNK signaling pathways [66, 67].
Furthermore, Cu can induce apoptosis by binding to and
inhibiting 20S proteasome subunits and activating the
cytochrome c-caspase cascade signaling axis [68, 69].

Before the identification of cuproptosis, the damage to
tumor cells treated with Cu ionophores combined with
Cu was primarily considered to result from ROS pro-
duction. Excessive ROS within cells can trigger apop-
tosis through various pathways, including ER stress,
mitochondrial damage, and activation of death recep-
tors. In certain tumor cells, such as lung cancer cells [49,
51], gastric cancer [50], melanoma [52], and osteosar-
coma [53], ROS scavengers can mitigate the cell damage
induced by Cu ionophores and Cu. However, in breast
cancer and glioblastoma cells [9, 54], ROS scavengers do
not exhibit this protective effect. Additionally, some stud-
ies have demonstrated that Cu indeed induces apoptosis
in specific tumor cells [52, 67, 70]. These studies suggest
that ROS may serve as a crucial link between cuproptosis
and apoptosis. Additionally, different tumor cells exhibit
varying tolerance and responses to ROS, which may
explain the diverse roles of apoptosis in Cu-induced cell
death.

Cuproptosis and autophagy

Cu is also considered to regulate autophagy. Studies
have revealed that Cu can upregulate the autophagy-
related gene expression in cells, such as LC3b/LC3a,
BECNI, Atg3, and Atg5 [71, 72]. Besides, Cu can directly
bind to the Unc-51-like autophagy activating kinase 1/2
(ULK1/2), crucial protein kinases regulating autophagy
initiation, activating ULK1/2 and its downstream
autophagy pathway [73]. In KRASS*P-driven lung can-
cer, deletion of the Cu transporter SLC31A1 diminished
the Cu-mediated activation of ULK1/2, resulting in a
blockage in the autophagic flux and tumor growth sup-
pression [73]. However, whether Cu-induced autophagy
contributes to Cu toxicity remains uncertain. For
instance, Tang et al. found that in ATP7B R778L mutant
hepatocytes, Cu can activate autophagy, which is ben-
eficial for inhibiting cell necrosis and reducing Cu tox-
icity [74]. However, in some tumor cells Cu was found
to inhibit autophagy. For instance, inhibiting SLC31A1-
dependent copper absorption could enhance autophagic
flux of pancreatic cancer cells, leading to the suppres-
sion of tumor cell death [75]. Besides, it was found that
Cu could directly bind to autophagy-related gene 4B, a
crucial regulator in the autophagy process responsible
for priming and delipidation of LC3, and suppress its
cysteine protease activity, consequently blocking cellular
autophagy [76]. These results indicate that the regulation
of the autophagy process by Cu is bidirectional.
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Cuproptosis and pyroptosis

Moreover, Cu can affect pyroptosis in cells. In jejunal
epithelial cells, Cu can upregulate the pyroptosis-related
gene expression, such as CASPI, GSDMD, and IL-1f5,
which is believed to be mainly mediated by the ER stress-
triggered IRE1a-XBP1 pathway [77]. In hepatocytes, Cu
can similarly upregulate pyroptosis-related gene expres-
sion, such as CASP1, NLRP3, IL-1f3, and IL-18, and NAC
and a caspase inhibitor can reverse this behavior, suggest-
ing that ROS generated by Cu induction may be the main
mediators of pyroptosis [78]. Excessive ROS can induce
various types of cell death, such as apoptosis, ferroptosis,
pyroptosis. Cu can induce ROS generation in numerous
tumor cells, which may be a crucial factor in the cross-
talk between different types of Cu-triggered RCD. This
indicates that in some tumor cells highly sensitive to
ROS, cuproptosis may not be irreplaceable in Cu-induced
cell damage. In summary, Cu overload can cause cellular
damage from multiple angles. Although this complicates
the mechanism of Cu-induced cell damage, it provides
more possibilities for Cu-based tumor therapy.

Targeting cuproptosis for cancer therapy

Although Cu promotes tumorigenesis to a certain extent,
excessive Cu accumulation in tumor cells disrupts cellu-
lar homeostasis and induces cuproptosis. Therefore, tar-
geting cuproptosis may be a potential tumor treatment
strategy.

Induction of tumor cell cuproptosis

Cuionophores

Cu ionophores, defined as compounds or chemicals, can
bind to Cu and carry it into cells, increasing the intra-
cellular Cu levels. As previously mentioned, the most
extensively studied Cu ionophores are elesclomol and
disulfiram (Table 1). Elesclomol, a highly lipophilic Cu-
binding molecule, can chelate extracellular Cu** to form
an elesclomol-Cu*" complex, facilitating the transport of
Cu into cells [145, 146]. The anti-tumor activity of eles-
clomol has been recognized for decades and is believed
to be Cu-dependent (Table 1). Although early stud-
ies reported that cell death induced by elesclomol-Cu
was linked to apoptosis and ferroptosis, Tsvetkov et al.
observed that elesclomol-Cu induced cellular damage
through cuproptosis [9]. Elesclomol-Cu can increase
ROS levels in tumor cells [49, 54, 83], exacerbating cel-
lular damage and suggesting that elesclomol-Cu may kill
tumor cells via multiple pathways. Additionally, recent
studies have revealed FDX1-independent mechanism(s)
of elesclomol-associated Cu release, achieving Cu deliv-
ery to non-mitochondrial cuproproteins [147]. Whether
these non-mitochondrial Cu participates in cell death
other than cuproptosis induced by elesclomol-Cu
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requires further investigation. The crosstalk mecha-
nisms between cuproptosis and other forms of cell death
are poorly understood and necessitate more research to
unveil, possibly facilitating the development of effective
anticancer strategies based on elesclomol-Cu. Elesclo-
mol has not yet shown effective therapeutic outcomes
in clinical trials [148]. A possible reason is that single-
agent elesclomol treatment may not elevate Cu levels in
tumor cells to those required to trigger cuproptosis. A
subsequent phase III trial results revealed that although
the combination of elesclomol with paclitaxel did not
improve progression-free survival in melanoma patients,
elesclomol exhibited better anti-tumor effects in patients
with low lactate dehydrogenase (LDH) levels [149]. Low
LDH represents diminished glycolysis [150], reflecting
enhanced mitochondrial metabolism. This aligns with
Tsvetkov’s finding that cuproptosis relies on mitochon-
drial metabolism.

Disulfiram is an aldehyde dehydrogenase (ALDH)
inhibitor FDA-approved for treating alcoholism. Disulfi-
ram has also been deeply studied for an extended period
in anti-tumor research (Table 1). Disulfiram interacts
with Cu as a Cu ionophore to form the metabolite bis-
diethyldithiocarbamate-Cu (CuET), which transports Cu
across the cell membrane [151]. Disulfiram—Cu-induced
cellular damage is also linked to apoptosis, ferroptosis,
and cuproptosis (Table 1). Multiple targets or signaling
pathways have been reported to be associated with the
anti-tumor activity of disulfiram—Cu, such as ROS levels
[94, 108, 109, 121, 122, 132, 134, 137], the ubiquitin—pro-
teasome system [112, 124, 125, 133], the JNK and p38
pathways [66, 67, 114, 122], the NF-kB pathway [90, 92,
93, 109, 111, 122], and NPL4 [107, 127, 133]. In addition,
disulfiram—Cu has been reported to overcome tumor
drug resistance to cisplatin [91, 110], paclitaxel [108,
110], gemcitabine [109, 111], 5-fluorouracil (5-FU) [90,
118], temozolomide [98, 124], and sunitinib [96]. Table 1
summarizes the anti-tumor function of disulfiram in
preclinical studies. Although, like elesclomol, disulfiram
has presented significant anti-tumor effects in preclini-
cal experiments, exciting results have yet to emerge from
clinical trials [152, 153]. One limiting factor may be the
inability to maintain high Cu levels in patient tumor cells.
However, given the good clinical safety profile, conduct-
ing more clinical trials that combine elesclomol or disul-
firam with clinical drugs could facilitate the translation
of cuproptosis-associated anti-tumor therapies from the
laboratory to clinical practice.

Besides elesclomol and disulfiram, other compounds,
such as diacetyl-bis (N4-methylthiosemicarbazone)
(ATSM) and glyoxal-bis (N4-methylthiosemicarba-
zone) (GTSM), have been identified as Cu ionophores
(Table 1). Cu complexes with ATSM or GTSM induced

Page 16 of 42

cytotoxicity in human prostate hyperplastic and carci-
noma cell lines without affecting the primary prostate
epithelial cells [140]. This selective cytotoxicity may be
associated with differential Cu levels in tumor cells, as
Cu concentrations are elevated in prostate cancer cells
compared to normal prostate epithelial cells [154]. Addi-
tionally, 7-iodo-5-chloro-8-hydroxyquinoline (CQ) has
been reported to mediate Cu accumulation in cells [141].
In cancerous prostate cells, rather than normal prostate
cells, CQ-Cu complexes promote apoptosis by facilitating
the degradation of XIAP, a protein that inhibits caspases
[141]. Notably, CQ can induce cellular damage via mul-
tiple pathways, including proteasome and lysosome dys-
function, conferring severe toxic side effects that limit its
clinical application in cancer therapy [155]. Recent stud-
ies have also revealed that curcumin, a natural compound
derived from Curcuma longa, can act as a Cu ionophore
and promote cuproptosis in CRC cells [142, 143]. Cur-
cumin is a potential anticancer natural product that
can inhibit the cell cycle, induce apoptosis, and activate
tumor suppressors. Additionally, several clinical studies
have shown that curcumin has good efficacy and safety
[156]. These characteristics make curcumin a promis-
ing cuproptosis inducer for clinical application. Further-
more, salicylaldehyde isonicotinoyl hydrazone (SIH), a
lipophilic tridentate iron chelator, can facilitate the trans-
portation and intracellular release of Cu*" in HepG2
cells, thereby triggering mitochondria-mediated apop-
tosis, suggesting that SIH is also a Cu ionophore [144].
However, the cell death induced by these Cu ionophores,
beyond elesclomol and disulfiram, whether related to the
aggregation of lipoylated proteins and the reduction of
Fe-S proteins, requires further investigation.

During cuproptosis, the primary function of Cu iono-
phores is to transport Cu across the cell membrane and
release it into the cell. Notably, most metal-ion iono-
phores are not specific to a single metal element. For
instance, elesclomol can directly bind Fe** [157]. Besides,
elesclomol and disulfiram can increase cellular iron
content during transporting Cu into cells [158, 159].
This non-specificity complicates the mechanism of cell
damage caused by Cu ionophores combined with Cu.
However, treatment with such agents can cause metal
dyshomeostasis, exacerbating the side effects of the
therapy. Consequently, developing Cu- or tumor-specific
ionophores represents a potential breakthrough in accel-
erating the clinical application of Cu ionophores for can-
cer treatment.

Small compounds

Cu is a dual-faceted player in tumorigenesis. A high
Cu level promotes tumor cell proliferation and growth,
suggesting some resistance mechanisms to cuproptosis
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in tumor cells. As a result, small-molecule compounds
that disrupt Cu homeostasis may also induce or
increase the sensitivity of tumor cells to cuproptosis.
Recent studies have unveiled several small compounds
capable of inducing cuproptosis (Table 2). For instance,
Yang et al. discovered that zinc pyrithione can induce
cuproptosis in triple negative breast cancer (TNBC)
cells by disrupting intracellular Cu homeostasis and
DLAT oligomerization, potentially contributing to the
chemosensitivity of TNBC [160]. In CRC cells, 4-Octyl
itaconate (4-OI) inhibits glycolysis by targeting the
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
promoting elesclomol-Cu-mediated cuproptosis [161].
Besides, anisomycin, a well-known inhibitor of protein
synthesis that binds to the 60S ribosomal subunits, has
been found to bind and inhibit Yinyang 1 (YY1), inacti-
vating the transcriptional activity of core genes of the
LA pathway (FDXI1, DLD, DLAT, and PDHB), poten-
tially leading to cuproptosis in ovarian cancer stem
cells [162]. Additionally, as mentioned above, sorafenib,
the first multi-tyrosine kinase inhibitor approved for
treating many cancers and capable of inducing ferrop-
tosis, and erastin, a commonly used ferroptosis inducer,
can aggravate cuproptosis in liver cancer cells [62].
Compared to Cu ionophores, small molecular com-
pounds that disrupt tumor cell Cu homeostasis can
induce tumor cell cuproptosis without Cu supplemen-
tation, thereby avoiding the imbalance of metal ions in
the body and reducing metal-induced side effects dur-
ing treatment. The cuproptosis research is currently
in its infancy. The development and discovery of more
cuproptosis inducers, especially those based on drugs
approved for clinical use, could significantly promote
the clinical application of cuproptosis-targeted cancer
treatment strategies.

Table 2 Small compounds capable of inducing cuproptosis
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Nanomedicine

Dissolving, adsorption, encapsulation, or attachment to
nanomatrices can transform drugs into nanomedicines.
These nanomedicines use the characteristics of tumor tis-
sues or cells, such as acidic environments, elevated GSH
and ROS levels, and tumor cell-specific surface markers,
to accumulate or release within tumor sites. This strate-
gic approach can increase the precision of drug delivery
and minimize the side effects of cancer therapy. Given
the relatively low selectivity of Cu ionophores toward
tumor cells, using a nanoparticle-based delivery system
for the precise delivery of Cu to tumor cells can effec-
tively enhance cuproptosis in tumor tissues while reduc-
ing damage to other normal tissues. Since cuproptosis
was identified, more studies have focused on this area
(Table 3). For instance, DSF@PEG/copper-HMSNs can
precisely release Cu?* and disulfiram in tumor tissues to
induce cuproptosis and inhibit tumor growth [166]. Au
NCs-Cu>*@SA-HA NHGs can enhance cuproptosis-
mediated tumor therapy by depleting GSH and H,0, in
the tumor tissues [180].

Researchers have aimed to precisely deliver Cu, Cu
ionophores, and other anticancer agents, such as chemo-
therapeutic drugs and siRNA (Table 3), to explore tumor
therapy strategies based on nanomedicine-induced
cuproptosis. This approach enhances cell damage
through other mechanisms or sensitization to cuprop-
tosis, thereby synergistically combating tumors. For
example, TP-M-Cu—MOF/siATP7a efficiently silences
the ATP7A gene and increases Cu intake, thus inducing
cuproptosis and enhancing anti-tumor efficacy [178].
OMP contains siRNA targeting PDKI, which, during
releasing Cu”*", can reduce cellular glycolysis by decreas-
ing PDK1 expression, thereby sensitizing cells to cuprop-
tosis [186]. LDH/HA/5-FU nanosheets can release 5-FU

Compound Cancertype  Materials (cells) The effect on cuproptosis and its involved mechanism Refs.

ZnPT TNBC MDA-MB-231, HCC1806 ZnPT induces cuproptosis by disrupting intracellular copper homeostasis [160]
and DLAT oligomerization. ZnPT-induced cuproptosis potentially contributes
to chemosensitivity of TNBC

4-0l CRC HCT116, LoVo 4-Ol inhibits glycolysis by targeting GAPDH to promote elesclomol-Cu- [161]
mediated cuproptosis

Anisomycin  Ovarian cancer Human ovarian cancer stem cells  Anisomycin has a potential toxicity of promoting cuproptosis in human [162]
ovarian cancer stem cells by attenuating YY1/lipoic acid pathway activation

Sorafenib HCC, ICC MHCC-97H, Huh7, QBC939, CCLP1  Sorafenib enhances cuproptosis in HCC cells by increasing Cu-dependent [62]
lipoylated protein aggregation and reducing intracellular GSH synthesis

Erastin HCC, ICC MHCC-97H, Huh7, QBC939, CCLP1  Erastin enhances cuproptosis in HCC cells by increasing Cu-dependent [62]
lipoylated protein aggregation and reducing intracellular GSH synthesis

IKE MDS SKM-1, MUTZ-1 IKE synergistically enhances elesclomol-Cu-mediated cytotoxicity in MDS [163]

cell lines by triggering cuproptosis and ferroptosis

ZnPT zinc pyrithione, TNBC triple negative breast cancer, 4-OI 4-Octyl itaconate, CRC colorectal cancer, GAPDH glyceraldehyde-3-phosphate dehydrogenase, HCC
hepatocellular carcinoma, /ICC intrahepatic cholangiocarcinoma, GSH glutathione, MDS myelodysplastic syndromes, IKE imidazole ketone erastin
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while delivering Cu®* to tumor tissues, thus inducing
apoptosis and cuproptosis in tumor cells [207].

In addition, unlike drug treatment of vitro cultured
cells, nanomedicine delivered to tumor tissues impacts
the tumor microenvironment (TME), an important factor
influencing tumor therapy outcomes, especially in tumor
immunotherapy. Nanomedicine containing Cu relies on
the TME for precise delivery to tumor tissues and has the
potential to modify the TME, making it more conducive
to tumor therapy (Table 3). For instance, PDA-DTC/Cu
NPs trigger cuproptosis in tumor cells and facilitate the
repolarization of tumor-associated macrophages to miti-
gate the tumor immunosuppressive microenvironment
(TIME) [188]. Similarly, ES@CuO promoted cupropto-
sis-driven immune responses and remodeled the TIME
by enhancing lymphocyte infiltration and increasing the
release of inflammatory cytokines within tumors. The
synergistic application of ES@CuO with programmed
cell death-1 (PD-1) immunotherapy markedly enhanced
anti-tumor efficacy in murine melanoma models [196].
Besides, CQG NPs induce cuproptosis and pyroptosis by
disrupting antioxidant defense mechanisms within tumor
cells [201]. This dual action facilitates the transformation
of the TIME, augments the infiltration of immune cells
into the tumor, and triggers a robust systemic immune
response.

Furthermore, the integration of nanomedicine with
dynamic therapies, such as photothermal therapy (PTT),
photodynamic therapy (PDT), and chemodynamic
therapy (CDT) significantly enhances the precision and
efficacy of tumor treatments. This approach represents
a promising research direction for future studies on
cuproptosis-associated therapeutic strategies (Table 3).
For instance, PTT can augment E. coli@Cu,O-induced
ferroptosis and cuproptosis, reversing the immunosup-
pression of colon tumors by initiating dendritic cell mat-
uration and T-cell activation [205]. Through PTT and
CDT, PEG@Cu20-ES can generate ROS to target the
ATP-Cu pump, reducing the efflux of Cu ions and exacer-
bating cuproptosis [208]. In nanomedicine, multiple anti-
tumor components can be incorporated, significantly
enhancing the medication’s plasticity and multifunc-
tionality. For instance, the CCNAs constructed by Wen
et al,, in addition to Cu®", contain zinc phthalocyanine
(ZnPc), 1-methyl tryptophan (1-MT), and doxorubicin
(DOX) [209]. Upon near-infrared laser irradiation, ZnPc
released into tumor tissues exhibited a photodynamic
effect that generated ROS, effectively promoting the
release of DOX and inducing apoptosis while intensifying
cuproptosis [209]. Moreover, the release of 1-MT from
CCNAs can reverse TIME by inhibiting IDO-1-mediated
Trp degradation, triggering an immunogenic cell death
(ICD) response [209].
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Although nanomedicine offers broad prospects for
exploring tumor treatments, numerous issues must be
addressed before clinical application, warranting atten-
tion in future studies on tumor treatments based on
cuproptosis. First, current experimental studies are pri-
marily conducted in animal tumor models, which differ
from primary or metastatic tumors in humans, espe-
cially regarding the tumor microenvironment. Second,
the efficacy of laboratory nanomedicine in delivering
human tumor tissues remains unknown. Third, research
on cuproptosis-related nanomedicine has mainly focused
on a limited array of cancer types in animal models, such
as breast and colorectal cancers. Expanding studies on
other types of tumors, particularly those that are diffi-
cult to treat, is necessary to broaden the scope of target-
ing cuproptosis for tumor treatment. Lastly, biosafety is
a critical concern, representing a significant factor in the
transition of experimental drugs to clinical applications.

Sensitization of tumor cell cuproptosis

Targeting cell metabolism sensitizes tumor cell cuproptosis
Given the close relationship between cuproptosis and
cellular metabolism, targeting cellular metabolism pre-
sents a strategy to sensitize tumor cells to cuproptosis.
Cuproptosis is strongly associated with mitochondrial
metabolism [9]. Elevated mitochondrial metabolism can
sensitize tumor cells to Cu-induced cell death. Inhibition
of the mitochondrial ETC or pyruvate uptake diminishes
tumor cell responsiveness to Cu ionophores [9]. This sug-
gests that inducing cuproptosis could effectively inhibit
tumor growth in cells with high aerobic respiration levels,
such as melanoma [217] and leukemia [218]. Addition-
ally, a high mitochondrial metabolic state is characteristic
of tumor cell resistance to certain drugs such as protea-
some inhibitors [9, 219], cisplatin [220], and 5-FU [221].
Thus, tumor cells that exhibit resistance to these drugs
may be more sensitive to Cu ionophores, and inducing
cuproptosis may improve treatment outcomes in patients
with acquired drug resistance.

Furthermore, high glycolysis levels are considered unfa-
vorable for cuproptosis [9], indicating that targeting gly-
colysis in tumor cells could also be a method to induce or
sensitize cuproptosis. For instance, 4-OI attenuates aero-
bic glycolysis in CRC cells by targeting GAPDH, thereby
sensitizing them to cuproptosis induced by elesclo-
mol-Cu [161]. Aerobic glycolysis is the primary energy
source for most tumor cells, and inhibiting glycolysis can
suppress their growth [222]. This suggests that inducing
cuproptosis may enhance the inhibitory effect on tumor
growth during aerobic glycolysis-targeted tumor therapy.
Besides, recent studies have linked cuproptosis to protein
synthesis, although the mechanism remains unclear. Liu
et al. found that in elesclomol-Cu-treated cancer cells,
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PPP1R15A could promote protein synthesis by downreg-
ulating elF2a phosphorylation and upregulating 4EBP1
phosphorylation, thereby exacerbating proteotoxic stress
[223], suggesting tumor cells with the high rate of protein
synthesis might be more sensitive to cuproptosis induc-
ers. Thus, although the relationship between cuproptosis
and cell metabolism remains relatively vague and requires
more basic and clinical research, the differential response
of cuproptosis under various cellular metabolic states will
help develop effective clinical application strategies.

Targeting cuproptosis regulatory proteins and pathways
sensitizes tumor cell cuproptosis

Tsvetkov et al. identified several genes regulating cuprop-
tosis. Among the proteins encoded by these genes, FDX1,
LIAS, LIPT1, DLD, DLAT, PDHAI, and PDHB posi-
tively regulated cuproptosis, whereas MTF1, GLS, and
CDKNZ2A negatively regulated it [9]. This suggests that
these gene expression levels could serve as biomarkers of
the sensitivity of tumor cells to cuproptosis. For instance,
since MTF1, GLS, and CDKN2A knockout promoted
cuproptosis in tumor cells, targeting these proteins or
related signal pathways could represent a therapeutic
sensitization strategy. Fan et al. found that plicamy-
cin can inhibit head and neck squamous cell carcinoma
(HNSCC) cell growth by targeting CDKN2A, implying
that plicamycin may be a potential sensitizing agent for
cuproptosis [224].

The occurrence of cuproptosis is dependent on Cu
over-accumulation within cells. As previously men-
tioned, various factors, such as SLC31A1 and ATP7A/B,
regulate cellular Cu levels [225, 226]. Since ATP7A/B
can release Cu into the extracellular environment via the
vesicle system [225], targeting ATP7A/B may be a means
of inducing or sensitizing tumor cells to cuproptosis. For
instance, Tsvetkov et al. found that in a Wilson disease
mouse model, deletion of ATP7B resulted in excess Cu
accumulation and cuproptosis in aging livers [9]. Addi-
tionally, Zhang et al. used nanoparticles to simultane-
ously deliver Cu and ATP7A-specific siRNA to small-cell
lung cancer brain metastasis tumors, enhancing cuprop-
tosis and tumor growth suppression [178]. Although
an increase in intracellular Cu can promote ATP7A/B-
dependent Cu efflux, Cu ionophores have been found to
reduce ATP7A/B expression levels. For example, elesclo-
mol and disulfiram could reduce the ATP7A expression
level in CRC and prostate cancer cells, respectively [55,
139]. This suggests that Cu ionophores can transport Cu
into cells while reducing Cu efflux, providing favorable
conditions for inducing cuproptosis.

Although research into the mechanisms of cuprop-
tosis remains in its initial stages, recent studies have
uncovered several key regulatory factors of cuproptosis.
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For instance, in hepatocellular carcinoma (HCC) cells,
maternal embryonic leucine zipper kinase (MELK) can
enhance DLAT expression by activating the PI3K/mTOR
signaling pathway, thereby augmenting mitochondrial
function [227]. MELK overexpression exacerbates eles-
clomol-induced cuproptosis and enhances its anti-tumor
effects [227]. Mucin 20 (MUC20) overexpression in pro-
teasome inhibitor-resistant multiple myeloma cells can
induce cuproptosis, which is associated with the reduced
cuproptosis inhibitor CDKN2A expression level [228].
Elesclomol-Cu activates the adenosine 5-monophos-
phate (AMP)-activated protein kinase (AMPK) signal-
ing pathway in non-small cell lung cancer (NSCLC) cells,
attenuating the cuproptosis [229]. Knocking down or
inhibiting AMPK can aggravate elesclomol-Cu-induced
cuproptosis [229]. Besides, in gastric cancer -cells,
METTL16 can promote cuproptosis by facilitating FDX1
accumulation via m6A modification of FDXI mRNA
[230]. Further studies revealed that Sirtuin 2 (SIRT2) can
inhibit METTL16 activity via deacetylation, and inhibit-
ing SIRT2 can significantly enhance the anti-tumor effect
of elesclomol-Cu in gastric cancer [230]. Additionally,
some cuproptosis inhibitory factors have been identified
in different tumor cells, such as SLC7A11 [231] and AT-
rich interactive domain 1A (ARID1A) [232] in liver can-
cer cells, trigger transposable element-derived 1 (TIGD1)
in CRC [233], and Wiskott-Aldrich syndrome protein
family member 2 (WASF2) in ovarian cancer cells [234].
Targeting these factors may sensitize tumor cell cuprop-
tosis and enhance the efficacy of tumor treatment.

Recently, extracellular signaling molecules have also
been found to be involved in regulating cuproptosis. For
example, in diabetic mice, an increase in blood advanced
glycosylation end products (AGEs) and Cu upregulates
SLC31A1 expression level in cardiomyocytes, thereby
disturbing Cu homeostasis and promoting cupropto-
sis [235], suggesting that AGEs may be sensitizers for
cuproptosis. Moreover, adrenomedullin (ADM), a mem-
ber of the amylin/calcitonin gene-related peptide super-
family, has been found to promote the phosphorylation
and nuclear translocation of Forkhead box O3 (FOXO3)
via the p38/MAPK signaling pathway, thereby inhibiting
FDX1 transcription and suppressing cuproptosis in renal
cell carcinoma (RCC), promoting chemoresistance [236].
Consequently, targeting cuproptosis-related cytokines
in the blood is also a strategy to sensitize tumor cells to
cuproptosis. Table 4 lists the regulatory proteins and
pathways of cuproptosis, which are potential targets for
sensitizing Cu-induced tumor cell death.

Targeting cuproptosis to overcome tumor drug resistance
As the duration of drug usage extends, tumor cells may
develop resistance to therapeutic agents, diminishing
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Table 4 Cuproptosis regulatory proteins and pathways

Proteins/pathways Effect on Potential Cancer type Materials (cell lines) Role in cuproptosisand  Refs.
cuproptosis inhibitor/ its involved mechanism
agonist
MTF1 Negative Ovarian cancer OVISE Knockout of MTF1 [9]

enhances elesclomol-Cu
and disulfiram-Cu-induced
cell death

GLS Negative Ovarian cancer OVISE Knockout of GLS enhances  [9]
elesclomol-Cu and disulfi-
ram-Cu-induced cell death

BPTES Breast cancer 4T1 tumor BPTES can enhancing [216]

PBC, a nanomedicine
containing Cu and BPTES,
-induced cuproptosis
by inhibiting GLS1 activity

CDKN2A Negative Ovarian cancer OVISE Knockout of CDKN2A [9]
enhance elesclomol-Cu
and disulfiram-Cu-induced

cell death
Plicamycin HNSCC TU212 Plicamycin can inhibit [224]
HNSCC cell growth by tar-
geting CDKN2A
FDX1 Positive Ovarian cancer, lung QVISE, ABC1 FDX1 reduce Cu** to Cu®.  [9]
cancer FDX1 is an upstream

regulator of protein lipoyla-
tion. Knockout of FDX1
suppresses elesclomol-Cu
and disulfiram-Cu-induced

cell death
LIAS Positive Ovarian cancer, lung OVISE, ABC1 Knockout of LIAS sup- 9]
cancer presses elesclomol-Cu
and disulfiram-Cu-induced
cell death
LIPT1 Positive Ovarian cancer OVISE Knockout of LIPT1 sup- [9]

presses elesclomol-Cu
and disulfiram-Cu-induced
cell death

DLD Positive Ovarian cancer OVISE Knockout of DLD sup- [9]
presses elesclomol-Cu
and disulfiram-Cu-induced
cell death

DLAT Positive Ovarian cancer OVISE Cu directly binds and pro-  [9]
motes the oligomeriza-
tion of lipoylated DLAT,
resulting in proteotoxic
stress. Knockout of DLAT
suppresses elesclomol-Cu
and disulfiram-Cu-induced
cell death

PDHB Positive Ovarian cancer OVISE Knockout of PDHB sup- [9]
presses elesclomol-Cu
and disulfiram-Cu-induced
cell death

PDHA1 Positive Ovarian cancer OVISE Knockout of PDHAT sup- [9]
presses elesclomol-Cu
and disulfiram-Cu-induced
cell death

SLC31A1 Positive Overactivaiton of SLC31AT  [225, 226]
enhances intracellular Cu
accumulation

ATP7A/B Negative Knockout of ATP7A/B [225,226]

enhances intracellular Cu
accumulation
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Table 4 (continued)

Proteins/pathways Effect on Potential Cancer type Materials (cell lines) Role in cuproptosisand  Refs.
cuproptosis inhibitor/ its involved mechanism
agonist

GAPDH Negative 40-1 CRC HCT116, LoVo 4-Ol enhances elesclomol- [161]
Cu-mediated cuproptosis
by targeting GAPDH
to suppress glycolysis

PPP1R15A Positive Breast cancer, prostate BT-549, PC-3, DU145, A549  Elesclomol-Cu treatment  [223]

cancer, lung cancer upregulates PPPTR15A,

promoting proteotoxic
stress by enhancing EIF2S1
and 4E-BP1-associated
translation initiation

MELK Positive HCC Huh?7 MELK augments [227]
the expression of DLAT
through the PI3K/mTOR
signaling pathway and pro-
motes mitochondrial func-
tion, which subsequently
promotes the progression
of HCC. MELK overexpres-
sion significantly enhances
the anti-tumor effect
of elesclomol in HCC

MUC20 Positive MM KAS-6/1/U266 MUC20 attenuated protea- [228]
some inhibitor resistance
in MM cells by inducing
cuproptosis via the inhibi-
tion of CDKN2A expression

AMPK Positive Dorsomorphin  NSCLC Calul cells Elesclomol-Cu activates [229]
AMPK. Knockdown or inhi-
bition of AMPK suppresses
elesclomol-Cu-induced
cell death

METTL16 Positive Gastric cancer HGC-27 cell METTL16 promotes [230]
cuproptosis by facilitat-
ing FDX1 accumulation
via m6A modification
on FDXT mRNA

SIRT2 Negative AGK2 Gastric cancer HGC-27 cell SIRT2 delactylates [230]
METTL16-K229 to inhibit
the METTL16 activity.
Combining elesclomol
with SIRT2-specific inhibi-
tor AGK2 enhance cuprop-
tosis in gastric tumors
in vitro and in vivo

SLC7AN Negative SASP/erastin - HCC Huh7/SMMC-7721 Disulfiram-Cu induces [231]
ferroptosis and cupropto-
sis while compensatorily
activating cellular SLC7A11
expression by inhibiting
ubiquitination-proteasome
degradation. Inhibition
or knockdown of SLC7A11
promotes disulfiram—
Cu-induced ferroptosis
and cuproptosis in HCC
cells
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Table 4 (continued)

Page 33 of 42

Potential
inhibitor/
agonist

Proteins/pathways Effect on
cuproptosis

Cancer type

Materials (cell lines) Role in cuproptosisand  Refs.

its involved mechanism

ARID1A Negative HCC

TIGD1 Negative CRC

WASF2 Negative Ovarian cancer

G6PD Negative

Adrenomedullin Negative ccRCC

p32 Positive ccRCC

ovarian endometriomas

Hep3B, HepG2,
PDX(ARIDTA-wt/mutant)

ARID1A loss shifts cel- [232]
lular glucose metabolism

from aerobic glycolysis

to dependence on the TCA

cycle and oxidative phos-
phorylation. ARID1A-defi-

cient HCC cells and xeno-

graft tumors are highly

sensitive to Cu treatment

TIGD1 knockdown can [233]
promote cuproptosis
in HCT116 cells

A2780; TOV-21G; OVCA429  WASF2 knockdown signifi-  [234]
cantly enhances the eles-
clomol-Cu-induced cell
death

Elesclomol-Cu treatment  [237]
induces the interaction

of FDX1 and G6PD, pro-

moting G6PD degrada-

tion and GSH reduction,

thereby intensifying

cuproptosis

Adrenomedullin [236]
promotes the phospho-

rylation and nuclear

translocation of FOXO3

through the p38/MAPK

signaling pathway, thereby
inhibiting the transcription

of FDX1 and suppressing
cuproptosis in RCC cells

p32 promotes lipo-DLAT [238]
oligomerization by directly
binding Cu. Combinational
treatment of p32 and eles-
clomol-Cu inhibits ccRCC
progression through dis-

ruption of TCA cycle

HCT116

EESCs, 11Z

A498, 786-0

ACHN, 786-O

MTF1 metal-regulatory transcription factor-1, GLS glutaminase, CDKN2A cyclin-dependent kinase inhibitor 2A, FDX1 ferredoxin 1, DLAT dihydrolipoamide
S-acetyltransferase, LIAS LA synthase, LIPT1 lipoyl transferase 1, DLD dihydrolipoamide dehydrogenase, PDHAT pyruvate dehydrogenase E1 subunit alpha 1, PDHB
pyruvate dehydrogenase E1 subunit beta, HNSCC head and neck squamous cell carcinoma, SLC31A1, SLC31AT the solute carrier family 31 member 1, ATP7A/B ATPase
copper transporting o/, SLC7A11 solute carrier family 7 membrane 11, MUC20 Mucin 20, MM multiple myeloma, MELK maternal embryonic leucine zipper kinase, HCC
hepatocellular carcinoma, ARID1A AT-rich interactive domain 1A, TCA tricarboxylic acid, SIRT2 Sirtuin 2, AMPK adenosine 5'-monophosphate (AMP)-activated protein
kinase, NSCLC non-small cell lung cancer, TIGD1 trigger transposable element-derived 1, CRC colorectal cancer, WASF2 Wiskott-Aldrich syndrome protein family
member 2, EESCs ectopic endometrial stromal cells, G6PD glucose-6-phosphate dehydrogenease, FOXO3 Forkhead box O3, MAPK mitogen-activated protein kinase,

ccRCC clear cell renal cell carcinoma

drug efficacy and leading to tumor relapse or progression.
Therefore, effectively overcoming cancer drug resistance
has always been a significant theme in cancer treatment
research. Since cuproptosis has been established as a
novel mode of cell death, targeting tumor cell cupropto-
sis holds potential as a new strategy to overcome tumor
drug resistance.

The use of Cu ionophores to overcome tumor chemo-
therapeutic drug resistance has a long history of research.
On one hand, Cu ionophores can transport Cu into the

cells to induce Cu-triggered cell damage, thereby exacer-
bating the death of resistant cells (Table 1). For instance,
in prostate cancer, elesclomol-Cu can enhance sensitivity
to docetaxel by inducing DLAT/mTOR pathway-depend-
ent cuproptosis in vitro and in vivo [87]. Disulfiram—-Cu
has been found to sensitize breast cancer cells to pacli-
taxel by simultaneous induction of ROS and inhibition
of NF-«kB, suggesting its potential to overcome clini-
cal resistance to paclitaxel [108]. Disulfiram-Cu can
enhance the cytotoxicity of gemcitabine by reversing
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NF-xB activity in gemcitabine-resistant colon cancer
cells [111]. Moreover, disulfiram—Cu was found to over-
come bortezomib and cytarabine resistance in cell lines
from patients with Down syndrome-associated acute
myeloid leukemia, which is thought to be associated with
the induction of apoptosis and re-inhibition of protea-
some activity [138]. In addition to Cu ionophores, small
molecule compounds capable of inducing cuproptosis
are potential candidates for overcoming tumor treatment
resistance. These compounds usually enhance anti-tumor
effects by inducing cell damage through multiple mecha-
nisms. For example, zinc pyrithione induces necrosis in
prostate cancer cells by activating the PKC and ERK path-
ways and enhancing ROS production [239]; 4-OI induces
ferritinophagy-dependent ferroptosis in multi-drug
resistant retinoblastoma cells [240]. Among these com-
pounds, the ferroptosis inducer erastin has garnered sig-
nificant attention for its ability to reverse the resistance of
various tumor cells to chemotherapeutic drugs, including
ovarian cancer [241, 242], AML cells [243], NSCLC cells
[244], and prostate cancer cells [245]. However, whether
cuproptosis contributes to the sensitizing effects of these
drugs requires further investigation. Future research
should explore combining these compounds with chemo-
therapeutic drugs to treat drug-resistant tumor cells that
are sensitive to cuproptosis. Additionally, nanomedicine-
based targeting of cuproptosis can be examined to over-
come chemotherapeutic drug resistance. For instance,
CuO,/DDP@Si0,, which releases Cu** and cisplatin, can
induce cuproptosis and block the entire cisplatin efflux
pathway by downregulating multidrug resistance-associ-
ated protein 2 (MRP2), enhancing the anti-tumor effect
of cisplatin [193]. E-C@DOX NPs can inhibit tumor cell
stemness and cell survival-related pathways while work-
ing with Cu ions to damage mitochondria and induce
cuproptosis, suppressing the ATP-dependent drug efflux
pathway and reversing DOX resistance [204].

Notably, Cu ionophores also chelate certain drugs,
especially platinum-based drugs, which are widely used
as first-line clinical treatments for cancer. Disulfiram
has been found to form a new platinum (Pt) chelate,
Pt(DDTC)*", which has a stronger anti-NSCLC effect
than cisplatin alone [105]. Furthermore, Pt drugs and
Cu share molecular mechanisms for intracellular trans-
port and extracellular efflux, such as the Cu transporter
CTR1, which can transport Pt into the cell [246, 247],
and the Cu chaperone protein ATOX1, which can deliver
Pt to ATP7A/B located on TGN, thereby promoting the
efflux of Pt and leading to drug resistance during treat-
ment [248-250]. Thus, targeting Cu homeostasis can also
alter the intracellular Pt drug concentration, a potential
mechanism for overcoming resistance. Yuki et al. found
that in bladder cancer cells treated with disulfiram and
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cisplatin, disulfiram could reduce ATP7A expression level
and its localization in the TGN, accumulating intracellu-
lar cisplatin and enhancing tumor cell death [251]. How-
ever, increased Cu levels reduce the expression or activity
of Cu uptake proteins, such as CTR1, and enhance the
translocation of ATP7A/B from the Golgi to post-Golgi
sites or lysosomes to promote Cu efflux, which may be
unfavorable for accumulating Pt drugs within cells [252—
255]. Therefore, targeting Cu homeostasis to overcome
tumor cell resistance to Pt drugs requires comprehensive
consideration of the dosage of Pt drugs and the action of
cuproptosis.

Moreover, targeted cuproptosis could be used to
solve the problem of drug resistance in targeted thera-
pies. For example, disulfiram—Cu kills and sensitizes
BRAF-mutant thyroid cancer to BRAF kinase inhibitor
by relieving feedback activation of the MAPK/ERK and
PI3K/AKT pathways in a ROS-dependent manner [134].
In HCC cells, researchers observed that disulfiram—Cu
could strengthen the cytotoxicity of sorafenib by simulta-
neously inhibiting the NRF2 and MAPK kinase signaling
pathways and arrest tumor growth in vitro and in vivo
[136]. Current research on cuproptosis overcoming drug
resistance in tumor-targeted therapy remains relatively
limited. One of the main reasons is that the molecular
regulation mechanism underlying cuproptosis remains
unknown. However, the relationship between tumor drug
resistance and cuproptosis remains unclear, hindering
the progress of targeting cuproptosis to overcome drug
resistance in tumor-targeted therapy.

Targeting cuproptosis to enhance tumor immunotherapy

Immunotherapy has become an important clini-
cal strategy for cancer treatment due to its significant
efficacy in tumor therapy. Since Cu metabolism and
cuproptosis play crucial regulatory roles in tumor
immunity, targeting cuproptosis may represent a vital
sensitization strategy for tumor immunotherapy. PD-1/
PD-L1 (Programmed death-ligand 1) serves as a cru-
cial immune checkpoint, and inhibiting or eliminating
PD-1/PD-L1 can lead to favorable clinical outcomes
in patients with cancer [256]. Cu may exert a positive
regulatory effect on PD-L1 expression in tumors. For
instance, disulfiram—Cu can upregulate PD-L1 expres-
sion in HCC cells by inhibiting Poly (ADP-ribose) pol-
ymerase 1 (PARP1) activity and promoting glycogen
synthase kinase 3p (GSK-3B) phosphorylation, thereby
suppressing T-cell infiltration [135]. Hence, simulta-
neous targeting of cuproptosis and co-administration
of PD-1/PD-L1 inhibitors may enhance therapeutic
effects. This notion is supported by preclinical studies
demonstrating superior tumor growth inhibition when
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Cu ionophores were combined with Cu and anti-PD-L1
agents in PDAC [102], lung cancer [106], and HCC cells
[135].

The TME is a pivotal determinant of the efficacy of
tumor immunotherapy. Reshaping the immunosup-
pressive TME, such as dendritic cell maturation and
activation of CD8' T cells, is poised to enhance tumor
suppression [257]. The cyclic GMP-AMP synthase
(cGAS)-stimulator of interferon genes (STING) signal-
ing pathway is a critical component of innate immunity,
capable of sensing aberrant DNA and triggering the
release of type I interferons, thereby promoting dendritic
cell maturation and migration, as well as augmenting the
cytotoxic effects of T lymphocytes or natural killer cells
[258]. Jiang et al. demonstrated that elesclomol-Cu-
induced cuproptosis in clear cell RCC can activate the
cGAS-STING pathway within dendritic cells, thereby
promoting the release of inflammatory mediators,
including IFN-y, TNF-a, IL2, C-X-C motif chemokine
ligand 10 (CXCL10), and CXCL11, ultimately enhanc-
ing tumor immunotherapy [259]. Additionally, CS/
MTO-Cu@AM], established by Huang et al., can activate
anti-tumor immunity by inducing dsDNA damage and
activating the cGAS-STING pathway [173]. Similarly,
PCM nanoinducers constructed by Dai et al. can trigger
the release of mitochondrial DNA during inducing tumor
cell cuproptosis, activating the cGAS-STING pathway
and stimulating innate and adaptive immune responses,
thereby enhancing tumor suppression [184].

As discussed in this review, nanomedicine-based
cuproptosis induction systems mediate tumor cell
cuproptosis and impact the TME by depleting GSH,
aggravating oxidative stress, and inducing other types
of cell damage, such as pyroptosis and apoptosis. These
alterations result in the remodeling of the TME and initi-
ation of ICD responses, which are conducive to enhanced
immunotherapy. Consequently, inducing cuproptosis
may represent an effective strategy for sensitizing tumors
to immunotherapy. Table 3 summarizes various nano-
medicines, such as NP@ESCu [171], BCMD [176], OMP
[186], PCD@CM [195], ES@CuO [196], CBS [203], E.
coli@Cu,O [205], PEG@Cu,0O-ES [208], and CLDCu
[213], in combination with anti-PD1 or anti-PD-L1 anti-
bodies, effectively inhibited tumor growth. However, sev-
eral issues must be addressed before these strategies are
applied clinically. For instance, the mechanisms under-
lying cuproptosis-mediated TME remodeling remain
unclear. Additionally, are the induction conditions and
regulatory mechanisms of cuproptosis in tumors and
immune cells similar or different? How can we target
tumor cell cuproptosis more precisely to initiate ICD
responses? Addressing these problems holds promise for
improving the effectiveness of tumor immunotherapy.
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Conclusions and future perspectives

Cuproptosis, characterized by its unique features, rep-
resents a novel mode of cell death that has infused new
optimism into cancer treatment. Since its conceptual-
ization, cuproptosis has received significant attention in
oncology. Conversely, it has emerged as a promising ther-
apeutic target, with ongoing research poised to unveil
additional cuproptosis inducers, including small-mol-
ecule compounds and nanomedicines. This expanding
repertoire of therapeutic options holds the potential to
diversify tumor treatment strategies. Targeting cuprop-
tosis offers a novel approach to combatting tumor drug
resistance. Exploiting therapeutic-induced metabolic
changes in tumor cells, such as heightened mitochon-
drial metabolism and glycolysis, rendering them sus-
ceptible to cuproptosis, provides a pathway to sensitize
tumor cells to drug interventions or overcome drug
resistance. Furthermore, inducing cuproptosis in tumor
tissues can remodel the tumor microenvironment, fos-
tering dendritic cell maturation and immune cell infil-
tration. Consequently, targeting cuproptosis promises to
enhance the response rates and overcome resistance to
immunotherapy.

However, understanding and research regarding
cuproptosis are still in their infancy. Before practical
application, numerous issues must be addressed. For
instance, Cu can play a dual role in tumor initiation and
progression, promoting tumorigenesis and inducing cell
death [260, 261]. Cu chelators reduce Cu bioavailability
and exert anticancer effects [262]. Therefore, compre-
hending how tumor cells balance the dual effects of Cu is
crucial. Furthermore, whether cuproptosis or its related
signaling pathways have pro-tumor effects during tumor
initiation, development, and treatment remains unclear.
In addition, reliable biomarkers, initiation mechanisms,
and links with other cell death forms for cuproptosis
remain lacking, impeding the progress of cuproptosis-
associated research in diseases and targeted clinical
applications. Moreover, distinguishing between the regu-
latory mechanisms of cuproptosis in normal and tumor
cells is crucial for improving the precision of cuprop-
tosis-targeted therapy and reducing the side effects of
treatment. Additionally, currently widely used cupropto-
sis inducers, such as Cu ionophores elesclomol and disul-
firam, have not revealed promising therapeutic effects in
clinical trials.

Based on the challenges outlined above, the follow-
ing recommendations may help promote the translation
of cuproptosis-associated anti-tumor therapies from
the laboratory to clinical practice in future research.
First, unraveling the molecular mechanisms underlying
tumor cell tolerance and exploiting high Cu levels may
offer insights into inducing cuproptosis by disrupting
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endogenous Cu metabolism within tumor cells. For
example, hepatocytes are the primary storage cells for Cu,
and abnormal Cu accumulation in liver cells, as observed
in patients with Wilson’s disease, promotes the develop-
ment of HCC [263]. Accordingly, driving accumulated
Cu in HCC cells to induce cuproptosis might reverse
the pro-carcinogenic effects of Cu to anticarcinogenic
effects. Additionally, future research and development
efforts should focus on novel cuproptosis inducers or
induction strategies, including natural products, small-
molecule compounds, and nanomedicine. Furthermore,
improving the precision of drug delivery to tumor cells
and the stability of drugs in plasma should be a priority
in the development of cuproptosis inducers. Moreover,
conducting more clinical trials is crucial for promoting
the clinical application of cuproptosis-targeted therapies.
For example, combining Cu ionophores with frontline
clinical drugs that can enhance sensitivity to cuproptosis
might address issues of drug resistance during treatment.
Finally, similar to other types of cell death, inducing
cuproptosis to treat tumors will also face the drug resist-
ance issues. Therefore, uncovering the mechanisms of
cuproptosis-related drug resistance, particularly in dif-
ferent tumor cell types, should be a key focus of future
research.

In summary, cuproptosis is a new target in cancer
treatment. As the regulatory mechanisms of cuproptosis
continue to be elucidated and the efficiency of cupropto-
sis induction methods improves, targeting cuproptosis
presents a promising new approach to combat chemo-
therapy and immunotherapy resistance in cancer treat-
ment, leading to improved therapeutic outcomes.

Abbreviations

ROS Reactive oxygen species

DLAT Dihydrolipoamide S-acetyltransferase

TCA Tricarboxylic acid

STEAP Six-transmembrane epithelial antigen of the prostate

DCYTB Duodenal cytochrome b

CTR1 Cu transport protein 1

SLC31AT  The solute carrier family 31 member 1
ATP7A ATPase copper transporting alpha
MT1/2 Metallothionein1/2

GSH Glutathione

SOD1 Superoxide dismutase 1

ATOX1 Antioxidant 1

TGN Trans-Golgi network

COX Cytochrome oxidase

OXPHOS  Oxidative phosphorylation

MEK Mitogen-activated extracellular signal-regulated kinase
MAPK Mitogen-activated protein kinase
FGFs Fibroblast growth factors

VEGF Vascular endothelial growth factor
TNF-a Tumor necrosis factor alpha

NAC N-Acetylcysteine

TNBC Triple negative breast cancer

AMPK Adenosine 5'-monophosphate (AMP)-activated protein kinase
ES Elesclomol

FDX1 Ferredoxin 1

ETC Electron transport chain
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LA Lipoic acid

LIAS LA synthase

LIPT1 Lipoyl transferase 1

DLD Dihydrolipoamide dehydrogenase

PDHA1 Pyruvate dehydrogenase E1 subunit alpha 1

PDHB Pyruvate dehydrogenase E1 subunit beta
MTF1 Metal-regulatory transcription factor-1
GLS Glutaminase

CDKN2A  Cyclin-dependent kinase inhibitor 2A
RCD Regulated cell death

CRC Colorectal cancer

SLC7A11  Solute carrier family 7 membrane 11
PDAC Pancreatic ductal adenocarcinoma

ER stress  Endoplasmic reticulum stress

DSF Disulfiram

ULK Unc-51-like autophagy activating kinase
5-FU 5-Fluorouracil

4-0l 4-Octyl itaconate

HCC Hepatocellular carcinoma

TME Microenvironment

TIME Tumor immunosuppressive microenvironment
PD-1 Programmed cell death-1

PD-L1 Programmed death-ligand 1

PTT Photothermal therapy

PDT Photodynamic therapy

(@) Chemodynamic therapy

DOX Doxorubicin

ZnPc Zinc phthalocyanine

1-MT 1-Methyl tryptophan

ICD Immunogenic cell death

HNSCC Head and neck squamous cell carcinoma
NSCLC Non-small cell lung cancer

MELK Maternal embryonic leucine zipper kinase
cGAS Cyclic GMP-AMP synthase

STING Stimulator of interferon genes

CXcL C-X-C motif chemokine ligand
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