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Abstract 

Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. 
Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated 
with the mitochondrial tricarboxylic acid cycle and the loss of iron–sulfur cluster proteins, ultimately resulting in pro-
teotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due 
to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecu-
lar mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the cur-
rent drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, 
and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy 
to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome 
tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested 
that targeting cuproptosis could open new avenues for developing tumor therapy.
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Introduction
Copper (Cu) is an essential trace metal element for nor-
mal physiological functions primarily obtained from 
dietary supplements. In biological systems, Cu exists 
predominantly in two oxidative states: divalent copper 
ions  (Cu2+) and monovalent copper ions  (Cu+).  Cu+ is 
the principal oxidative form and plays a significant role 

in physiological and pathological regulation within cells 
[1–3]. Disruptions in Cu homeostasis can induce disease 
onset; for instance, Cu overload may lead to Wilson’s dis-
ease [4], while Cu deficiency can cause Menkes disease 
[5]. Furthermore, previous studies have demonstrated 
that Cu could promote tumor cell proliferation, angio-
genesis, and metastasis and reduces the efficacy of tumor 
treatments [6].

However, excess Cu in the cells can also cause cellular 
damage. Researchers observed that using Cu ionophores 
to elevate Cu levels within tumor cells could cause cell 
death [7, 8]. Although subsequent studies have exten-
sively investigated the molecular mechanisms underlying 
Cu-induced cell death, such as the association of this type 
of cell death with reactive oxygen species (ROS), apop-
tosis, and ferroptosis-related signaling pathways, the key 
mechanisms remain unclear. Tsvetkov et  al. termed the 
Cu-induced cell death cuproptosis in 2022 based on their 
findings that this form of cell death depends on the aggre-
gation of lipoylated dihydrolipoamide S-acetyltransferase 
(DLAT) and the reduction of iron–sulfur cluster (Fe–S) 
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proteins, triggered by Cu accumulation in mitochondria, 
leading to proteotoxic stress, and cell death [9].

With the concept and mechanism of cuproptosis estab-
lished, researchers have increasingly focused on cuprop-
tosis in cancer therapy and demonstrated that Cu-based 
treatments play a pivotal role in inhibiting tumor growth. 
In this review, we summarized the core molecular mech-
anisms of cuproptosis and discussed the relationship 
between it and other forms of cell death. Moreover, we 
systematically summarized the current understanding of 
targeting cuproptosis for tumor therapy, including using 
Cu ionophores, small compounds, and nanomedicine to 
induce cuproptosis and targeting cell metabolism or cer-
tain genes to sensitize cuproptosis. Additionally, we dis-
cussed the potential of targeting cuproptosis to overcome 
tumor drug resistance in chemotherapy, targeted therapy, 
and immunotherapy. We also discussed the opportunities 
and challenges in targeting cuproptosis-associated can-
cer therapy.

Cu metabolism
Cu homeostasis is essential for the normal physiological 
functioning of human life. In humans, Cu uptake, distri-
bution, transport, and elimination are meticulously regu-
lated (Fig. 1A), which is crucial to prevent deficiency or 
excessive Cu accumulation in various tissues and cells, 
thereby averting disease onset [10]. Humans predomi-
nantly acquire Cu through their diet, with an adult daily 
requirement ranging from 0.8 to 2.4  mg [3]. Following 
digestion in the stomach and duodenum, Cu is primar-
ily absorbed in the small intestine, where  Cu2+ is reduced 
to  Cu+ by metalloreductases, such as six-transmem-
brane epithelial antigen of the prostate (STEAP) [11] 
and duodenal cytochrome b (DCYTB) [12], before being 
transported into enterocytes by Cu transport protein 1 
(CTR1), also known as the solute carrier family 31 mem-
ber 1 (SLC31A1) [13], located at the apical membrane of 
enterocytes. Subsequently, Cu is exported to the intersti-
tial fluid or bloodstream by the protein ATPase copper 
transporting alpha (ATP7A) [14]. Cu in the bloodstream 
usually binds to plasma proteins, such as ceruloplasmin 
and human serum albumin, and is transported to the 
liver, the primary Cu storage organ, via the portal system 
[15]. Metallothionein1/2 (MT1/2), a thiol-rich protein, 
binds to and stores Cu in hepatocytes [16]. Hepatocytes 
can excrete excess Cu into the bile via ATP7B. Beyond 
the liver, Cu in the bloodstream can also be absorbed 
by other tissues and organs, including the heart and the 
brain [15].

After being transported into cells by transmembrane 
proteins, such as CTR1 and divalent metal transporter 
1 (DMT1), Cu can be stored by binding to intracellular 
Cu chaperones, such as MT1/2 and glutathione (GSH), 

thereby preventing cellular damage [1, 17]. Concur-
rently, Cu can be delivered to other cellular structures or 
proteins via Cu chaperones to maintain normal cellular 
function (Fig.  1B). For example, the Cu chaperone for 
superoxide dismutase (CCS) binds to Cu and delivers it 
to superoxide dismutase 1 (SOD1), catalyzing the conver-
sion of superoxide radicals to  H2O2, thus maintaining cel-
lular ROS homeostasis [18]. Abnormal SOD1 expression 
is considered to be linked to tumor development [19]. 
Additionally, the Cu chaperone antioxidant 1 (ATOX1), 
which binds  Cu+ via two cysteine residues, can trans-
port cytosolic  Cu+ to the ATP7A/ATP7B, located in the 
Golgi network [20, 21]. Excess  Cu+ enters the trans-Golgi 
network (TGN) and can be expelled from the cell via the 
vesicular system [20, 21]. The absence of ATOX1 leads to 
perinatal lethality induced by Cu dyshomeostasis [22]. 
Moreover, increased intracellular Cu levels can promote 
the distribution of ATP7A and ATP7B within the TGN, 
thereby facilitating Cu efflux [23]. These studies highlight 
significant regulatory roles of ATOX1 and ATP7A/B in 
intracellular Cu homeostasis.

The mitochondria are the primary targets of intracellu-
lar Cu (Fig. 1B). Cu contributes to ATP production within 
the mitochondria by ensuring the catalytic function of 
cytochrome oxidase (COX) during oxidative phospho-
rylation (OXPHOS). Cytosolic  Cu+ can be transported to 
the mitochondrial intermembrane space by a Cu ligand 
(CuL), a non-proteinaceous low-molecular-weight com-
plex, where it can enter the mitochondrial matrix via sol-
ute carrier family 25 member 3 (SLC25A3) located in the 
inner mitochondrial membrane (IMM) [24, 25]. Cu in the 
matrix is transported back across the IMM to intermem-
brane space (IMS) by an unknown transporter, where it is 
delivered to COX and SOD1 [26]. Additionally, COX17 
can transfer cytosolic  Cu+ to the mitochondrial inter-
membrane space and deliver  Cu+ to other Cu chaperone 
molecules, such as COX11 and synthesis of cytochrome 
c oxidase 1/2 (SCO1/2), which then deliver  Cu+ to COX1 
and COX2, respectively [27, 28].

Cu and cancer
The role of Cu in tumorigenesis and tumor therapy has 
been of great concern. Compared to the healthy popula-
tion, elevated Cu levels have been observed in the tumors 
or serum of patients with various types of cancers, includ-
ing breast [29, 30], prostate [31], lung [32], cervical [33], 
and bladder [34], thyroid [35], and oral cancers [36, 37]. 
Cu can promote the onset and development of tumors, 
termed cuproplasia, by activating oncogenic signaling 
pathways [6]. For instance, Cu can directly bind mitogen-
activated extracellular signal-regulated kinase (MEK) and 
activate its downstream mitogen-activated protein kinase 
(MAPK) pathway to promote tumor cell growth [38, 39]. 



Page 3 of 42Zhang et al. Journal of Hematology & Oncology           (2024) 17:68  

In melanoma driven by  BRAFV600E, chelating Cu can 
inhibit MAPK signal and reduce tumor cell resistance to 
 BRAFV600E and MEK1/2 inhibitors [40]. Moreover, Cu 
is considered to contribute to tumor metastasis. Cu can 
act on metalloenzymes in the extracellular matrix, such 
as lysyl oxidase (LOX) [41] and secreted protein acidic 
and rich in cysteine (SPARC) [42], altering cell–matrix 

and cell–cell interactions, thereby promoting tumor 
cell migration and metastasis. In breast cancer cells, Cu 
can bind to the mediator of ErbB2-driven cell motility 
1 (MEMO1) and activate its oxidase activity promoting 
 O2− production and enhancing tumor cell migration and 
invasion [43, 44]. Additionally, Cu can promote angio-
genesis, essential for tumor growth and progression, 

Fig. 1 Cu metabolism. A. Cu homeostasis in physiological systems. Dietary  Cu2+ is reduced to  Cu+ by the STEAP family members 
and subsequently transported into enterocytes via SLC31A1. Within enterocytes,  Cu+ is released into the bloodstream by ATP7A, where it 
typically binds to soluble chaperones such as albumin and ceruloplasmin. Hepatocytes uptake  Cu+ from the bloodstream through SLC31A1 
on their cell membrane. In hepatocytes,  Cu+ can be delivered to MT or GSH for storage, or to ATP7B for re-entry into the bloodstream for uptake 
by other tissues and organs. Additionally, ATP7B in hepatocytes can excrete excess  Cu+ into the bile duct. B. Cu metabolism at the cellular levels. 
Extracellular  Cu+ is taken up by SLC31A1 on the cell membrane, while  Cu2+ can be transported into the cell by SLC11A2. Intracellular  Cu+ can be 
sequestered by MT1/2 and GSH or bound to other Cu chaperones such as CCS, COX17, and ATOX1 for further trafficking to proteins. CCS delivers 
 Cu+ to cytosolic SOD1, COX17 transports  Cu+ to mitochondrial COX11 or SCO1, and ATOX1 delivers  Cu+ to ATP7A/B located on the Golgi membrane 
in the TGN, ultimately secreting it outside the cell.  Cu+ can also form a non-proteinaceous low-molecular-weight complex, CuL, which transports 
 Cu+ into mitochondrion.  Cu+ can be transported into the mitochondrial matrix via solute carrier family 25 member 3 (SLC25A3) located in inner 
mitochondrial membrane. Cu in the matrix is transported back across the IMM to intermembrane space (IMS) by an unknown transporter. Histones 
H3/H4 in the nucleus can reduce  Cu2+ to  Cu+. STEAP, six-transmembrane epithelial antigen of the prostate; SLC31A1, the solute carrier family 31 
member 1; ATP7A, ATPase copper transporting alpha; MT1/2, Metallothionein1/2; GSH, glutathione; CCS, Cu chaperone for superoxide dismutase; 
COX, cytochrome oxidase; SOD1, superoxide dismutase 1; ATOX1, antioxidant 1; TGN, trans-Golgi network; SLC25A3, solute carrier family 25 member 
3
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by activating pro-angiogenic factors, such as fibroblast 
growth factors (FGFs), vascular endothelial growth factor 
(VEGF), tumor necrosis factor alpha (TNF-α), interleu-
kin (IL)-1, IL-6, and IL-8 [45–48]. Taken together, Cu is a 
critical trace metal element in tumor development. Elu-
cidating the molecular mechanisms by which Cu drives 
tumorigenesis will aid the discovery of new therapeutic 
targets for cancer.

Cuproptosis
Although Cu-induced cell death has been investigated 
for decades, the concept of ‘cuproptosis’ was not pro-
posed until 2022 by Tsvetkov and colleagues [9]. A sig-
nificant feature of Cu ionophores and Cu-treated cells 
is a sharp increase in ROS levels, which has long been 
considered the main cause of cell death. ROS scaven-
gers, such as N-acetylcysteine (NAC), can mitigate the 
extent of Cu-induced cell death in some cells [49–53]. 
However, eliminating ROS does not always inhibit cell 
death induced by Cu [9, 54], suggesting that ROS are 
not primary mediators of Cu-induced cell death. Tsvet-
kov et al. also observed that antioxidants, such as NAC, 
JP4-039, ebselen, and α-tocopherol, were unable to res-
cue cells from elesclomol (a Cu ionophore)–Cu-induced 
cellular damage, whereas agents that chelate Cu, such 
as GSH and ammonium tetrathiomolybdate (TTM), 
could prevent the lethality of elesclomol–Cu to cells [9]. 
This type of cellular damage could not be rescued by 
inhibitors of other types of cell death, such as apoptosis, 
ferroptosis, and necrosis. Tsvetkov et al. found that eles-
clomol could transport  Cu2+ across membranes into the 
mitochondria, where  Cu2+ was reduced to  Cu+ by ferre-
doxin 1 (FDX1) [9], a mitochondrial matrix reductase. 
However, excess mitochondrial  Cu+ can directly bind to 
lipoylated DLAT, an essential component of mitochon-
drial TCA cycle, causing DLAT aggregation and cytotox-
icity [9]. Additionally, excess mitochondrial  Cu+ reduces 
the stability of the Fe–S cluster proteins [9], which play 
an important role in OXPHOS-related electron trans-
port. These induce proteotoxic stress, ultimately lead-
ing to cell death (Fig.  2). Pharmacological inhibition of 
the electron transport chain (ETC) and pyruvate uptake 
could reverse elesclomol–Cu-induced cell death [9], 
indicating that cuproptosis depends on mitochondrial 
respiration. Additionally, whole-genome CRISPR-Cas9 
screening, combined with single-gene knockout valida-
tion experiments, showed that proteins in the lipoic acid 
(LA) pathway, such as FDX1, LA synthase (LIAS), lipoyl 
transferase 1 (LIPT1), and dihydrolipoamide dehydro-
genase (DLD), and genes in the pyruvate dehydrogenase 
complex, such as DLAT, pyruvate dehydrogenase E1 sub-
unit alpha 1 (PDHA1), pyruvate dehydrogenase E1 subu-
nit beta (PDHB), metal-regulatory transcription factor-1 

(MTF1), glutaminase (GLS), and cyclin-dependent 
kinase inhibitor 2A (CDKN2A), are important regulators 
of cuproptosis (Fig. 2) [9]. These results also ascertain the 
significance of FDX1 and its regulation of mitochondrial 
protein lipoylation in cuproptosis.

Cuproptosis and regulated cell death
Although Cu ionophores combined with Cu can induce 
cuproptosis, previous studies have also found that exces-
sive Cu in cells can cause other ways of regulated cell 
death (RCD) (Fig. 3), suggesting a molecular mechanism 
crosstalk between cuproptosis and other forms of cell 
death. Understanding the role of Cu in other cell death 
modes can help develop more reasonable tumor treat-
ment strategies targeting cuproptosis.

Cuproptosis and ferroptosis
Ferroptosis is a form of programmed cell death induced 
by disrupting iron homeostasis and accumulating ROS 
in lipids. Although Tsvetkov and colleagues found that 
the ferroptosis inhibitor ferrostatin-1 did not rescue 
cells from growth inhibition induced by elesclomol–Cu, 
Gao et al. observed that ferrostatin-1 and liproxstatin-1, 
another ferroptosis inhibitor, could inhibit elesclomol–
Cu-induced cell damage in colorectal cancer (CRC) 
cells [55]. Gao et al. demonstrated that elesclomol alone 
treatment could reduce the ATP7A expression levels in 
CRC cells, potentially mediating the degradation of sol-
ute carrier family 7 membrane 11 (SLC7A11), a cysteine-
glutamate transporter, resulting in lipid peroxidation and 
ferroptosis, suggesting that it is unclear whether elesclo-
mol–Cu-induced ferroptosis depends on Cu [55]. Fur-
thermore, previous studies have reported that reducing 
the Fe–S cluster proteins, which are the main features of 
cuproptosis, can induce ferroptosis [56]. Cu can exacer-
bate erastin-induced ferroptotic cell death in pancreatic 
ductal adenocarcinoma (PDAC) cells through increasing 
ubiquitination and aggregation of glutathione peroxidase 
4, a protein blocking ferroptosis by eliminating phospho-
lipid hydroperoxides, promoting its macroautophagic 
degradation [57].

These studies indicate a close interplay between 
cuproptosis and ferroptosis, with a key intersection 
being mitochondrial metabolism. As essential energy 
sources for cells, mitochondria play critical roles in reg-
ulating ferroptosis [58]. Cellular energy metabolic path-
ways, such as the TCA cycle and glycolysis, are involved 
in this regulation. For instance, blocking the TCA cycle 
or loss of glutamine can attenuate cystine-deprivation 
or erastin-induced ferroptosis [59], suggesting that the 
TCA cycle and glutaminolysis are required for ferrop-
tosis. Similarly, in the process of cuproptosis, the TCA 
cycle in mitochondria is crucial [9]. The aggregation of 
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Fig. 2 Mechanisms of cuproptosis. The transportation of  Cu2+ by Cu ionophores and the uptake of  Cu+ by SLC31A1 lead to the excessive 
accumulation of Cu within cells. Cu ionophores, such as elesclomol, can transport  Cu2+ into mitochondria, where  Cu2+ is reduced to  Cu+ by FDX1. 
FDX1 is a crucial regulatory protein for the lipoylation of mitochondrial TCA cycle enzymes, particularly DLAT. Accumulated  Cu+ in mitochondria 
induces DLAT aggregation by directly binding to lipoylated DLAT and destabilizes Fe–S cluster proteins, ultimately triggering mitochondrial 
proteotoxic stress and resulting in cuproptosis. Key positive regulators of cuproptosis include LIAS, DLD, LIPT1, and FDX1 from the LA pathway, 
as well as DLAT, PDHA1, and PDHB from the PDH complex. Important inhibitors of cuproptosis include MTF1, GLS, and CDKN2A. FDX1 promotes 
G6PD degradation by binding to it, resulting in GSH reduction and intensified cuproptosis. METTL16 enhances cuproptosis by promoting FDX1 
accumulation via m6A modification on FDX1 mRNA, a process inhibited by SIRT2 through delactylating METTL16 at K229. MELK increases DLAT 
expression through the PI3K/mTOR signaling pathway, enhancing mitochondrial function and cuproptosis. AMPK activated by elesclomol–Cu 
facilitates cuproptosis. Elesclomol–Cu upregulates PPP1R15A to promote proteotoxic stress by enhancing EIF2S1 and 4E-BP1-associated translation 
initiation, thereby enhancing cuproptosis. p32 enhances elesclomol–Cu-induced cuproptosis by promoting lipo-DLAT oligomerization. MUC20 
induces cuproptosis by inhibiting CDKN2A expression. GAPDH and ARID1A inhibit cuproptosis by promoting cellular glycolysis, while SLC7A11 
inhibits cuproptosis by upregulating intracellular GSH. SLC31A1, the solute carrier family 31 member 1; FDX1, ferredoxin 1; ES, elesclomol; Disulfiram, 
disulfiram; DLAT, dihydrolipoamide S-acetyltransferase; TCA, tricarboxylic acid; LIAS, LA synthase; LIPT1, lipoyl transferase 1; DLD, dihydrolipoamide 
dehydrogenase; PDHA1, pyruvate dehydrogenase E1 subunit alpha 1; PDHB, pyruvate dehydrogenase E1 subunit beta; MTF1, metal-regulatory 
transcription factor-1; GLS, glutaminase; CDKN2A, cyclin-dependent kinase inhibitor 2A;G6PD, glucose-6-phosphate dehydrogenease; GSH, 
glutathione; SIRT2, Sirtuin 2; SLC7A11, solute carrier family 7 membrane 11; MUC20, Mucin 20; MELK, maternal embryonic leucine zipper kinase; 
ARID1A, AT-rich interactive domain 1A; AMPK, adenosine 5 ‘-monophosphate (AMP)-activated protein kinase; TIGD1, trigger transposable 
element-derived 1; WASF2, Wiskott-Aldrich syndrome protein family member 2
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lipoylated DLAT in the TCA cycle is a major inducer of 
elesclomol–Cu-mediated cell death [9]. Furthermore, 
cysteine-deprivation-induced ferroptosis is affected by 
α-ketoglutarate and other intermediates of the TCA 
cycle, such as succinate and fumarate [58]. Inhibition of 
ETC complexes can attenuate cystine-deprivation and 
erastin-induced lipid peroxidation and cell death [59]. 
Interestingly, inhibition of ETC complexes can also miti-
gate elesclomol–Cu-induced cuproptosis [9], suggesting 
that cuproptosis and ferroptosis share the same mito-
chondrial energy dependency.

Another important hub for cuproptosis and fer-
roptosis is GSH, a crucial antioxidant. GSH acts as an 
inhibitor of both ferroptosis and cuproptosis, indicat-
ing that it serves as a significant co-regulator in these 
processes. Both Cu and iron (Fe) promote the oxidation 
and subsequent consumption of GSH by binding to it 
[60]. Additionally, GSH chelates Fe and Cu to reduce 
metal ion toxicity [60]. Since Fe can consume GSH, 
over accumulation of Fe in cells may trigger cupropto-
sis by inhibiting GSH. GSH is also a necessary cofac-
tor for GPX4, which reduces cytotoxic lipid peroxides 
(L-OOH) to corresponding alcohols (L-OH) while con-
verting reduced GSH to oxidized glutathione (GSSG), 
thus reducing lipid peroxidation and inhibiting ferrop-
tosis [61]. The accumulation of Cu in cells promotes 
the consumption of GSH, creating favorable conditions 
for ferroptosis. SLC7A11 transports glutamate outside 
and cystine inside cells. Cystine is then converted to 
cysteine, a component of GSH. SLC7A11 inhibitors, 
such as sorafenib and erastin, are commonly used to 
induce ferroptosis by reducing intracellular cysteine 

levels and GSH synthesis, which also makes cupropto-
sis more likely. Indeed, Wang et  al. recently observed 
that sorafenib and erastin can induce cuproptosis in 
primary liver cancer cells by primarily reducing intra-
cellular GSH synthesis and increasing Cu-dependent 
lipoylated protein aggregation [62]. Additionally, BSO, 
an inhibitor of GSH synthesis known to induce fer-
roptosis, has also been found to induce cuproptosis 
[9]. These studies indicate that GSH is a critical mol-
ecule mediating the crosstalk between ferroptosis and 
cuproptosis. Targeting GSH could be a potential strat-
egy to simultaneously induce ferroptosis and cupropto-
sis in tumor cells.

ROS are also critical factors in understanding the 
crosstalk between ferroptosis and cuproptosis. Both 
Fe and Cu can produce ROS through the Fenton reac-
tion, while rapid GSH depletion mediated by these 
metals can further exacerbate cellular ROS accumula-
tion. Excessive ROS promotes lipid peroxidation and 
ferroptosis [63]. Although in elesclomol–Cu-induced 
cuproptosis, Cu toxicity primarily results from the 
aggregation of lipoylated proteins in the mitochondria 
rather than ROS production [9], excessive Cu-mediated 
ROS generation and GSH depletion can also contrib-
ute to ferroptosis onset. In summary, while cupropto-
sis and ferroptosis have distinct initiation mechanisms 
and molecular characteristics, they mutually influence 
each other, creating favorable conditions for both pro-
cesses. This interplay adds complexity to their regula-
tory mechanisms but also offers potential advantages 
for cancer therapy.

(See figure on next page.)
Fig. 3 Cuproptosis and regulated cell death. A Excess Cu triggers ferroptosis. Accumulation of Cu in mitochondria generates ROS, which 
promotes lipid peroxidation and induces ferroptosis. Cu enhances the ubiquitination of GPX4, a protein that blocks ferroptosis by eliminating 
phospholipid hydroperoxides, facilitating its autophagic degradation and exacerbating ferroptotic cell death. Ferroptosis inducers, such as sorafenib 
and erastin, can induce cuproptosis by upregulating FDX1 protein levels, promoting lipoylated protein aggregation, and downregulating GSH. 
The reduction of Fe–S cluster proteins mediated by excessive Cu in mitochondrion further promotes ferroptosis. B Excess Cu triggers apoptosis. 
Intracellular accumulation of Cu generates ROS via the Fenton reaction, which induces apoptosis. Mitochondrial Cu accumulation causes 
mitochondrial stress, leading to the localization of pro-apoptotic proteins (such as BAX and BAK) to the outer mitochondrial membrane, resulting 
in the release of cytochrome c from mitochondria. Cytosolic cytochrome c induces the formation of the apoptosome, which activates the caspases 
signaling axis, mediating apoptosis. Cu can inhibit proteasome activity either by directly binding to the proteasome or by causing NPL4/p97 
aggregation, inducing ER stress and ultimately leading to apoptosis. Additionally, Cu can activate the MAPK-JNK signaling pathway to trigger 
cell apoptosis. C Cu regulates autophagy. Cu activates ULK1/2 by directly binding to them, promoting phagophore assembly and subsequently 
autophagosome formation. Cu can also inhibit mTOR by activating AMPK, facilitating phagophore formation. Excess Cu in cells upregulates 
the expression of autophagy-related genes, such as MAP1LC3 and ATG5. Cu inhibits the cysteine protease activity of ATG4B by directly binding 
to it, thus preventing the delipidation of MAP1LC3 and consequently blocking cellular autophagy. Cu promotes the fusion of lysosomes 
and autophagosomes, enhancing cellular autophagic flux. D. Excess Cu induces pyroptosis. Cu induces ROS production and ER stress, promoting 
the formation of the NLRP3 inflammasome, which activates caspase 1. Caspase 1 cleaves GSDMD to generate the N-terminal domain that creates 
membrane pores, promoting pyroptosis. ROS, reactive oxygen species; GPX4, glutathione Peroxidase 4; FDX1, ferredoxin 1; GSH, glutathione; ER, 
endoplasmic reticulum; BAX, BCL2 Associated X; BAK, BCL2 antagonist/killer 1; cyto.c, cytochrome c; MAPK, mitogen-activated protein kinase; JNK, 
Jun N-terminal kinase; ULK1/2, Unc-51-like autophagy activating kinase 1/2; mTOR, mechanistic target of rapamycin kinase; AMPK, adenosine 5 
‘-monophosphate (AMP)-activated protein kinase; MAP1LC3, microtubule-associated protein 1 light chain 3; ATG5, autophagy related 5; NLRP3, 
NOD-, LRR- and pyrin domain-containing protein 3; GSDMD, gasdermin D
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Cuproptosis and apoptosis
Excessive Cu accumulation in cells has also been linked 
to apoptosis. For instance, treatment with  CuSO4 can 
upregulate the C/EBP homologous protein (CHOP), Jun 
N-terminal kinase (JNK), and caspase-12 expression 
levels in mouse liver cells, thereby enhancing cell apop-
tosis-related signaling pathways, such as endoplasmic 

reticulum (ER) stress [64]. Liu et  al. also found that 
treatment with  CuSO4 can increase the ROS levels and 
protein carbonyl compounds in cells and decrease GSH 
levels, thereby activating the mitochondrial pathway of 
apoptosis signaling, such as cytochrome c release into 
the cytosol and cleavage of caspase-9 and caspase-3 [65]. 
In myeloma cells and osteosarcoma, disulfiram, another 

Fig. 3 (See legend on previous page.)



Page 8 of 42Zhang et al. Journal of Hematology & Oncology           (2024) 17:68 

Cu ionophore, combined with Cu, can induce apoptosis 
by activating ROS and JNK signaling pathways [66, 67]. 
Furthermore, Cu can induce apoptosis by binding to and 
inhibiting 20S proteasome subunits and activating the 
cytochrome c-caspase cascade signaling axis [68, 69].

Before the identification of cuproptosis, the damage to 
tumor cells treated with Cu ionophores combined with 
Cu was primarily considered to result from ROS pro-
duction. Excessive ROS within cells can trigger apop-
tosis through various pathways, including ER stress, 
mitochondrial damage, and activation of death recep-
tors. In certain tumor cells, such as lung cancer cells [49, 
51], gastric cancer [50], melanoma [52], and osteosar-
coma [53], ROS scavengers can mitigate the cell damage 
induced by Cu ionophores and Cu. However, in breast 
cancer and glioblastoma cells [9, 54], ROS scavengers do 
not exhibit this protective effect. Additionally, some stud-
ies have demonstrated that Cu indeed induces apoptosis 
in specific tumor cells [52, 67, 70]. These studies suggest 
that ROS may serve as a crucial link between cuproptosis 
and apoptosis. Additionally, different tumor cells exhibit 
varying tolerance and responses to ROS, which may 
explain the diverse roles of apoptosis in Cu-induced cell 
death.

Cuproptosis and autophagy
Cu is also considered to regulate autophagy. Studies 
have revealed that Cu can upregulate the autophagy-
related gene expression in cells, such as LC3b/LC3a, 
BECN1, Atg3, and Atg5 [71, 72]. Besides, Cu can directly 
bind to the Unc-51-like autophagy activating kinase 1/2 
(ULK1/2), crucial protein kinases regulating autophagy 
initiation, activating ULK1/2 and its downstream 
autophagy pathway [73]. In  KRASG12D-driven lung can-
cer, deletion of the Cu transporter SLC31A1 diminished 
the Cu-mediated activation of ULK1/2, resulting in a 
blockage in the autophagic flux and tumor growth sup-
pression [73]. However, whether Cu-induced autophagy 
contributes to Cu toxicity remains uncertain. For 
instance, Tang et al. found that in ATP7B R778L mutant 
hepatocytes, Cu can activate autophagy, which is ben-
eficial for inhibiting cell necrosis and reducing Cu tox-
icity [74]. However, in some tumor cells Cu was found 
to inhibit autophagy. For instance, inhibiting SLC31A1-
dependent copper absorption could enhance autophagic 
flux of pancreatic cancer cells, leading to the suppres-
sion of tumor cell death [75]. Besides, it was found that 
Cu could directly bind to autophagy-related gene 4B, a 
crucial regulator in the autophagy process responsible 
for priming and delipidation of LC3, and suppress its 
cysteine protease activity, consequently blocking cellular 
autophagy [76]. These results indicate that the regulation 
of the autophagy process by Cu is bidirectional.

Cuproptosis and pyroptosis
Moreover, Cu can affect pyroptosis in cells. In jejunal 
epithelial cells, Cu can upregulate the pyroptosis-related 
gene expression, such as CASP1, GSDMD, and IL-1β, 
which is believed to be mainly mediated by the ER stress-
triggered IRE1α-XBP1 pathway [77]. In hepatocytes, Cu 
can similarly upregulate pyroptosis-related gene expres-
sion, such as CASP1, NLRP3, IL-1β, and IL-18, and NAC 
and a caspase inhibitor can reverse this behavior, suggest-
ing that ROS generated by Cu induction may be the main 
mediators of pyroptosis [78]. Excessive ROS can induce 
various types of cell death, such as apoptosis, ferroptosis, 
pyroptosis. Cu can induce ROS generation in numerous 
tumor cells, which may be a crucial factor in the cross-
talk between different types of Cu-triggered RCD. This 
indicates that in some tumor cells highly sensitive to 
ROS, cuproptosis may not be irreplaceable in Cu-induced 
cell damage. In summary, Cu overload can cause cellular 
damage from multiple angles. Although this complicates 
the mechanism of Cu-induced cell damage, it provides 
more possibilities for Cu-based tumor therapy.

Targeting cuproptosis for cancer therapy
Although Cu promotes tumorigenesis to a certain extent, 
excessive Cu accumulation in tumor cells disrupts cellu-
lar homeostasis and induces cuproptosis. Therefore, tar-
geting cuproptosis may be a potential tumor treatment 
strategy.

Induction of tumor cell cuproptosis
Cu ionophores
Cu ionophores, defined as compounds or chemicals, can 
bind to Cu and carry it into cells, increasing the intra-
cellular Cu levels. As previously mentioned, the most 
extensively studied Cu ionophores are elesclomol and 
disulfiram (Table  1). Elesclomol, a highly lipophilic Cu-
binding molecule, can chelate extracellular  Cu2+ to form 
an elesclomol–Cu2+ complex, facilitating the transport of 
Cu into cells [145, 146]. The anti-tumor activity of eles-
clomol has been recognized for decades and is believed 
to be Cu-dependent (Table  1). Although early stud-
ies reported that cell death induced by elesclomol–Cu 
was linked to apoptosis and ferroptosis, Tsvetkov et  al. 
observed that elesclomol–Cu induced cellular damage 
through cuproptosis [9]. Elesclomol–Cu can increase 
ROS levels in tumor cells [49, 54, 83], exacerbating cel-
lular damage and suggesting that elesclomol–Cu may kill 
tumor cells via multiple pathways. Additionally, recent 
studies have revealed FDX1-independent mechanism(s) 
of elesclomol–associated Cu release, achieving Cu deliv-
ery to non-mitochondrial cuproproteins [147]. Whether 
these non-mitochondrial Cu participates in cell death 
other than cuproptosis induced by elesclomol–Cu 
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requires further investigation. The crosstalk mecha-
nisms between cuproptosis and other forms of cell death 
are poorly understood and necessitate more research to 
unveil, possibly facilitating the development of effective 
anticancer strategies based on elesclomol–Cu. Elesclo-
mol has not yet shown effective therapeutic outcomes 
in clinical trials [148]. A possible reason is that single-
agent elesclomol treatment may not elevate Cu levels in 
tumor cells to those required to trigger cuproptosis. A 
subsequent phase III trial results revealed that although 
the combination of elesclomol with paclitaxel did not 
improve progression-free survival in melanoma patients, 
elesclomol exhibited better anti-tumor effects in patients 
with low lactate dehydrogenase (LDH) levels [149]. Low 
LDH represents diminished glycolysis [150], reflecting 
enhanced mitochondrial metabolism. This aligns with 
Tsvetkov’s finding that cuproptosis relies on mitochon-
drial metabolism.

Disulfiram is an aldehyde dehydrogenase (ALDH) 
inhibitor FDA-approved for treating alcoholism. Disulfi-
ram has also been deeply studied for an extended period 
in anti-tumor research (Table  1). Disulfiram interacts 
with Cu as a Cu ionophore to form the metabolite bis-
diethyldithiocarbamate-Cu (CuET), which transports Cu 
across the cell membrane [151]. Disulfiram–Cu–induced 
cellular damage is also linked to apoptosis, ferroptosis, 
and cuproptosis (Table  1). Multiple targets or signaling 
pathways have been reported to be associated with the 
anti-tumor activity of disulfiram–Cu, such as ROS levels 
[94, 108, 109, 121, 122, 132, 134, 137], the ubiquitin–pro-
teasome system [112, 124, 125, 133], the JNK and p38 
pathways [66, 67, 114, 122], the NF-kB pathway [90, 92, 
93, 109, 111, 122], and NPL4 [107, 127, 133]. In addition, 
disulfiram–Cu has been reported to overcome tumor 
drug resistance to cisplatin [91, 110], paclitaxel [108, 
110], gemcitabine [109, 111], 5-fluorouracil (5-FU) [90, 
118], temozolomide [98, 124], and sunitinib [96]. Table 1 
summarizes the anti-tumor function of disulfiram in 
preclinical studies. Although, like elesclomol, disulfiram 
has presented significant anti-tumor effects in preclini-
cal experiments, exciting results have yet to emerge from 
clinical trials [152, 153]. One limiting factor may be the 
inability to maintain high Cu levels in patient tumor cells. 
However, given the good clinical safety profile, conduct-
ing more clinical trials that combine elesclomol or disul-
firam with clinical drugs could facilitate the translation 
of cuproptosis-associated anti-tumor therapies from the 
laboratory to clinical practice.

Besides elesclomol and disulfiram, other compounds, 
such as diacetyl-bis (N4-methylthiosemicarbazone) 
(ATSM) and glyoxal-bis (N4-methylthiosemicarba-
zone) (GTSM), have been identified as Cu ionophores 
(Table  1). Cu complexes with ATSM or GTSM induced 

cytotoxicity in human prostate hyperplastic and carci-
noma cell lines without affecting the primary prostate 
epithelial cells [140]. This selective cytotoxicity may be 
associated with differential Cu levels in tumor cells, as 
Cu concentrations are elevated in prostate cancer cells 
compared to normal prostate epithelial cells [154]. Addi-
tionally, 7-iodo-5-chloro-8-hydroxyquinoline (CQ) has 
been reported to mediate Cu accumulation in cells [141]. 
In cancerous prostate cells, rather than normal prostate 
cells, CQ-Cu complexes promote apoptosis by facilitating 
the degradation of XIAP, a protein that inhibits caspases 
[141]. Notably, CQ can induce cellular damage via mul-
tiple pathways, including proteasome and lysosome dys-
function, conferring severe toxic side effects that limit its 
clinical application in cancer therapy [155]. Recent stud-
ies have also revealed that curcumin, a natural compound 
derived from Curcuma longa, can act as a Cu ionophore 
and promote cuproptosis in CRC cells [142, 143]. Cur-
cumin is a potential anticancer natural product that 
can inhibit the cell cycle, induce apoptosis, and activate 
tumor suppressors. Additionally, several clinical studies 
have shown that curcumin has good efficacy and safety 
[156]. These characteristics make curcumin a promis-
ing cuproptosis inducer for clinical application. Further-
more, salicylaldehyde isonicotinoyl hydrazone (SIH), a 
lipophilic tridentate iron chelator, can facilitate the trans-
portation and intracellular release of  Cu2+ in HepG2 
cells, thereby triggering mitochondria-mediated apop-
tosis, suggesting that SIH is also a Cu ionophore [144]. 
However, the cell death induced by these Cu ionophores, 
beyond elesclomol and disulfiram, whether related to the 
aggregation of lipoylated proteins and the reduction of 
Fe–S proteins, requires further investigation.

During cuproptosis, the primary function of Cu iono-
phores is to transport Cu across the cell membrane and 
release it into the cell. Notably, most metal-ion iono-
phores are not specific to a single metal element. For 
instance, elesclomol can directly bind  Fe2+ [157]. Besides, 
elesclomol and disulfiram can increase cellular iron 
content during transporting Cu into cells [158, 159]. 
This non-specificity complicates the mechanism of cell 
damage caused by Cu ionophores combined with Cu. 
However, treatment with such agents can cause metal 
dyshomeostasis, exacerbating the side effects of the 
therapy. Consequently, developing Cu- or tumor-specific 
ionophores represents a potential breakthrough in accel-
erating the clinical application of Cu ionophores for can-
cer treatment.

Small compounds
Cu is a dual-faceted player in tumorigenesis. A high 
Cu level promotes tumor cell proliferation and growth, 
suggesting some resistance mechanisms to cuproptosis 
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in tumor cells. As a result, small-molecule compounds 
that disrupt Cu homeostasis may also induce or 
increase the sensitivity of tumor cells to cuproptosis. 
Recent studies have unveiled several small compounds 
capable of inducing cuproptosis (Table 2). For instance, 
Yang et  al. discovered that zinc pyrithione can induce 
cuproptosis in triple negative breast cancer (TNBC) 
cells by disrupting intracellular Cu homeostasis and 
DLAT oligomerization, potentially contributing to the 
chemosensitivity of TNBC [160]. In CRC cells, 4-Octyl 
itaconate (4-OI) inhibits glycolysis by targeting the 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
promoting elesclomol–Cu-mediated cuproptosis [161]. 
Besides, anisomycin, a well-known inhibitor of protein 
synthesis that binds to the 60S ribosomal subunits, has 
been found to bind and inhibit Yinyang 1 (YY1), inacti-
vating the transcriptional activity of core genes of the 
LA pathway (FDX1, DLD, DLAT, and PDHB), poten-
tially leading to cuproptosis in ovarian cancer stem 
cells [162]. Additionally, as mentioned above, sorafenib, 
the first multi-tyrosine kinase inhibitor approved for 
treating many cancers and capable of inducing ferrop-
tosis, and erastin, a commonly used ferroptosis inducer, 
can aggravate cuproptosis in liver cancer cells [62]. 
Compared to Cu ionophores, small molecular com-
pounds that disrupt tumor cell Cu homeostasis can 
induce tumor cell cuproptosis without Cu supplemen-
tation, thereby avoiding the imbalance of metal ions in 
the body and reducing metal-induced side effects dur-
ing treatment. The cuproptosis research is currently 
in its infancy. The development and discovery of more 
cuproptosis inducers, especially those based on drugs 
approved for clinical use, could significantly promote 
the clinical application of cuproptosis-targeted cancer 
treatment strategies.

Nanomedicine
Dissolving, adsorption, encapsulation, or attachment to 
nanomatrices can transform drugs into nanomedicines. 
These nanomedicines use the characteristics of tumor tis-
sues or cells, such as acidic environments, elevated GSH 
and ROS levels, and tumor cell-specific surface markers, 
to accumulate or release within tumor sites. This strate-
gic approach can increase the precision of drug delivery 
and minimize the side effects of cancer therapy. Given 
the relatively low selectivity of Cu ionophores toward 
tumor cells, using a nanoparticle-based delivery system 
for the precise delivery of Cu to tumor cells can effec-
tively enhance cuproptosis in tumor tissues while reduc-
ing damage to other normal tissues. Since cuproptosis 
was identified, more studies have focused on this area 
(Table  3). For instance, DSF@PEG/copper-HMSNs can 
precisely release  Cu2+ and disulfiram in tumor tissues to 
induce cuproptosis and inhibit tumor growth [166]. Au 
NCs-Cu2+@SA-HA NHGs can enhance cuproptosis-
mediated tumor therapy by depleting GSH and  H2O2 in 
the tumor tissues [180].

Researchers have aimed to precisely deliver Cu, Cu 
ionophores, and other anticancer agents, such as chemo-
therapeutic drugs and siRNA (Table 3), to explore tumor 
therapy strategies based on nanomedicine-induced 
cuproptosis. This approach enhances cell damage 
through other mechanisms or sensitization to cuprop-
tosis, thereby synergistically combating tumors. For 
example, TP-M–Cu–MOF/siATP7a efficiently silences 
the ATP7A gene and increases Cu intake, thus inducing 
cuproptosis and enhancing anti-tumor efficacy [178]. 
OMP contains siRNA targeting PDK1, which, during 
releasing  Cu2+, can reduce cellular glycolysis by decreas-
ing PDK1 expression, thereby sensitizing cells to cuprop-
tosis [186]. LDH/HA/5-FU nanosheets can release 5-FU 

Table 2 Small compounds capable of inducing cuproptosis

ZnPT zinc pyrithione, TNBC triple negative breast cancer, 4-OI 4-Octyl itaconate, CRC  colorectal cancer, GAPDH glyceraldehyde-3-phosphate dehydrogenase, HCC 
hepatocellular carcinoma, ICC intrahepatic cholangiocarcinoma, GSH glutathione, MDS myelodysplastic syndromes, IKE imidazole ketone erastin

Compound Cancer type Materials (cells) The effect on cuproptosis and its involved mechanism Refs.

ZnPT TNBC MDA-MB-231, HCC1806 ZnPT induces cuproptosis by disrupting intracellular copper homeostasis 
and DLAT oligomerization. ZnPT-induced cuproptosis potentially contributes 
to chemosensitivity of TNBC

[160]

4-OI CRC HCT116, LoVo 4-OI inhibits glycolysis by targeting GAPDH to promote elesclomol–Cu-
mediated cuproptosis

[161]

Anisomycin Ovarian cancer Human ovarian cancer stem cells Anisomycin has a potential toxicity of promoting cuproptosis in human 
ovarian cancer stem cells by attenuating YY1/lipoic acid pathway activation

[162]

Sorafenib HCC, ICC MHCC-97H, Huh7, QBC939, CCLP1 Sorafenib enhances cuproptosis in HCC cells by increasing Cu-dependent 
lipoylated protein aggregation and reducing intracellular GSH synthesis

[62]

Erastin HCC, ICC MHCC-97H, Huh7, QBC939, CCLP1 Erastin enhances cuproptosis in HCC cells by increasing Cu-dependent 
lipoylated protein aggregation and reducing intracellular GSH synthesis

[62]

IKE MDS SKM-1, MUTZ-1 IKE synergistically enhances elesclomol–Cu-mediated cytotoxicity in MDS 
cell lines by triggering cuproptosis and ferroptosis

[163]
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while delivering  Cu2+ to tumor tissues, thus inducing 
apoptosis and cuproptosis in tumor cells [207].

In addition, unlike drug treatment of vitro cultured 
cells, nanomedicine delivered to tumor tissues impacts 
the tumor microenvironment (TME), an important factor 
influencing tumor therapy outcomes, especially in tumor 
immunotherapy. Nanomedicine containing Cu relies on 
the TME for precise delivery to tumor tissues and has the 
potential to modify the TME, making it more conducive 
to tumor therapy (Table  3). For instance, PDA-DTC/Cu 
NPs trigger cuproptosis in tumor cells and facilitate the 
repolarization of tumor-associated macrophages to miti-
gate the tumor immunosuppressive microenvironment 
(TIME) [188]. Similarly, ES@CuO promoted cupropto-
sis-driven immune responses and remodeled the TIME 
by enhancing lymphocyte infiltration and increasing the 
release of inflammatory cytokines within tumors. The 
synergistic application of ES@CuO with programmed 
cell death-1 (PD-1) immunotherapy markedly enhanced 
anti-tumor efficacy in murine melanoma models [196]. 
Besides, CQG NPs induce cuproptosis and pyroptosis by 
disrupting antioxidant defense mechanisms within tumor 
cells [201]. This dual action facilitates the transformation 
of the TIME, augments the infiltration of immune cells 
into the tumor, and triggers a robust systemic immune 
response.

Furthermore, the integration of nanomedicine with 
dynamic therapies, such as photothermal therapy (PTT), 
photodynamic therapy (PDT), and chemodynamic 
therapy (CDT) significantly enhances the precision and 
efficacy of tumor treatments. This approach represents 
a promising research direction for future studies on 
cuproptosis-associated therapeutic strategies (Table  3). 
For instance, PTT can augment E. coli@Cu2O-induced 
ferroptosis and cuproptosis, reversing the immunosup-
pression of colon tumors by initiating dendritic cell mat-
uration and T-cell activation [205]. Through PTT and 
CDT, PEG@Cu2O-ES can generate ROS to target the 
ATP-Cu pump, reducing the efflux of Cu ions and exacer-
bating cuproptosis [208]. In nanomedicine, multiple anti-
tumor components can be incorporated, significantly 
enhancing the medication’s plasticity and multifunc-
tionality. For instance, the CCNAs constructed by Wen 
et  al., in addition to  Cu2+, contain zinc phthalocyanine 
(ZnPc), 1-methyl tryptophan (1-MT), and doxorubicin 
(DOX) [209]. Upon near-infrared laser irradiation, ZnPc 
released into tumor tissues exhibited a photodynamic 
effect that generated ROS, effectively promoting the 
release of DOX and inducing apoptosis while intensifying 
cuproptosis [209]. Moreover, the release of 1-MT from 
CCNAs can reverse TIME by inhibiting IDO-1-mediated 
Trp degradation, triggering an immunogenic cell death 
(ICD) response [209].

Although nanomedicine offers broad prospects for 
exploring tumor treatments, numerous issues must be 
addressed before clinical application, warranting atten-
tion in future studies on tumor treatments based on 
cuproptosis. First, current experimental studies are pri-
marily conducted in animal tumor models, which differ 
from primary or metastatic tumors in humans, espe-
cially regarding the tumor microenvironment. Second, 
the efficacy of laboratory nanomedicine in delivering 
human tumor tissues remains unknown. Third, research 
on cuproptosis-related nanomedicine has mainly focused 
on a limited array of cancer types in animal models, such 
as breast and colorectal cancers. Expanding studies on 
other types of tumors, particularly those that are diffi-
cult to treat, is necessary to broaden the scope of target-
ing cuproptosis for tumor treatment. Lastly, biosafety is 
a critical concern, representing a significant factor in the 
transition of experimental drugs to clinical applications.

Sensitization of tumor cell cuproptosis
Targeting cell metabolism sensitizes tumor cell cuproptosis
Given the close relationship between cuproptosis and 
cellular metabolism, targeting cellular metabolism pre-
sents a strategy to sensitize tumor cells to cuproptosis. 
Cuproptosis is strongly associated with mitochondrial 
metabolism [9]. Elevated mitochondrial metabolism can 
sensitize tumor cells to Cu-induced cell death. Inhibition 
of the mitochondrial ETC or pyruvate uptake diminishes 
tumor cell responsiveness to Cu ionophores [9]. This sug-
gests that inducing cuproptosis could effectively inhibit 
tumor growth in cells with high aerobic respiration levels, 
such as melanoma [217] and leukemia [218]. Addition-
ally, a high mitochondrial metabolic state is characteristic 
of tumor cell resistance to certain drugs such as protea-
some inhibitors [9, 219], cisplatin [220], and 5-FU [221]. 
Thus, tumor cells that exhibit resistance to these drugs 
may be more sensitive to Cu ionophores, and inducing 
cuproptosis may improve treatment outcomes in patients 
with acquired drug resistance.

Furthermore, high glycolysis levels are considered unfa-
vorable for cuproptosis [9], indicating that targeting gly-
colysis in tumor cells could also be a method to induce or 
sensitize cuproptosis. For instance, 4-OI attenuates aero-
bic glycolysis in CRC cells by targeting GAPDH, thereby 
sensitizing them to cuproptosis induced by elesclo-
mol–Cu [161]. Aerobic glycolysis is the primary energy 
source for most tumor cells, and inhibiting glycolysis can 
suppress their growth [222]. This suggests that inducing 
cuproptosis may enhance the inhibitory effect on tumor 
growth during aerobic glycolysis-targeted tumor therapy. 
Besides, recent studies have linked cuproptosis to protein 
synthesis, although the mechanism remains unclear. Liu 
et  al. found that in elesclomol–Cu-treated cancer cells, 
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PPP1R15A could promote protein synthesis by downreg-
ulating eIF2α phosphorylation and upregulating 4EBP1 
phosphorylation, thereby exacerbating proteotoxic stress 
[223], suggesting tumor cells with the high rate of protein 
synthesis might be more sensitive to cuproptosis induc-
ers. Thus, although the relationship between cuproptosis 
and cell metabolism remains relatively vague and requires 
more basic and clinical research, the differential response 
of cuproptosis under various cellular metabolic states will 
help develop effective clinical application strategies.

Targeting cuproptosis regulatory proteins and pathways 
sensitizes tumor cell cuproptosis
Tsvetkov et al. identified several genes regulating cuprop-
tosis. Among the proteins encoded by these genes, FDX1, 
LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB posi-
tively regulated cuproptosis, whereas MTF1, GLS, and 
CDKN2A negatively regulated it [9]. This suggests that 
these gene expression levels could serve as biomarkers of 
the sensitivity of tumor cells to cuproptosis. For instance, 
since MTF1, GLS, and CDKN2A knockout promoted 
cuproptosis in tumor cells, targeting these proteins or 
related signal pathways could represent a therapeutic 
sensitization strategy. Fan et  al. found that plicamy-
cin can inhibit head and neck squamous cell carcinoma 
(HNSCC) cell growth by targeting CDKN2A, implying 
that plicamycin may be a potential sensitizing agent for 
cuproptosis [224].

The occurrence of cuproptosis is dependent on Cu 
over-accumulation within cells. As previously men-
tioned, various factors, such as SLC31A1 and ATP7A/B, 
regulate cellular Cu levels [225, 226]. Since ATP7A/B 
can release Cu into the extracellular environment via the 
vesicle system [225], targeting ATP7A/B may be a means 
of inducing or sensitizing tumor cells to cuproptosis. For 
instance, Tsvetkov et  al. found that in a Wilson disease 
mouse model, deletion of ATP7B resulted in excess Cu 
accumulation and cuproptosis in aging livers [9]. Addi-
tionally, Zhang et  al. used nanoparticles to simultane-
ously deliver Cu and ATP7A-specific siRNA to small-cell 
lung cancer brain metastasis tumors, enhancing cuprop-
tosis and tumor growth suppression [178]. Although 
an increase in intracellular Cu can promote ATP7A/B-
dependent Cu efflux, Cu ionophores have been found to 
reduce ATP7A/B expression levels. For example, elesclo-
mol and disulfiram could reduce the ATP7A expression 
level in CRC and prostate cancer cells, respectively [55, 
139]. This suggests that Cu ionophores can transport Cu 
into cells while reducing Cu efflux, providing favorable 
conditions for inducing cuproptosis.

Although research into the mechanisms of cuprop-
tosis remains in its initial stages, recent studies have 
uncovered several key regulatory factors of cuproptosis. 

For instance, in hepatocellular carcinoma (HCC) cells, 
maternal embryonic leucine zipper kinase (MELK) can 
enhance DLAT expression by activating the PI3K/mTOR 
signaling pathway, thereby augmenting mitochondrial 
function [227]. MELK overexpression exacerbates eles-
clomol–induced cuproptosis and enhances its anti-tumor 
effects [227]. Mucin 20 (MUC20) overexpression in pro-
teasome inhibitor-resistant multiple myeloma cells can 
induce cuproptosis, which is associated with the reduced 
cuproptosis inhibitor CDKN2A expression level [228]. 
Elesclomol–Cu activates the adenosine 5′-monophos-
phate (AMP)-activated protein kinase (AMPK) signal-
ing pathway in non-small cell lung cancer (NSCLC) cells, 
attenuating the cuproptosis [229]. Knocking down or 
inhibiting AMPK can aggravate elesclomol–Cu-induced 
cuproptosis [229]. Besides, in gastric cancer cells, 
METTL16 can promote cuproptosis by facilitating FDX1 
accumulation via m6A modification of FDX1 mRNA 
[230]. Further studies revealed that Sirtuin 2 (SIRT2) can 
inhibit METTL16 activity via deacetylation, and inhibit-
ing SIRT2 can significantly enhance the anti-tumor effect 
of elesclomol–Cu in gastric cancer [230]. Additionally, 
some cuproptosis inhibitory factors have been identified 
in different tumor cells, such as SLC7A11 [231] and AT-
rich interactive domain 1A (ARID1A) [232] in liver can-
cer cells, trigger transposable element-derived 1 (TIGD1) 
in CRC [233], and Wiskott-Aldrich syndrome protein 
family member 2 (WASF2) in ovarian cancer cells [234]. 
Targeting these factors may sensitize tumor cell cuprop-
tosis and enhance the efficacy of tumor treatment.

Recently, extracellular signaling molecules have also 
been found to be involved in regulating cuproptosis. For 
example, in diabetic mice, an increase in blood advanced 
glycosylation end products (AGEs) and Cu upregulates 
SLC31A1 expression level in cardiomyocytes, thereby 
disturbing Cu homeostasis and promoting cupropto-
sis [235], suggesting that AGEs may be sensitizers for 
cuproptosis. Moreover, adrenomedullin (ADM), a mem-
ber of the amylin/calcitonin gene-related peptide super-
family, has been found to promote the phosphorylation 
and nuclear translocation of Forkhead box O3 (FOXO3) 
via the p38/MAPK signaling pathway, thereby inhibiting 
FDX1 transcription and suppressing cuproptosis in renal 
cell carcinoma (RCC), promoting chemoresistance [236]. 
Consequently, targeting cuproptosis-related cytokines 
in the blood is also a strategy to sensitize tumor cells to 
cuproptosis. Table  4 lists the regulatory proteins and 
pathways of cuproptosis, which are potential targets for 
sensitizing Cu-induced tumor cell death.

Targeting cuproptosis to overcome tumor drug resistance
As the duration of drug usage extends, tumor cells may 
develop resistance to therapeutic agents, diminishing 
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Table 4 Cuproptosis regulatory proteins and pathways

Proteins/pathways Effect on 
cuproptosis

Potential 
inhibitor/
agonist

Cancer type Materials (cell lines) Role in cuproptosis and 
its involved mechanism

Refs.

MTF1 Negative Ovarian cancer OVISE Knockout of MTF1 
enhances elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

GLS Negative Ovarian cancer OVISE Knockout of GLS enhances 
elesclomol–Cu and disulfi-
ram–Cu-induced cell death

[9]

BPTES Breast cancer 4T1 tumor BPTES can enhancing 
PBC, a nanomedicine 
containing Cu and BPTES, 
-induced cuproptosis 
by inhibiting GLS1 activity

[216]

CDKN2A Negative Ovarian cancer OVISE Knockout of CDKN2A 
enhance elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

Plicamycin HNSCC TU212 Plicamycin can inhibit 
HNSCC cell growth by tar-
geting CDKN2A

[224]

FDX1 Positive Ovarian cancer, lung 
cancer

OVISE, ABC1 FDX1 reduce  Cu2+ to  Cu+. 
FDX1 is an upstream 
regulator of protein lipoyla-
tion. Knockout of FDX1 
suppresses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

LIAS Positive Ovarian cancer, lung 
cancer

OVISE, ABC1 Knockout of LIAS sup-
presses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

LIPT1 Positive Ovarian cancer OVISE Knockout of LIPT1 sup-
presses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

DLD Positive Ovarian cancer OVISE Knockout of DLD sup-
presses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

DLAT Positive Ovarian cancer OVISE Cu directly binds and pro-
motes the oligomeriza-
tion of lipoylated DLAT, 
resulting in proteotoxic 
stress. Knockout of DLAT 
suppresses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

PDHB Positive Ovarian cancer OVISE Knockout of PDHB sup-
presses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

PDHA1 Positive Ovarian cancer OVISE Knockout of PDHA1 sup-
presses elesclomol–Cu 
and disulfiram–Cu-induced 
cell death

[9]

SLC31A1 Positive Overactivaiton of SLC31A1 
enhances intracellular Cu 
accumulation

[225, 226]

ATP7A/B Negative Knockout of ATP7A/B 
enhances intracellular Cu 
accumulation

[225, 226]
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Table 4 (continued)

Proteins/pathways Effect on 
cuproptosis

Potential 
inhibitor/
agonist

Cancer type Materials (cell lines) Role in cuproptosis and 
its involved mechanism

Refs.

GAPDH Negative 4O-I CRC HCT116, LoVo 4-OI enhances elesclomol–
Cu-mediated cuproptosis 
by targeting GAPDH 
to suppress glycolysis

[161]

PPP1R15A Positive Breast cancer, prostate 
cancer, lung cancer

BT-549, PC-3, DU145, A549 Elesclomol–Cu treatment 
upregulates PPP1R15A, 
promoting proteotoxic 
stress by enhancing EIF2S1 
and 4E-BP1-associated 
translation initiation

[223]

MELK Positive HCC Huh7 MELK augments 
the expression of DLAT 
through the PI3K/mTOR 
signaling pathway and pro-
motes mitochondrial func-
tion, which subsequently 
promotes the progression 
of HCC. MELK overexpres-
sion significantly enhances 
the anti-tumor effect 
of elesclomol in HCC

[227]

MUC20 Positive MM KAS-6/1/U266 MUC20 attenuated protea-
some inhibitor resistance 
in MM cells by inducing 
cuproptosis via the inhibi-
tion of CDKN2A expression

[228]

AMPK Positive Dorsomorphin NSCLC Calu1 cells Elesclomol–Cu activates 
AMPK. Knockdown or inhi-
bition of AMPK suppresses 
elesclomol–Cu-induced 
cell death

[229]

METTL16 Positive Gastric cancer HGC-27 cell METTL16 promotes 
cuproptosis by facilitat-
ing FDX1 accumulation 
via m6A modification 
on FDX1 mRNA

[230]

SIRT2 Negative AGK2 Gastric cancer HGC-27 cell SIRT2 delactylates 
METTL16-K229 to inhibit 
the METTL16 activity. 
Combining elesclomol 
with SIRT2-specific inhibi-
tor AGK2 enhance cuprop-
tosis in gastric tumors 
in vitro and in vivo

[230]

SLC7A11 Negative SASP/erastin HCC Huh7/SMMC-7721 Disulfiram–Cu induces 
ferroptosis and cupropto-
sis while compensatorily 
activating cellular SLC7A11 
expression by inhibiting 
ubiquitination-proteasome 
degradation. Inhibition 
or knockdown of SLC7A11 
promotes disulfiram–
Cu-induced ferroptosis 
and cuproptosis in HCC 
cells

[231]
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drug efficacy and leading to tumor relapse or progression. 
Therefore, effectively overcoming cancer drug resistance 
has always been a significant theme in cancer treatment 
research. Since cuproptosis has been established as a 
novel mode of cell death, targeting tumor cell cupropto-
sis holds potential as a new strategy to overcome tumor 
drug resistance.

The use of Cu ionophores to overcome tumor chemo-
therapeutic drug resistance has a long history of research. 
On one hand, Cu ionophores can transport Cu into the 

cells to induce Cu-triggered cell damage, thereby exacer-
bating the death of resistant cells (Table 1). For instance, 
in prostate cancer, elesclomol–Cu can enhance sensitivity 
to docetaxel by inducing DLAT/mTOR pathway-depend-
ent cuproptosis in vitro and in vivo [87]. Disulfiram–Cu 
has been found to sensitize breast cancer cells to pacli-
taxel by simultaneous induction of ROS and inhibition 
of NF-κB, suggesting its potential to overcome clini-
cal resistance to paclitaxel [108]. Disulfiram–Cu can 
enhance the cytotoxicity of gemcitabine by reversing 

Table 4 (continued)

Proteins/pathways Effect on 
cuproptosis

Potential 
inhibitor/
agonist

Cancer type Materials (cell lines) Role in cuproptosis and 
its involved mechanism

Refs.

ARID1A Negative HCC Hep3B, HepG2, 
PDX(ARID1A-wt/mutant)

ARID1A loss shifts cel-
lular glucose metabolism 
from aerobic glycolysis 
to dependence on the TCA 
cycle and oxidative phos-
phorylation. ARID1A-defi-
cient HCC cells and xeno-
graft tumors are highly 
sensitive to Cu treatment

[232]

TIGD1 Negative CRC HCT116 TIGD1 knockdown can 
promote cuproptosis 
in HCT116 cells

[233]

WASF2 Negative Ovarian cancer A2780; TOV-21G; OVCA429 WASF2 knockdown signifi-
cantly enhances the eles-
clomol–Cu-induced cell 
death

[234]

G6PD Negative ovarian endometriomas EESCs, 11Z Elesclomol–Cu treatment 
induces the interaction 
of FDX1 and G6PD, pro-
moting G6PD degrada-
tion and GSH reduction, 
thereby intensifying 
cuproptosis

[237]

Adrenomedullin Negative ccRCC A498, 786-0 Adrenomedullin 
promotes the phospho-
rylation and nuclear 
translocation of FOXO3 
through the p38/MAPK 
signaling pathway, thereby 
inhibiting the transcription 
of FDX1 and suppressing 
cuproptosis in RCC cells

[236]

p32 Positive ccRCC ACHN, 786-O p32 promotes lipo-DLAT 
oligomerization by directly 
binding Cu. Combinational 
treatment of p32 and eles-
clomol–Cu inhibits ccRCC 
progression through dis-
ruption of TCA cycle

[238]

MTF1 metal-regulatory transcription factor-1, GLS glutaminase, CDKN2A cyclin-dependent kinase inhibitor 2A, FDX1 ferredoxin 1, DLAT dihydrolipoamide 
S-acetyltransferase, LIAS LA synthase, LIPT1 lipoyl transferase 1, DLD dihydrolipoamide dehydrogenase, PDHA1 pyruvate dehydrogenase E1 subunit alpha 1, PDHB 
pyruvate dehydrogenase E1 subunit beta, HNSCC head and neck squamous cell carcinoma, SLC31A1, SLC31A1 the solute carrier family 31 member 1, ATP7A/B ATPase 
copper transporting α/β, SLC7A11 solute carrier family 7 membrane 11, MUC20 Mucin 20, MM multiple myeloma, MELK maternal embryonic leucine zipper kinase, HCC 
hepatocellular carcinoma, ARID1A AT-rich interactive domain 1A, TCA  tricarboxylic acid, SIRT2 Sirtuin 2, AMPK adenosine 5′-monophosphate (AMP)-activated protein 
kinase, NSCLC non-small cell lung cancer, TIGD1 trigger transposable element-derived 1, CRC  colorectal cancer, WASF2 Wiskott-Aldrich syndrome protein family 
member 2, EESCs ectopic endometrial stromal cells, G6PD glucose-6-phosphate dehydrogenease, FOXO3 Forkhead box O3, MAPK mitogen-activated protein kinase, 
ccRCC  clear cell renal cell carcinoma
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NF-κB activity in gemcitabine-resistant colon cancer 
cells [111]. Moreover, disulfiram–Cu was found to over-
come bortezomib and cytarabine resistance in cell lines 
from patients with Down syndrome-associated acute 
myeloid leukemia, which is thought to be associated with 
the induction of apoptosis and re-inhibition of protea-
some activity [138]. In addition to Cu ionophores, small 
molecule compounds capable of inducing cuproptosis 
are potential candidates for overcoming tumor treatment 
resistance. These compounds usually enhance anti-tumor 
effects by inducing cell damage through multiple mecha-
nisms. For example, zinc pyrithione induces necrosis in 
prostate cancer cells by activating the PKC and ERK path-
ways and enhancing ROS production [239]; 4-OI induces 
ferritinophagy-dependent ferroptosis in multi-drug 
resistant retinoblastoma cells [240]. Among these com-
pounds, the ferroptosis inducer erastin has garnered sig-
nificant attention for its ability to reverse the resistance of 
various tumor cells to chemotherapeutic drugs, including 
ovarian cancer [241, 242], AML cells [243], NSCLC cells 
[244], and prostate cancer cells [245]. However, whether 
cuproptosis contributes to the sensitizing effects of these 
drugs requires further investigation. Future research 
should explore combining these compounds with chemo-
therapeutic drugs to treat drug-resistant tumor cells that 
are sensitive to cuproptosis. Additionally, nanomedicine-
based targeting of cuproptosis can be examined to over-
come chemotherapeutic drug resistance. For instance, 
 CuO2/DDP@SiO2, which releases  Cu2+ and cisplatin, can 
induce cuproptosis and block the entire cisplatin efflux 
pathway by downregulating multidrug resistance-associ-
ated protein 2 (MRP2), enhancing the anti-tumor effect 
of cisplatin [193]. E-C@DOX NPs can inhibit tumor cell 
stemness and cell survival-related pathways while work-
ing with Cu ions to damage mitochondria and induce 
cuproptosis, suppressing the ATP-dependent drug efflux 
pathway and reversing DOX resistance [204].

Notably, Cu ionophores also chelate certain drugs, 
especially platinum-based drugs, which are widely used 
as first-line clinical treatments for cancer. Disulfiram 
has been found to form a new platinum (Pt) chelate, 
Pt(DDTC)3+, which has a stronger anti-NSCLC effect 
than cisplatin alone [105]. Furthermore, Pt drugs and 
Cu share molecular mechanisms for intracellular trans-
port and extracellular efflux, such as the Cu transporter 
CTR1, which can transport Pt into the cell [246, 247], 
and the Cu chaperone protein ATOX1, which can deliver 
Pt to ATP7A/B located on TGN, thereby promoting the 
efflux of Pt and leading to drug resistance during treat-
ment [248–250]. Thus, targeting Cu homeostasis can also 
alter the intracellular Pt drug concentration, a potential 
mechanism for overcoming resistance. Yuki et  al. found 
that in bladder cancer cells treated with disulfiram and 

cisplatin, disulfiram could reduce ATP7A expression level 
and its localization in the TGN, accumulating intracellu-
lar cisplatin and enhancing tumor cell death [251]. How-
ever, increased Cu levels reduce the expression or activity 
of Cu uptake proteins, such as CTR1, and enhance the 
translocation of ATP7A/B from the Golgi to post-Golgi 
sites or lysosomes to promote Cu efflux, which may be 
unfavorable for accumulating Pt drugs within cells [252–
255]. Therefore, targeting Cu homeostasis to overcome 
tumor cell resistance to Pt drugs requires comprehensive 
consideration of the dosage of Pt drugs and the action of 
cuproptosis.

Moreover, targeted cuproptosis could be used to 
solve the problem of drug resistance in targeted thera-
pies. For example, disulfiram–Cu kills and sensitizes 
BRAF-mutant thyroid cancer to BRAF kinase inhibitor 
by relieving feedback activation of the MAPK/ERK and 
PI3K/AKT pathways in a ROS-dependent manner [134]. 
In HCC cells, researchers observed that disulfiram–Cu 
could strengthen the cytotoxicity of sorafenib by simulta-
neously inhibiting the NRF2 and MAPK kinase signaling 
pathways and arrest tumor growth in  vitro and in  vivo 
[136]. Current research on cuproptosis overcoming drug 
resistance in tumor-targeted therapy remains relatively 
limited. One of the main reasons is that the molecular 
regulation mechanism underlying cuproptosis remains 
unknown. However, the relationship between tumor drug 
resistance and cuproptosis remains unclear, hindering 
the progress of targeting cuproptosis to overcome drug 
resistance in tumor-targeted therapy.

Targeting cuproptosis to enhance tumor immunotherapy
Immunotherapy has become an important clini-
cal strategy for cancer treatment due to its significant 
efficacy in tumor therapy. Since Cu metabolism and 
cuproptosis play crucial regulatory roles in tumor 
immunity, targeting cuproptosis may represent a vital 
sensitization strategy for tumor immunotherapy. PD-1/ 
PD-L1 (Programmed death-ligand 1) serves as a cru-
cial immune checkpoint, and inhibiting or eliminating 
PD-1/PD-L1 can lead to favorable clinical outcomes 
in patients with cancer [256]. Cu may exert a positive 
regulatory effect on PD-L1 expression in tumors. For 
instance, disulfiram–Cu can upregulate PD-L1 expres-
sion in HCC cells by inhibiting Poly (ADP-ribose) pol-
ymerase 1 (PARP1) activity and promoting glycogen 
synthase kinase 3β (GSK-3β) phosphorylation, thereby 
suppressing T-cell infiltration [135]. Hence, simulta-
neous targeting of cuproptosis and co-administration 
of PD-1/PD-L1 inhibitors may enhance therapeutic 
effects. This notion is supported by preclinical studies 
demonstrating superior tumor growth inhibition when 



Page 35 of 42Zhang et al. Journal of Hematology & Oncology           (2024) 17:68  

Cu ionophores were combined with Cu and anti-PD-L1 
agents in PDAC [102], lung cancer [106], and HCC cells 
[135].

The TME is a pivotal determinant of the efficacy of 
tumor immunotherapy. Reshaping the immunosup-
pressive TME, such as dendritic cell maturation and 
activation of  CD8+ T cells, is poised to enhance tumor 
suppression [257]. The cyclic GMP-AMP synthase 
(cGAS)-stimulator of interferon genes (STING) signal-
ing pathway is a critical component of innate immunity, 
capable of sensing aberrant DNA and triggering the 
release of type I interferons, thereby promoting dendritic 
cell maturation and migration, as well as augmenting the 
cytotoxic effects of T lymphocytes or natural killer cells 
[258]. Jiang et  al. demonstrated that elesclomol–Cu-
induced cuproptosis in clear cell RCC can activate the 
cGAS-STING pathway within dendritic cells, thereby 
promoting the release of inflammatory mediators, 
including IFN-γ, TNF-α, IL2, C-X-C motif chemokine 
ligand 10 (CXCL10), and CXCL11, ultimately enhanc-
ing tumor immunotherapy [259]. Additionally, CS/
MTO-Cu@AMI, established by Huang et al., can activate 
anti-tumor immunity by inducing dsDNA damage and 
activating the cGAS-STING pathway [173]. Similarly, 
PCM nanoinducers constructed by Dai et al. can trigger 
the release of mitochondrial DNA during inducing tumor 
cell cuproptosis, activating the cGAS-STING pathway 
and stimulating innate and adaptive immune responses, 
thereby enhancing tumor suppression [184].

As discussed in this review, nanomedicine-based 
cuproptosis induction systems mediate tumor cell 
cuproptosis and impact the TME by depleting GSH, 
aggravating oxidative stress, and inducing other types 
of cell damage, such as pyroptosis and apoptosis. These 
alterations result in the remodeling of the TME and initi-
ation of ICD responses, which are conducive to enhanced 
immunotherapy. Consequently, inducing cuproptosis 
may represent an effective strategy for sensitizing tumors 
to immunotherapy. Table  3 summarizes various nano-
medicines, such as NP@ESCu [171], BCMD [176], OMP 
[186], PCD@CM [195], ES@CuO [196], CBS [203], E. 
coli@Cu2O [205], PEG@Cu2O-ES [208], and CLDCu 
[213], in combination with anti-PD1 or anti-PD-L1 anti-
bodies, effectively inhibited tumor growth. However, sev-
eral issues must be addressed before these strategies are 
applied clinically. For instance, the mechanisms under-
lying cuproptosis-mediated TME remodeling remain 
unclear. Additionally, are the induction conditions and 
regulatory mechanisms of cuproptosis in tumors and 
immune cells similar or different? How can we target 
tumor cell cuproptosis more precisely to initiate ICD 
responses? Addressing these problems holds promise for 
improving the effectiveness of tumor immunotherapy.

Conclusions and future perspectives
Cuproptosis, characterized by its unique features, rep-
resents a novel mode of cell death that has infused new 
optimism into cancer treatment. Since its conceptual-
ization, cuproptosis has received significant attention in 
oncology. Conversely, it has emerged as a promising ther-
apeutic target, with ongoing research poised to unveil 
additional cuproptosis inducers, including small-mol-
ecule compounds and nanomedicines. This expanding 
repertoire of therapeutic options holds the potential to 
diversify tumor treatment strategies. Targeting cuprop-
tosis offers a novel approach to combatting tumor drug 
resistance. Exploiting therapeutic-induced metabolic 
changes in tumor cells, such as heightened mitochon-
drial metabolism and glycolysis, rendering them sus-
ceptible to cuproptosis, provides a pathway to sensitize 
tumor cells to drug interventions or overcome drug 
resistance. Furthermore, inducing cuproptosis in tumor 
tissues can remodel the tumor microenvironment, fos-
tering dendritic cell maturation and immune cell infil-
tration. Consequently, targeting cuproptosis promises to 
enhance the response rates and overcome resistance to 
immunotherapy.

However, understanding and research regarding 
cuproptosis are still in their infancy. Before practical 
application, numerous issues must be addressed. For 
instance, Cu can play a dual role in tumor initiation and 
progression, promoting tumorigenesis and inducing cell 
death [260, 261]. Cu chelators reduce Cu bioavailability 
and exert anticancer effects [262]. Therefore, compre-
hending how tumor cells balance the dual effects of Cu is 
crucial. Furthermore, whether cuproptosis or its related 
signaling pathways have pro-tumor effects during tumor 
initiation, development, and treatment remains unclear. 
In addition, reliable biomarkers, initiation mechanisms, 
and links with other cell death forms for cuproptosis 
remain lacking, impeding the progress of cuproptosis-
associated research in diseases and targeted clinical 
applications. Moreover, distinguishing between the regu-
latory mechanisms of cuproptosis in normal and tumor 
cells is crucial for improving the precision of cuprop-
tosis-targeted therapy and reducing the side effects of 
treatment. Additionally, currently widely used cupropto-
sis inducers, such as Cu ionophores elesclomol and disul-
firam, have not revealed promising therapeutic effects in 
clinical trials.

Based on the challenges outlined above, the follow-
ing recommendations may help promote the translation 
of cuproptosis-associated anti-tumor therapies from 
the laboratory to clinical practice in future research. 
First, unraveling the molecular mechanisms underlying 
tumor cell tolerance and exploiting high Cu levels may 
offer insights into inducing cuproptosis by disrupting 
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endogenous Cu metabolism within tumor cells. For 
example, hepatocytes are the primary storage cells for Cu, 
and abnormal Cu accumulation in liver cells, as observed 
in patients with Wilson’s disease, promotes the develop-
ment of HCC [263]. Accordingly, driving accumulated 
Cu in HCC cells to induce cuproptosis might reverse 
the pro-carcinogenic effects of Cu to anticarcinogenic 
effects. Additionally, future research and development 
efforts should focus on novel cuproptosis inducers or 
induction strategies, including natural products, small-
molecule compounds, and nanomedicine. Furthermore, 
improving the precision of drug delivery to tumor cells 
and the stability of drugs in plasma should be a priority 
in the development of cuproptosis inducers. Moreover, 
conducting more clinical trials is crucial for promoting 
the clinical application of cuproptosis-targeted therapies. 
For example, combining Cu ionophores with frontline 
clinical drugs that can enhance sensitivity to cuproptosis 
might address issues of drug resistance during treatment. 
Finally, similar to other types of cell death, inducing 
cuproptosis to treat tumors will also face the drug resist-
ance issues. Therefore, uncovering the mechanisms of 
cuproptosis-related drug resistance, particularly in dif-
ferent tumor cell types, should be a key focus of future 
research.

In summary, cuproptosis is a new target in cancer 
treatment. As the regulatory mechanisms of cuproptosis 
continue to be elucidated and the efficiency of cupropto-
sis induction methods improves, targeting cuproptosis 
presents a promising new approach to combat chemo-
therapy and immunotherapy resistance in cancer treat-
ment, leading to improved therapeutic outcomes.
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TIME  Tumor immunosuppressive microenvironment
PD-1  Programmed cell death-1
PD-L1  Programmed death-ligand 1
PTT  Photothermal therapy
PDT  Photodynamic therapy
CDT  Chemodynamic therapy
DOX  Doxorubicin
ZnPc  Zinc phthalocyanine
1-MT  1-Methyl tryptophan
ICD  Immunogenic cell death
HNSCC  Head and neck squamous cell carcinoma
NSCLC  Non-small cell lung cancer
MELK  Maternal embryonic leucine zipper kinase
cGAS  Cyclic GMP-AMP synthase
STING  Stimulator of interferon genes
CXCL  C-X-C motif chemokine ligand
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