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Abstract 

Long non-coding RNAs (lncRNAs), once considered transcriptional noise, have emerged as critical regulators of gene 
expression and key players in cancer biology. Recent breakthroughs have revealed that certain lncRNAs can encode 
small open reading frame (sORF)-derived peptides, which are now understood to contribute to the pathogenesis 
of various cancers. This review synthesizes current knowledge on the detection, functional roles, and clinical implica-
tions of lncRNA-encoded peptides in cancer. We discuss technological advancements in the detection and validation 
of sORFs, including ribosome profiling and mass spectrometry, which have facilitated the discovery of these peptides. 
The functional roles of lncRNA-encoded peptides in cancer processes such as gene transcription, translation regula-
tion, signal transduction, and metabolic reprogramming are explored in various types of cancer. The clinical potential 
of these peptides is highlighted, with a focus on their utility as diagnostic biomarkers, prognostic indicators, and ther-
apeutic targets. The challenges and future directions in translating these findings into clinical practice are also dis-
cussed, including the need for large-scale validation, development of sensitive detection methods, and optimization 
of peptide stability and delivery.
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Introduction
Long non-coding RNAs (lncRNAs) were initially defined 
as a class of RNAs longer than 200 nucleotides that do 
not encode proteins [1–3]. Initially regarded as "noise" 
from genome transcription, lncRNAs have increasingly 
been shown to play important roles in the regulation of 
gene expression at the epigenetic, transcriptional, and 
post-transcriptional levels [4–8]. They have also been 
found to be intimately linked with the occurrence and 
progression of a spectrum of human diseases, with a par-
ticularly significant association observed in the context of 
cancer [9–16].

With the advancement of proteomics and translation 
technologies, it has been discovered that some lncRNAs 

have the ability to encode small peptides or micropep-
tides [17–21]. These peptides are encoded by small or 
short open reading frames (sORFs) and can range in 
length from tens to over a hundred amino acids (aa) [22–
25]. Furthermore, there is growing evidence that peptides 
derived from lncRNAs have specific biological functions 
and can act as oncogenic drivers or tumor suppressors 
[26–29]. They play important roles in various cancer 
processes, such as transcriptional regulation, post-tran-
scriptional regulation, translation and post-translational 
regulation, signal transduction, and cancer metabolism 
[8, 30–34].

Despite numerous reviews on lncRNA-encoded pep-
tides published in the past, most are outdated as they 
were released several years ago [26, 35, 36]. LncRNA-
encoded peptides have emerged as a hot topic in recent 
years, with many new discoveries identifying novel lncR-
NAs that encode for peptides and their significant func-
tions in cancer, along with new regulatory mechanisms. 
In this review, we review the methods for detecting 
lncRNA-encoded peptides, comparing their differences. 
Additionally, we systematically summarize the lncRNAs 
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known to encode peptides, their roles and mechanisms 
in cancer, with a particular focus on regulatory mecha-
nisms that have not been systematically reviewed before. 
Finally, we explore the potential applications of these 
peptides. Overall, this review aims to provide a compre-
hensive and systematic resource for future researchers in 
the field of lncRNA-encoded peptides.

Biogenesis and detection of lncRNA‑encoded 
peptides
Biogenesis of lncRNA‑encoded peptides
The biogenesis of peptides encoded by lncRNAs is a mul-
tifaceted process that encompasses the transcription of 
lncRNAs by RNA polymerase II, followed by their matu-
ration, which includes the addition of a 5’ cap (m7G) and 
a polyadenylated tail. After undergoing alternative splic-
ing, these transcripts are exported to the cytosol, where 
they harbor the potential to be translated into peptides 
[37, 38]. Notably, the work of Yu et  al. has shown that 
DNA damage can prompt ribosomes to associate with 
the internal ribosome entry site (IRES) region within the 
lncRNA CTBP1-DT. This interaction bypasses the inhibi-
tory effects of upstream open reading frames (uORFs) 
and triggers the cap-independent translation of a novel 
microprotein termed DNA damage-upregulated protein 
(DDUP) [39].  Some researchers have raised skepticism, 
suggesting that mere RNA structure and ribosome bind-
ing are not definitive indicators of a transcript’s trans-
latability, making the elucidation of their translational 
mechanisms a challenging endeavor [40]. Moreover, the 
translation of lncRNA-encoded peptides, despite their 
brevity, is also contingent upon the presence of open 
reading frames (ORFs). As we know, ORFs are nucleotide 
sequences that span from a start codon to the nearest 
stop codon within a nucleotide sequence. A translatable 
ORF is typically recognized as the coding DNA sequence 
(CDS) on an mRNA that gives rise to its principal pro-
tein product. In mRNA, codons-triads of nucleotides-
correspond to specific amino acids, with the AUG codon 
typically serving as the start signal and UAA, UAG, 
and UGA being the traditional stop codons in eukary-
otic organisms. sORFs, typically less than 100 codons in 
length [41], are sometimes extended to include sORFs of 
200–250 codons as described in various studies [42–44]. 
These sORFs are distinguished by their size from all other 
ORFs, but not all sORFs are translated or are indeed 
translatable. Identifying any ORF within genomic DNA is 
straightforward, but differentiating between coding and 
non-coding sORFs is more complex. Most de novo gene 
prediction algorithms differentiate coding from non-cod-
ing sequences by recognizing genomic patterns indica-
tive of features (such as start codons, stop sites, splice 
junctions, promoters, and polyadenylation signals) or by 

analyzing intrinsic DNA sequence properties (including 
codon usage bias, nucleotide composition, and in-frame 
hexamer frequency) [45, 46]. However, these algorithms 
are not optimized for sORFs, as they focus on longer 
ORFs with a higher prevalence of these features [47, 
48]. As a result, many gene annotation tools overlook 
ORFs shorter than 100 codons, often dismissing them 
as insignificant [49, 50]. However, with the advance-
ment of technology, the challenge has begun to be 
addressed effectively. Several approaches have been taken 
to systematically predict sORFs with coding potential 
(Table  1). For example, Lin et  al. presented PhyloCSF,  a 
new computational method examining evolutionary con-
servation of a sORF across species [51]. Camargo et  al. 
employed RNAsamba, a sophisticated bioinformatics 
tool that predicts the coding potential of RNA molecules 
from sequence information alone [52]. Utilizing a neural 
network-based algorithm, RNAsamba identifies patterns 
that distinguish coding transcripts from non-coding 
ones, offering a promising avenue for sORF prediction 
[52]. These resources have significantly expanded our 
understanding of the coding potential within sORFs.

While the current research has shed preliminary light 
on this topic, it is clear that the regulatory mechanisms 
by which ORFs within lncRNAs are translated into pep-
tides are not yet fully understood. There is a pressing 
need for future studies to delve deeper into these mecha-
nisms, providing a more comprehensive understanding 
of the translation process of lncRNA-encoded peptides. 
To date, a considerable number of lncRNA-encoded pep-
tides have been identified. In response to this growing 
body of information, several databases have been devel-
oped and are now accessible to researchers seeking data 
related to lncRNA-encoded peptides (Table  2). These 
databases serve as valuable repositories, enabling investi-
gators to rapidly access information on lncRNA-encoded 
peptides of interest and providing a rich resource for the 
scientific community.

Detection of lncRNA‑encoded peptides
With technological progress, there are several methods 
available to predict and validate the coding potential of 
translated small open reading frames, including bioinfor-
matics, ribosome profile sequencing (Ribo-seq), reporter 
tag, epitope tagging, antibody-based validation and mass 
spectrum (MS) (Fig.  1). These methods are often com-
bined with protein detection procedures such as western 
blotting, immunocytochemistry, or immunoprecipitation 
steps to verify the translation of sORFs [71, 72].

Ribosome profile sequencing
Ribosomes are one of the fundamental components 
of the translation process in eukaryotic cells [73, 74]. 
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Undoubtedly, Ribo-seq is one of the most promising 
scientific evidences that could point towards answering 
which lncRNAs are capable of encoding peptides [75–
77]. It is an emerging technique that offers a glimpse into 
protein synthesis through the deep sequencing of RNA 
fragments protected by ribosomes [78, 79]. The core 
Ribo-seq methodology employs RNase I to digest unpro-
tected, single-stranded RNA, leaving behind ribosome-
protected fragments (RPFs). These fragments are then 
isolated, sequenced, and mapped to the genome, allow-
ing for the assembly of transcripts and the discovery of 
novel sORFs with coding potential [80, 81]. However, this 
technique faces challenges, including reliance on next-
generation sequencing, which can introduce false posi-
tives due to sequencing quality and depth. Additionally, 
Ribo-seq may not capture all sORFs due to their variable 
expression across conditions, stages, and tissues [82]. It 
also requires a significant starting material, such as 10 
million cells, to meet sequencing RNA requirements [83]. 

Notably, Xiong et al. have recently developed an ultrasen-
sitive Ribo-seq method, termed Ribo-lite, which can be 
applied to ultra-low input oocytes, even single oocytes 
[84]. Zou and colleagues have successfully applied this 
method to investigate the translational regulation during 
human oocyte maturation and early embryonic develop-
ment [85]. However, the applicability of this method for 
single-cell translational regulation analysis in other cell 
types has yet to be reported. Furthermore, In the field of 
ribosome profiling, the specificity of RNase I for single-
stranded RNA is a well-established fact. Notably, this 
specificity also introduces a potential pitfall. Given that 
RNase I cannot target double-stranded RNA regions, 
such as those found in the stem-loop structures of micro-
RNA precursors [86], there exists a risk of inadvertently 
generating pseudo ribosomal footprints (pseudo-RPFs) 
from these complex structures. While it is true that 
double-stranded RNAs are not commonly encountered 
within the cellular milieu, their presence, albeit rare, 

Table 1 Tools for predicting sORFs

Method Website Year Characteristics References

PhyloCSF http:// compb io. mit. edu/ Phylo CSF 2011 PhyloCSF is a comparative genomics method analyzing a multispe-
cies nucleotide sequence alignment to assess the likelihood of it 
being a conserved region that codes for proteins, via a statistical 
comparison of phylogenetic codon models

[51]

CPAT https:// rna- cpat. sourc eforge. net/ 2013 CPAT applies a logistic regression model built with open reading 
frame size, open reading frame coverage, Fickett TESTCODE statistic 
and hexamer usage bias, to rapidly recognizes coding and noncod-
ing transcripts from a large pool of candidates

[53]

PLEK https:// sourc eforge. net/ proje cts/ plek/ files/ 2014 PLEK utilizes a improved k-mer framework coupled with a support 
vector machine technique to differentiate lncRNAs from mRNAs 
without the need for genomic sequences or existing annotations

[54]

riboHMM https:// github. com/ rajan il/ riboH MM 2016 riboHMM uses hidden Markov models to accurately resolve 
the precise set of RNA sequences that are being translated in a par-
ticular cell, by analyzing a ribosome profiling test, sequenced data 
from an RNA-seq, and the RNA sequence itself

[55]

Rp-Bp https:// github. com/ diete rich- lab/ rp- bp 2017 Rp-Bp is an unsupervised Bayesian approach to predict translated 
ORFs from ribosome profiles, characterizing with incorporating 
and propagates uncertainty in the prediction process, and automatic 
Bayesian selection of read lengths and ribosome P-site offsets

[56]

CPC2 http:// cpc2. cbi. pku. edu. cn 2017 CPC2 runs fast and exhibits superior accuracy, especially for long 
non-coding transcripts, with species-neutral, making it feasible 
for ever-growing non-model organism transcriptomes

[57]

RiboCode https:// github. com/ xryan glab/ RiboC ode 2018 RiboCode is a statistically vigorous method for the de novo annota-
tion of the full translatome by quantitatively assessing the 3-nt 
periodicity, based on ribosome profiling data

[58]

ORFFinder https:// www. ncbi. nlm. nih. gov/ orffi nder/ 2002 ORFFinder selects open reading frames from randomly fragmented 
genomic DNA fragments

[59]

RNAsamba https:// rnasa mba. lge. ibi. unica mp. br/ 2020 A tool to predict the coding potential of RNA molecules 
from sequence information using a neural network-based that mod-
els both the whole sequence and the ORF to identify patterns 
that distinguish coding from non-coding transcripts

[52]

LncCat http:// cczub io. top/ lnccat 2023 LncCat combines five types of features to encode transcript 
sequences and employs CatBoost to build a prediction model

[60]

sORFPred https:// github. com/ orang ewind czw/ sORFP red 2023 A method based on comprehensive features and ensemble learning 
to predict the sORFs in plant lncRNAs

[61]

http://compbio.mit.edu/PhyloCSF
https://rna-cpat.sourceforge.net/
https://sourceforge.net/projects/plek/files/
https://github.com/rajanil/riboHMM
https://github.com/dieterich-lab/rp-bp
http://cpc2.cbi.pku.edu.cn
https://github.com/xryanglab/RiboCode
https://www.ncbi.nlm.nih.gov/orffinder/
https://rnasamba.lge.ibi.unicamp.br/
http://cczubio.top/lnccat
https://github.com/orangewindczw/sORFPred
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cannot be entirely discounted. This rarity does not elimi-
nate the possibility that they might contribute to false-
positive signals in ribosome profiling assays, thereby 
complicating the interpretation of the resulting data. 
Consequently, researchers must exercise caution when 
analyzing ribosome profiling data to ensure that the 
observed ribosomal footprints are indeed indicative of 
active translation events rather than artifacts stemming 

from the presence of double-stranded RNA structures. 
The short length of RPFs, approximately 30 nucleotides, 
complicates the differentiation of transcript isoforms 
resulting from alternative splicing [87]. It’s important to 
note that ribosomal occupancy does not automatically 
indicate translation of the ORF [88], as it has been shown 
that start codons can regulate translation attenuation of a 
downstream ORF, mRNA availability through nonsense-
mediated decay [40].

Table 2 Databases for lncRNA-encoded peptide

Database Website Year Species Characteristics References

ncEP database http:// www. jiang lab. cn/ ncEP/ 2020 18 ncEP contains 80 entries including 74 proteins or pep-
tides, 22 lncRNAs, 11 circRNAs, 9 pri-miRNAs and 37 other 
ncRNAs across 18 species from more than 50 articles 
of over 2000 candidate articles

[62]

FuncPEP https:// bioin forma tics. mdand erson. org/ 
Suppl ements/ FuncP EP/

2022 12 FuncPEP includes a comprehensive annotation of 112 
functional ncPEPs from 44 studies and specific details 
regarding the ncRNA transcripts that encode these 
peptides

[63]

TransLnc http:// bio- bigda ta. hrbmu. edu. cn/ Trans Lnc/ 2022 3 The current version of TransLnc contains a total 
of 583,840 computationally predicted peptides 
for 33,094 translatable lncRNAs across three different spe-
cies (Human, Mouse, Rat), 381,105 experimentally verified 
lncRNA peptides across 34 tissues, and 391,418 candidate 
neoantigens

[64]

sORFs.org http:// www. sorfs. org 2016 3 A novel database for sORFs identified using ribosome 
profiling. At present, sORFs.org harbors 263 354 sORFs 
that demonstrate ribosome occupancy, originating 
from three different cell lines: HCT116 (human), E14_mESC 
(mouse) and S2 (fruit fly)

[65]

SmProt http:// bigda ta. ibp. ac. cn/ SmProt/ 2021 8 SmProt incorporated 638,958 unique small proteins 
curated from 3,165,229 primary records, which were 
computationally predicted from 419 Ribo-seq datasets 
or collected from literature and other sources from 370 
cell lines or tissues in 8 species

[66]

MetamORF https:// metam orf. hb. univ- amu. fr/ 2021 2 MetamORF describes 664 771 and 497 904 unique ORFs 
in the human and mouse genomes, respectively, provid-
ing at least the information necessary to locate the ORF 
on the genome, its sequence and the gene it is located 
on (excepted for intergenic ORFs)

[67]

SPENCER http:// spenc er. renlab. org 2022 1 SPENCER amassed 2,806 mass spectrometry data points 
from 55 studiess, comprising 1,007 cancerous and 719 
healthy samples. Through its proteomics pipeline leverag-
ing MS, it detected 29,526 ncPEPs in 15 varied cancer 
types, with 22,060 such ncPEPs confirmed by subsequent 
experimental research

[68]

cncRNAdb http:// www. rna- socie ty. org/ cncrn adb/ 2021 21 This current version of cncRNAdb documents 2598 
manually curated cncRNA-associated function entries 
with experimental evidence (including 1,936 translated 
ncRNA entries and 662 untranslated mRNA entries) involv-
ing 2002 coding and noncoding RNA (including 1358 
translated ncRNAs and 644 untranslated mRNAs) across 21 
species

[69]

LncPep http:// www. sheng lilabs. com/ LncPep/ 2021 39 LncPep totally covers 10,580,228 peptides translated 
from 883,804 lncRNAs across 39 different species, and we 
applied 7 evidence including Mass Spectrometry, ribo-
some profiling, Pfam, translation initiation site, N6-meth-
yladenosine modification of RNA sites, CPC2, and CPAT 
for users to explore and evaluated the predicted peptides

[70]

http://www.jianglab.cn/ncEP/
https://bioinformatics.mdanderson.org/Supplements/FuncPEP/
https://bioinformatics.mdanderson.org/Supplements/FuncPEP/
http://bio-bigdata.hrbmu.edu.cn/TransLnc/
http://www.sorfs.org
http://bigdata.ibp.ac.cn/SmProt/
https://metamorf.hb.univ-amu.fr/
http://spencer.renlab.org
http://www.rna-society.org/cncrnadb/
http://www.shenglilabs.com/LncPep/
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Reporter tags
The coding potential of sORFs can be evaluated by fus-
ing them with reporter tags and then detecting the signal 
through immunoblotting or microscopy [34]. Specifi-
cally, a FLAG/HA-tag system is genetically engineered to 
be cloned immediately preceding the stop codon of the 
sORF under investigation. This fusion sequence, which 
includes the FLAG/HA-tag, is subsequently inserted 
into a plasmid vector, which then serves as the template 
for in  vitro cell transfection. Upon transfection into the 
target cell line, the expression of the FLAG/HA-tagged 
micropeptide is quantified using western blotting and 
immunofluorescence assays with anti-FLAG/HA tag 
antibodies [89, 90]. As an alternative approach, sORFs 
derived from lncRNAs can be fused to the N-terminus 
of GFP vectors. The expression levels of the GFP-tagged 
micropeptides are then evaluated using western blot-
ting, fluorescence microscope or immunofluorescence 
assays with anti-GFP antibodies, providing a visual and 

quantitative assessment of the micropeptide’s presence 
and distribution within the cells [91–93]. It should be 
noted that inserting a reporter tag internally or at the 
N-terminus of micropeptide carries the risk of disrupting 
the protein’s function, as well as its intramolecular inter-
actions and folding [25, 94–96]. This possibility under-
scores the need for careful experimental design and the 
interpretation of results with an awareness of potential 
artifacts introduced by the tagging process.

Epitope tagging
Epitope tagging is a method that incorporates a recog-
nizable epitope tag into a protein sequence, allowing for 
specific and sensitive detection of sORF using available 
antibodies [97]. In the context of sORFs encoded within 
lncRNAs, the CRISPR-Cas9 system presents a powerful 
tool for the site-specific introduction of epitope tags. The 
CRISPR-Cas9 system can be programmatically designed 
to target the stop codon of the lncRNA locus in question 

Fig. 1 Detection methods for the coding potential of lncRNAs. A Prediction of short open reading frames (ORFs) within lncRNAs. B Sucrose 
density gradient separation to detect ribosome enrichment on lncRNAs. C Detection of GFP translation using a GFP fusion with a mutated start 
codon within a lncRNA ORF. D Integration of a tag at the lncRNA ORF site using gene editing technology to assess the expression of the tagged 
protein. LHA, left homologous arm; RHA, right homologous arm. E Detection of intracellular lncRNA-encoded peptides using antibodies raised 
against synthetic peptides. F Mass spectrometry identification of peptide expression. Image created with BioRender.com
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within the genome of the cells. By designing a guide 
RNA that directs the Cas9 nuclease to the desired loca-
tion, researchers can introduce an epitope tag at the stop 
codon, effectively tagging the sORF for detection pur-
poses. Once the epitope tag is integrated into the lncRNA 
locus, the expression of the resulting micropeptides can 
be assessed using Western blotting, fluorescence micro-
scope or immunofluorescence assays with correspond-
ing anti-tag antibodies [98, 99]. This approach effectively 
validates the coding potential of lncRNAs. However, sev-
eral challenges must be considered when using epitope 
tagging. Firstly, the insertion of an epitope tag has the 
potential to disrupt the native structure and function of 
the protein, which could lead to misinterpretation of the 
protein’s behavior in cellular assays. Secondly, the effi-
ciency of tag integration can vary, and off-target effects 
may occur with the CRISPR-Cas9 system, potentially tag-
ging unintended sites. Additionally, the detection of the 
tagged protein relies on the availability and specificity of 
antibodies, which may sometimes result in high back-
ground signals or false negatives.

Antibody‑based validation
Antibody-based validation is a critical process in the 
identification and characterization of sORF-encoded 
polypeptides (SEPs). This approach involves the synthesis 
of antibodies that are specific to the predicted sequences 
of SEPs, allowing for the detection and confirmation of 
these peptides within complex cellular environments 
through western blotting [25]. For example, Faure et  al. 
employed a monoclonal antibody directed against the 
Gau protein, a peptide approximately 100 amino acids 
long, to confirm the existence and functionality of the 
Gau protein [100]. Nonetheless, developing antibodies 
against SEPs presents significant challenges, primarily 
due to the small size of sORFs. Additionally, detecting 
SEPs can be problematic when they are expressed at 
low levels, as elevated antibody signals may not be eas-
ily discernible [25]. Therefore, ongoing efforts to refine 
antibody-based validation techniques will be essential for 
the discovery and characterization of new SEPs and the 
elucidation of their biological functions.

Mass spectrometry
Mass spectrometry is a sophisticated analytical technique 
that has proven indispensable in the field of proteomics, 
offering unparalleled capabilities for the identification 
and quantification of proteins and peptides, which pro-
vide direct evidence of sORFs’ translation into SEPs [88, 
101]. This method is often paired with the immunopre-
cipitation of ORF-GFP fusion peptides, leveraging anti-
GFP antibodies to precipitate GFP-tagged SEPs from 
cell lysates. This approach not only detects unannotated 

proteins but also confirms the translation of sORFs into 
peptides, which not only detects unannotated proteins 
but also verifies the translation of sORFs into peptides 
[25, 102]. However, while mass spectrometry is adept at 
peptide detection, it has limitations in identifying SEPs 
due to their short length and a propensity for producing 
tryptophan-containing peptides. Furthermore, low-abun-
dance SEPs can be overlooked during sample preparation 
[76, 88]. Therefore, special attention must be given to the 
separation and concentration steps of peptides, which are 
crucial for detecting small and/or low-abundance prod-
ucts in cell lysates [76].

The conditions, difficulty levels, and reliability of the 
aforementioned methods for detecting lncRNA-encoded 
peptides are encapsulated in Table  3. It is important to 
note that affirming the coding potential of an lncRNA 
necessitates a multifaceted approach, employing multi-
ple methods to ascertain its function and to circumvent 
the possibility of false positives. This underscores the 
importance of a rigorous and integrated methodologi-
cal strategy in validating the biological significance of 
lncRNA-encoded peptides.

Functions of lncRNA‑encoded peptides in cancer
lncRNAs serve multifaceted roles, constructing intricate 
regulatory systems and engaging in a spectrum of bio-
logical activities. While numerous sORFs within lncR-
NAs and their corresponding short peptides have been 
detected using the methods previously described, the 
functional assignments for these peptides remain scarce. 
Emerging research suggests that the micropeptides 
derived from lncRNAs could be pivotal in tumorigen-
esis and tumor progression. In this section, we provide a 
compilation of lncRNA-encoded peptides that are asso-
ciated with various cancer-related biological processes 
(Table 4).

Colorectal cancer
Colorectal cancer (CRC), the second most prevalent can-
cer in women and third in men globally, is a major con-
tributor to cancer-related mortality, accounting for 9.2% 
of such deaths [133, 134]. The exploration of lncRNA-
encoded peptides has unveiled their pivotal role in the 
molecular intricacies of CRC, influencing its develop-
ment, progression, and response to treatment (Table  4 
and Fig.  2). For example, the HOXB-AS3 peptide, typi-
cally down-regulated in colon cancer, can inhibit cancer 
growth by interfering with PKM splicing and glucose 
metabolism (Fig.  2A) [33], while the SRSP peptide pro-
motes cancer cell proliferation and metastasis by affect-
ing the splicing of transcription factor Sp4 (Fig. 2B) [105]. 
The RBRP peptide, upregulated in metastatic CRC, sta-
bilizes c-Myc mRNA by binding to IGF2BP1, enhancing 
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tumor progression (Fig.  2C) [104]. These results under-
score the post-transcriptional regulatory potential of 
lncRNA products in CRC. In the context of tumor metab-
olism, the overexpression of ASAP boosts ATP synthase 
activity and mitochondrial oxygen consumption, pro-
moting CRC proliferation (Fig.  2D) [103]. Additionally, 
pep-AP can modulate CRC’s chemotherapy sensitivity by 
adjusting metabolic pathways, leading to ROS accumu-
lation and apoptosis, which may sensitize cells to treat-
ments like Oxaliplatin (Fig.  2E) [108]. lncRNA-encoded 
peptides also regulate signaling pathways in CRC. BVES-
AS1-201-50aa and MBOP peptides, for instance, activate 
the Src/mTOR and MEK1/pERK pathways, respectively, 
to bolster CRC cell viability, migration, and invasion 
(Fig.  2F–G) [106, 109]. The revelation that E3 ubiquitin 
ligases MAEA and RMND5A mediate MBOP degra-
dation underscores the complex regulatory networks 
governing micropeptide metabolism within cells. The 
FORCP peptide adds another layer of complexity, inhibit-
ing cell proliferation and inducing apoptosis in response 
to endoplasmic reticulum stress (Fig.  2H) [107]. These 
findings suggest that lncRNA-encoded peptides could 
serve not only as diagnostic markers but also as novel tar-
gets for therapeutic intervention in CRC, with the poten-
tial to improve treatment strategies through a deeper 
understanding of their mechanisms and regulatory roles.

Breast cancer
Breast cancer (BC), projected to have 310,720 new diag-
noses and 42,250 deaths in the United States in 2024, 
is the most prevalent malignancy among women [135, 
136]. Within this, triple-negative breast cancer (TNBC), 

characterized by the absence of progesterone, estrogen, 
and human epidermal growth factor receptors, presents a 
particularly aggressive subtype with a lower survival rate 
and a complex molecular profile [137, 138]. LncRNA-
encoded peptides are emerging as significant contributors 
to BC progression, with the peptide MRP, overexpressed 
in highly malignant BC cells, promoting invasion and 
metastasis by stabilizing EGFR mRNA and activating 
the PI3K pathway by binding to HNRNPC (Fig. 3A) [30]. 
The lncRNA product LINC00511-133aa enhances inva-
sive properties and stem-like characteristics of BC cells 
by modulating the wnt/β-catenin pathway (Fig. 3B) [110], 
while HCP5-132aa is implicated in resistance to adria-
mycin and can trigger excessive autophagy through the 
ERK/mTOR pathway, and promote TNBC progression by 
regulating GPX4-induced ferroptosis (Fig. 3C) [112, 113]. 
Additionally, ASRPS, a peptide encoded by LINC00908, 
suppresses tumor angiogenesis by inhibiting the STAT3/
VEGF pathway (Fig.  3D) [99], and CIP2A-BP, encoded 
by LINC00665, suppresses TNBC invasion and metasta-
sis by inhibiting the PI3K/AKT/NF-κB pathway (Fig. 3E) 
[114]. Another peptide MAGI2-AS3-ORF5 interacts with 
the extracellular matrix to restrict BC cell viability and 
migration, though its mechanisms require further inves-
tigation (Fig. 3F) [111]. The discovery of these lncRNA-
encoded peptides and their roles in BC, especially TNBC, 
opens new avenues for understanding disease progres-
sion and resistance to therapy. Their multifaceted influ-
ence on cellular processes suggests potential for targeted 
interventions. For instance, the modulation of MRP to 
destabilize EGFR mRNA could be a strategy to combat 
BC metastasis. Similarly, understanding the mechanisms 

Table 3 Condition, difficulty degree and reliability of methods for detecting lncrNA-encoded peptides

Method Condition Difficulty degree Reliability

ORF finder Internet Easy Poor

Polysome Ultracentrifuge Normal Poor

Fully automatic density gradient preparation system

Automatic separation system

GFP reporter Plasmid construction Normal General

Inverted fluorescence microscope

Sequencing (selectable)

Tagging CRISPER/Cas9 system Hard Good

Homologous arm construction

Inverted fluorescence microscopy

Sequencing

Flow cytometer (selectable)

Antibody Antibody preparation Hard Good

Electrophoretic system

Chemiluminescence imager system

Mass spectrum Mass spectrometer Normal Good
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Fig. 2 The role of lncRNA-encoded peptides in colorectal cancer (CRC). A The peptide HOXB-AS3 encoded by LncRNA HOXB-AS3 interacts 
with hnRNP A1 to affect PKM mRNA splicing, inhibiting CRC growth and metastasis. B The peptide SRSP encoded by LncRNA LOC90024 interacts 
with SRSF3 to influence splicing of SP4 mRNA, promoting CRC growth and metastasis. C The peptide RBRP encoded by LINC00266-1 interacts 
with IGF2BP1 to maintain c-Myc mRNA stability, promoting CRC growth and metastasis. D The peptide ASAP encoded by LINC00467 enhances ATP 
synthase activity and mitochondrial oxygen consumption by interacting with ATP5A and ATP5C, promoting CRC growth. E The peptide pep-AP 
encoded by Lnc-AP interacts with TALDO1 to attenuate the pentose phosphate pathway (PPP), inducing apoptosis and drug sensitivity in colorectal 
cancer cells. F The peptide BVES-AS1-201-50aa encoded by LncRNA BVES-AS1 activates the Src/mTOR signaling pathway, promoting CRC 
proliferation, migration, and invasion. G The peptide MBOP encoded by LINC01234 interacts with MEK1 to regulate the MEK1/pERK/MMP2/MMP9 
axis, promoting CRC proliferation and metastasis. H The peptide FORCP encoded by LINC00675 induces apoptosis and inhibits cell proliferation 
in colorectal cancer cells under endoplasmic reticulum stress. Image created with BioRender.com
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by which peptides like ASRPS and CIP2A-BP inhibit key 
signaling pathways could lead to the development of new 
therapeutics that enhance the efficacy of existing treat-
ments or overcome resistance. The interplay between 
lncRNA products and the extracellular matrix also pre-
sents an opportunity to explore the tumor microenviron-
ment’s role in BC progression.

Liver hepatocellular carcinoma
Liver hepatocellular carcinoma (LIHC) is the most preva-
lent form of primary liver cancer, constituting 90% of all 
hepatic cancers [139, 140]. The molecular landscape of 
LIHC is complex and involves lncRNAs encoded pep-
tides, which play crucial roles in the pathogenesis and 
progression of the disease. For instance, HBVPTPAP 
induces apoptosis in LIHC cells via activation of the 
JAK/STAT signaling pathway, potentially through inter-
action with PILRA (Fig.  4A) [32]. The peptide SMIM30 
is upregulated in LIHC tissues and promotes cell prolif-
eration, migration, and invasion by interacting with SRC 
and YES1, activating the MAPK pathway, and being tran-
scriptionally regulated by c-Myc (Fig. 4B) [89]. SMIM30 
also enhance cell proliferation by promoting the G1/S 
transition via the Rb pathway and modulate the cyclin/
CDK-Rb-E2F1 pathway and cytosolic calcium levels 
[116], which extends the impact of SMIM30 in LIHC. 
PINT87aa overexpressed in senescent LIHC cells, inhib-
its growth and induces cellular senescence by blocking 
FOXM1-mediated transcription of PHB2 (Fig. 4C) [115], 
while C20orf204-189AA enhances cell proliferation by 
stabilizing nucleolin and promoting ribosomal RNA 
transcription (Fig.  4D) [31]. The presence of additional 
functional lncRNA-encoded peptides such as CIP2A-BP 
and Linc013026-68AA in LIHC further underscores the 
diversity of their roles, with CIP2A-BP enhancing HCC 
cell proliferation and metastasis in LIHC (Fig. 4E) [117], 
contrasting its suppressive role in TNBC by inhibiting 
the PI3K/AKT/NF-κB pathway [114], as previously men-
tioned. The divergent roles of CIP2A-BP in LIHC and 
TNBC may be attributed to several factors. These include 
variations in the cellular microenvironment, differences 
in the signaling pathways active within each cancer type, 

and the potential for CIP2A-BP to interact with distinct 
binding partners across various tissues. These considera-
tions highlight the importance of accounting for tissue-
specific and context-specific actions when assessing the 
contributions of lncRNA-encoded peptides to cancer 
pathogenesis. Additionally, Linc013026-68AA, has been 
shown to augment LIHC proliferation (Fig.  4F) [118], 
of which the precise mechanism also warrants further 
investigation.

Lung cancer
Lung cancer (LC) remains the primary cause of cancer-
related mortality worldwide, with a grim prognosis and 
an estimated 234,580 new cases in the United States 
alone for 2024 [133, 136, 141, 142]. The disease is gener-
ally categorized into two main types: non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC), each 
with distinct clinical features and treatment approaches 
[143–146]. Recent advances in molecular research have 
shed light on the role of lncRNA-encoded peptides 
in NSCLC, such as ATMLP, which is upregulated in 
NSCLC tissues and disrupts mitophagy by interacting 
with NIPSNAP1, thereby promoting malignant transfor-
mation and tumorigenesis (Fig.  5A) [120]. Interestingly, 
ATMLP’s expression is regulated by N6-methyladenosine 
 (m6A) methylation of its encoding lncRNA AFAP1-AS1 
[120], introducing a new perspective on the post-tran-
scriptional regulation of lncRNA-encoded peptides, and 
suggesting that epigenetic modifications, such as  m6A 
methylation, may serve as key regulators in the expres-
sion and function of these peptides. Additionally, a pep-
tide encoded by lncRNA DLX6-AS1 has been shown to 
activate the Wnt/β-catenin pathway, enhancing NSCLC 
cell proliferation and metastasis (Fig.  5B) [121]. The 
lncRNA product UBAP1-AST6 also enhances LC cell 
proliferation and clone formation, although its mecha-
nisms of action require further investigation  (Fig.  5C) 
[122].

Esophageal cancer
Esophageal cancer, predominantly manifesting as esoph-
ageal squamous cell carcinoma (ESCC), is the sixth most 

Fig. 3 The role of lncRNA-encoded peptides in breast cancer. A The peptide MRP encoded by LncRNA LY6E-DT regulates EGFR mRNA stability 
and translation by interacting with HNRNPC, promoting breast cancer metastasis. B The peptide LINC00511-133aa encoded by LINC00511 
facilitates β-catenin nuclear translocation to activate the transcription of Bax, c-Myc, and CyclinD1, promoting invasiveness and stem-like properties 
of breast cancer. C The peptide HCP5-132aa encoded by LncRNA HCP5 inhibits autophagy and ferroptosis to promote breast cancer proliferation 
and migration. D The peptide ASRPS encoded by LINC00908 inhibits STAT3 phosphorylation, leading to the suppression of VEGF transcription 
and thus inhibiting tumor metastasis and angiogenesis. E The peptide CIP2A-BP encoded by LINC00665 competes with PP2A for binding to CIP2A, 
reducing AKT phosphorylation to inhibit the PI3K/AKT/NFκB pathway, leading to the downregulation of MMP2, MMP9, and Snail, thus inhibiting 
breast cancer invasion and metastasis. F The peptide MAGI2-AS3-ORF5 encoded by LncRNA MAGI2-AS3 interacts with extracellular matrix proteins 
to inhibit breast cancer cell proliferation and migration. Image created with BioRender.com

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 The role of lncRNA-encoded peptides in liver cancer. A The peptide HBVPTPAP encoded by LncRNA HBVPTPAP promotes membrane 
localization of PILRA by interacting with it, activating the JAK/STAT signaling pathway to induce apoptosis and inhibit liver cancer development. 
B The peptide SMIM30 encoded by LINC00998 activates the MAPK signaling pathway and regulates the G1/S phase transition to promote liver 
cancer proliferation and metastasis. C The peptide PINT87aa encoded by LINC-PINT interacts with FOXM1 to inhibit PHB2 transcription, inducing 
cellular senescence and suppressing liver cancer growth. D The peptide C20orf204-189AA encoded by LINC00176 promotes liver cancer cell 
proliferation by stabilizing Nucleolin and enhancing rRNA transcription. E The peptide CIP2A-BP encoded by LINC00665 promotes liver cancer 
growth and metastasis. F The peptide Linc013026-68aa encoded by LINC013026 enhances the in vitro proliferation of HCC cells. Image created 
with BioRender.com
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common cause of cancer mortality worldwide, with a 
significant incidence in China where it represents over 
50% of global cases [147–149]. Late-stage symptoms like 
dysphagia and cervical lymph node enlargement con-
tribute to a low 5-year survival rate and a poor prognosis 
for ESCC patients [150]. Recent studies have shed light 
on the role of lncRNA-encoded peptides in ESCC, offer-
ing a promising avenue in the battle against this aggres-
sive cancer. Pep-KDM4A-AS1, a peptide encoded by the 
lincKDM4A-AS1, has been shown to diminish ESCC cell 
viability and migration by modulating the oxidation–
reduction process and fatty acid metabolism. Another 
peptide (Fig.  6A) [123]. Pep-LINC01116, exhibits simi-
lar effects on cell viability and migration (Fig. 6B) [123]. 
Additionally, YY1BM, a peptide encoded by LINC00278, 
influences ESCC progression by disrupting the AR sign-
aling pathway, leading to altered expression of eEF2K and 
impacting cell adaptability under nutrient-deprived con-
ditions (Fig. 6C) [91].

Pancreatic cancer
The global burden of pancreatic cancer has seen a sharp 
escalation over recent decades, with a grim projection 

that it will remain the leading cause of cancer-related 
mortality [151, 152]. Recent molecular research has iden-
tified the lncRNA-encoded peptide RASON, encoded 
by LINC00673, as a critical factor in pancreatic cancer 
pathology. Overexpressed in pancreatic cancer tissues, 
RASON promotes the proliferation of pancreatic ductal 
adenocarcinoma by interacting with the oncogenic 
 KRASG12D/V mutant protein (Fig.  7A) [124]. This inter-
action inhibits  KRASG12D/V’S  GTPase activity and GTP 
hydrolysis by GTPase activating protein (GAP), lead-
ing to the stabilization of  KRASG12D/V in a GTP-bound, 
hyperactive state—a key driver of pancreatic cancer 
[124]. The modulation of KRAS activity by RASON, 
considering KRAS’s frequent mutation in cancer, under-
scores the peptide’s potential as a therapeutic target.

Renal cell carcinoma
Renal cell carcinoma (RCC), with its most aggressive sub-
type being clear cell renal cell carcinoma (ccRCC), rep-
resents a significant health burden, contributing to an 
estimated 400,000 new cases and 175,000 deaths glob-
ally in 2018 [153, 154]. Recent research has shed light on 
the role of lncRNA-encoded peptides in the pathology of 
RCC. The peptide SMIM26 is downregulated in RCC tis-
sues and has been shown to inhibit tumor proliferation 
and metastasis by interacting with AGK and SLC25A11, 
thereby affecting mitochondrial glutathione import and 
respiratory efficiency (Fig. 7B) [125]. Additionally, MIAC 
is down-expressed in ccRCC and, when overexpressed, 
inhibits tumor proliferation and migration while promot-
ing apoptosis through the modulation of the PI3K/AKT 
and MAPK pathways by binding to the AQP2 protein and 
inhibiting EREG/EGFR expression (Fig. 7C) [126].

Ovarian cancer
Ovarian cancer (OV), encompassing malignancies of 
the ovary, fallopian tube, and peritoneum, is a signifi-
cant health concern with an annual global incidence of 
313,959 cases and 207,252 deaths [155]. Despite declining 
incidence rates and improving survival rates in regions 
like the United States and Europe, partly due to the use 
of oral contraceptives [136, 156], the prognosis for OV 
remains poor, with most patients diagnosed at advanced 
stages and lacking effective early detection strategies 
[157]. However, the role of the lncRNA-encoded peptide 
DDUP, derived from CTBP1-DT, has emerged as a key 
player in OV’s molecular pathology, particularly in DNA 
damage repair. DDUP’s upregulation is associated with 
enhanced DNA repair mechanisms and cisplatin resist-
ance in ovarian cancer cells. The use of the ATR inhibi-
tor Berzosertib has been shown to disrupt DDUP foci 
formation, thereby sensitizing these cells to DNA-dam-
aging chemotherapeutics. The phosphorylation of DDUP 

Fig. 5 The role of lncRNA-encoded peptides in lung cancer. A 
The peptide ATMLP encoded by lncRNA AFAP1-AS1 disrupts 
autolysosome formation by interacting with NIPSNAP1, hindering 
its transport, leading to lung cancer development and progression. 
B The peptide encoded by lncRNA DLX6-AS1 enhances 
the proliferation, migration, and invasion of NSCLC cells by activating 
the Wnt/β-catenin signaling pathway. C The peptide UBAP1-AST6 
encoded by an LncRNA promotes the proliferation of lung cancer 
cells in vitro. Image created with BioRender.com
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in response to DNA damage induces a conformational 
change that strengthens its interaction with RAD18, sup-
porting DNA repair through homologous recombination 
(HR) and post-replication repair mechanisms (Fig.  8A) 
[39]. The upregulation of DDUP following cisplatin treat-
ment further confirms its role in promoting cellular 
resistance to chemotherapy, emphasizing its significance 
in OV’s therapeutic resistance. Another research team 
has revealed that DDUP is upregulated in patient-derived 
OV cells following cisplatin treatment, enhancing the 
cells’ capacity for DNA repair and resulting in cisplatin 
resistance through RAD51C-mediated HR and PCNA-
mediated post-replication repair [127], which further 
confirm the significant role of lncRNA-encoded peptide 
in DNA damage repair.

Neuroblastoma
Neuroblastoma (NB) is the most common extracranial 
solid tumor in children, originating from the developing 
peripheral sympathetic nervous system and represent-
ing approximately 8% of all childhood cancers [158–160]. 
Despite progress in targeted therapies, the long-term 
survival rate for high-risk children remains under 40%, 
highlighting the need for innovative treatment strategies 

[160]. LncRNA-encoded peptides have emerged as 
potential players in NB pathology. NBASP is down-
regulated in NB tissues and inhibits cell proliferation, 
and metastasis by interacting with FABP5 and reducing 
its expression through the ubiquitin proteasome path-
way, resulting in the inactivation of the MAPK signal-
ing pathway (Fig. 8B) [128]. On the other hand, sPEP1, a 
peptide encoded by HNF4A-AS1 and upregulated in NB 
stem cells, promotes tumor progression interacting with 
eEF1A1, enhancing its binding to SMAD4, and leading to 
the transcriptional upregulation of stem cell genes asso-
ciated with tumor progression (Fig. 8C) [129].

Osteosarcoma
Osteosarcoma (OS), while a rare cancer, is the most com-
mon bone malignancy affecting children and adolescents 
[161]. It is believed to originate from osteoblastic mes-
enchymal cells [162]. The prognosis for patients with OS 
varies significantly depending on the stage of the disease; 
the 5  year survival rate for patients with localized OS 
is approximately 70%, but this figure drops to less than 
30% for those with metastatic disease, indicating a poor 
survival outcome [163]. Recent research has highlighted 
the potential role of lncRNA-encoded peptides in the 

Fig. 6 The role of lncRNA-encoded peptides in esophageal cancer. A The peptide Pep-KDM4A-AS1 encoded by LincKDM4A-AS1 inhibits 
the proliferation and migration of esophageal cancer cells by regulating intracellular redox processes and fatty acid metabolism. B The peptide 
Pep‐LINC01116 encoded by LINC01116 reduces the viability of ESCC cells and inhibits their migration. C The peptide YY1BM encoded by LINC00278 
promotes apoptosis in esophageal cancer cells by disrupting the binding of YY1 and AR, leading to reduced eEF2K expression. Image created 
with BioRender.com
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pathology of OS. One such peptide, LINC00665_18aa, 
suppresses the viability, proliferation, and migration of 
human OS cells in  vitro and diminishes tumor growth 
in  vivo. The mechanistic insight behind these effects 
reveals that LINC00665_18aa impairs the transcriptional 
activity, nuclear localization, and phosphorylation of the 
CREB1 and disrupts the interaction between CREB1 and 
RPS6KA3 [130].

Oral squamous cell carcinoma
Oral cancer, predominantly oral squamous cell carci-
noma (OSCC), ranks as the sixth most common malig-
nancy globally, yet the 5-year overall survival rate remains 
under 50%, underscoring an urgent need for innovative 
therapeutic targets [133, 164]. Research into lncRNA-
encoded peptides in OSCC has identified HOXB-AS3 
as a significant factor; it is upregulated in OSCC tissues 
and facilitates cell proliferation and viability by interact-
ing with IGF2BP2 to stabilize the mRNA of c-MYC, a key 
driver in cell cycle progression and cancer development 
[131, 165, 166]. This indicates a potential oncogenic role 
for HOXB-AS3 in OSCC. Interestingly, contrasting roles 
for HOXB-AS3 have been observed in CRC, where it is 
downregulated and inhibits cancer progression by inter-
fering with PKM splicing, a key regulatory step in glucose 

metabolism and the Warburg effect characteristic of can-
cer cells [167–169]. The dualistic behavior of HOXB-AS3 
in different cancers, similar to that of CIP2A-BP in liver 
and breast cancers, highlights the complexity of lncRNA-
encoded peptides and their tissue-specific roles in cancer.

Acute myeloid leukemia
Acute myeloid leukemia (AML) is one of the most com-
mon clinically fatal malignancies, characterized by dif-
ferentiation block and clonal expansion of immature 
cells at various stages. The genetic complexity and highly 
heterogeneous nature of AML contribute to diverse sub-
types with poor prognosis, leading to the limited effects 
of specific therapies [170–172]. The regulatory influence 
of lncRNA-encoded peptides on protein translation has 
been discerned in AML. The micropeptide APPLE is 
notably enriched in ribosomes, where it modulates the 
initiation phase of translation. This modulation enhances 
the synthesis of oncoproteins, thereby sustaining elevated 
rates of translation essential for the malignant phenotype. 
Mechanistically, APPLE fosters the interaction between 
PABPC1 and eIF4G, thereby facilitating mRNA circulari-
zation and the assembly of the eIF4F initiation complex. 
This assembly underpins a specific translational program 
that is conducive to cancer progression [173].While the 

Fig. 7 The role of lncRNA-encoded peptides in pancreatic and renal cancers. A The peptide RASON encoded by LINC00673 promotes the growth 
of pancreatic cancer by stabilizing KRASG12D/V in an active GTP-bound state through interaction with KRASG12D/V. B The peptide SMIM26 
encoded by LINC00493 inhibits the proliferation and migration of renal cell carcinoma by enhancing mitochondrial localization of AGK, thereby 
inhibiting AGK-mediated AKT phosphorylation. C The peptide MIAC encoded by LncRNA AC025154.2 inhibits the proliferation and migration 
of renal cell carcinoma by interacting with AQP2 to suppress the expression of EREG/EGFR. Image created with BioRender.com
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current body of research is indeed limited, the role of 
lncRNA-encoded peptides in other hematologic malig-
nancies, such as chronic myeloid leukemia, remains an 
uncharted territory ripe for exploration.

Although research on lncRNA-encoded peptides has 
unveiled their potential roles in several types of can-
cer (Fig.  9), the precise mechanisms by which certain 
peptides exert their functions remain to be fully eluci-
dated. The complexity of the role of  m6A modification in 
lncRNA-encoded peptides is also increasingly evident. 
For instance, as previously mentioned,  m6A methyla-
tion in the lncRNA AFAP1-AS1 controls the translation 
of the micropeptide ATMLP in lung cancer [120], while 
the peptides RBRP can bind to IGF2BP1 and HOXB-AS3 
binds to IGF2BP2, important readers of  m6A modifica-
tion [174, 175], to increase  m6A recognition in c-Myc 
mRNA in CRC and OSCC respectively [104, 131]. These 
studies suggest that lncRNA-encoded peptides can not 
only regulate by  m6A modification but also cooperate 
with  m6A modification to influence downstream mol-
ecules. However, whether other peptides are regulated by 
RNA modifications and the intricate interplay between 
them requires further investigation. Moreover, it is note-
worthy that some peptides, including CIP2A-BP and 

HOXB-AS3, may play opposing roles in different tumors, 
highlighting the importance of describing a peptide’s 
action within the specific context of a particular cancer. 
The functional duality of these peptides underscores the 
need for a nuanced understanding of their roles in vari-
ous cancerous environments. Furthermore, the explora-
tion of these peptides in other cancer types is currently 
lacking, such as in the more common malignancies like 
gastric and prostate cancer. Expanding our research to 
include these prevalent cancers is crucial for gaining a 
comprehensive understanding of the breadth of lncRNA-
encoded peptides’ impact on cancer biology and their 
potential as therapeutic targets. The investigation into 
the roles of these peptides in a wider range of cancers 
could reveal novel insights into cancer pathogenesis and 
identify new opportunities for targeted cancer therapies.

Functional mechanisms of lncRNA‑encoded 
peptides in cancer
LncRNA-encoded peptides, despite their short lengths, 
exert significant regulatory effects in cancer through 
various mechanisms.

Fig. 8 The role of lncRNA-encoded peptides in ovarian and glioblastoma cancers. A The peptide DDUP encoded by LncRNA CTBP1-DT enhances 
DNA damage repair and cisplatin resistance in ovarian cancer cells by interacting with H2A.X and RAD18. B The peptide NBASP encoded by LncRNA 
increases the degradation of FABP5, leading to the inactivation of the MAPK pathway and inhibiting the proliferation and migration of glioblastoma 
cells. C The peptide sPEP1 encoded by LncRNA HNF4A-AS1 promotes the transcriptional upregulation of hepatocyte-related genes by enhancing 
the interaction with SMAD4, leading to the occurrence and metastasis of glioblastoma. Image created with BioRender.com
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Transcriptional regulation
LncRNAs engage in transcriptional regulation by inter-
acting with transcription factors, influencing the expres-
sion of specific genes. For example, PINT87aa interacts 
with FOXM1 to disrupt the transcription of tumor sup-
pressor [115], and YY1BM interacts with YY1 to affect 
the androgen receptor signaling pathway, influencing 
gene transcription [91]. Additionally, lncRNAs can indi-
rectly participate in transcriptional regulation [129].

Post‑transcriptional regulation
LncRNA-encoded peptides can directly bind to splicing 
factors and participate in RNA splicing. For example, 
SRSP interacts with SRSF3 to affect the production of 
different protein isoforms [105]. Some peptides can also 
interact with RNA-binding proteins and RNA modifica-
tion enzymes, impacting RNA splicing and stability [30, 
33, 104, 131]. For example, HOXB-AS3 interacts with 
IGF2BP2 to stabilize c-MYC mRNA stability [131].

Translation and post‑translation regulation
LncRNA-encoded peptides, like APPLE in AML, are 
involved in the translation initiation phase, enhancing 
the synthesis of oncoproteins [173]. Additionally, NBASP 
and ATMLP illustrate how peptides can mediate protein 
degradation and regulate protein transport and activity, 
respectively [120, 128].

Bind to metabolic proteins
Moreover, lncRNA-encoded peptides regulate metabo-
lism by binding to metabolic proteins [108, 125]. For 
example, ASAP promote metabolic processes by inter-
acting with proteins like ATP synthase, affecting cellular 
metabolism and energy production [103].

Bind to signaling pathway‑related proteins
The modulation of signaling pathways by lncRNA-
encoded peptides is another critical area of influence. 
lncRNA-encoded peptides can both activate and inhibit 
signaling pathways. For instance, MBOP activates the 

Fig. 9 lncRNA-encoded peptides identified in various human tumor types. NB, Neuroblastoma; BC, Breast cancer; PDAC, Pancreatic ductal 
adenocarcinoma; LIHC, Liver cancer; OS, Osteosarcoma; OSCC, Oral squamous cell carcinoma; ESCC, Esophageal squamous cell carcinoma; LC, Lung 
cancer; RCC, Renal cell carcinoma; CRC, Colorectal cancer; OV, Ovarian cancer. Image created with BioRender.com
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MEK1/pERK/MMP2/MMP9 axis [109], while CIP2A-BP 
inhibits the PI3K/AKT/NF-κB pathway, impacting can-
cer progression and metastasis [114].

Genomic stability
LncRNA-encoded peptides also involved in DNA dam-
age repair. For example, DDUP, upon phosphorylation 
induced by DNA damage, interacts with RAD18 to facili-
tate repair mechanisms, including RAD51C-mediated 
homologous recombination and PCNA-mediated post-
replication repair [39].

In summary, lncRNA-encoded peptides contribute to 
cancer development and progression through diverse 
regulatory roles, including transcriptional and post-
transcriptional regulation, modulation of translation and 
protein activity, metabolic regulation, signaling pathway 
modulation, and maintenance of genomic stability. These 
functions are executed through their interactions with a 
range of protein partners, emphasizing their importance 
in cellular regulation and cancer biology.

Clinical applications of lncRNA‑encoded peptides
An escalating number of studies have substantiated the 
pervasive involvement of lncRNA-encoded peptides in 
pivotal physiological processes, with an intimate con-
nection to tumorigenesis and tumor progression. This 
nascent field within lncRNA research holds the key to 
unlocking the profound implications of these peptides 
in cancer biology. As such, their clinical deployment as 
biomarkers or targets for intervention is anticipated to 
shed new light on their cardinal role in oncology (Table 5, 
Fig. 10).

Diagnosis biomarker
The quest for novel tumor biomarkers within oncology 
research is driven by the need for markers that are highly 
sensitive, specific, reproducible, and ideally non-invasive 
[176–179]. In this context, circulating micropeptides 
encoded by lncRNAs emerge as a promising class of bio-
markers with the potential to revolutionize cancer diag-
nostics. The discovery of functional peptides encoded by 
lncRNAs has opened new avenues in the search for diag-
nostic biomarkers. These peptides, with their differential 
expression patterns in malignant versus normal cells, are 
strong candidates for diagnostic biomarkers. ATMLP, a 
peptide overexpressed in tumor tissues compared to par-
acancerous tissues in NSCLC, exemplifies this potential. 
Its elevated levels in the serum of NSCLC patients, with 
an AUC of 0.852, suggest its effectiveness as a serum bio-
marker. Remarkably, ATMLP can prognosticate lung can-
cer development prior to PET-CT imaging, emphasizing 
its significant diagnostic value [120]. Similarly, MRP, 
which intensifies in expression in highly malignant breast 

cancer cells, has been shown to distinguish patients with 
and without lymph node metastasis, with an AUC of 
0.7112 [30] indicating its potential as a diagnostic tool in 
breast cancer. However, the diagnostic potential of other 
lncRNA-encoded peptides and their utility in various 
biofluids, including urine, warrant further exploration. 
The promise of these biomarkers lies in their potential 
for early cancer detection, which is vital for improving 
patient outcomes. Future research aimed at identifying 
additional peptides could transform early cancer detec-
tion and provide new strategies for timely and effective 
intervention. As the field advances, the challenge will be 
to validate these biomarkers in large-scale, multicenter 
clinical trials to ensure their reliability and utility across 
diverse patient populations. The successful integration of 
lncRNA-encoded peptide biomarkers into routine clini-
cal practice will require not only scientific validation but 
also the development of robust and accessible diagnostic 
platforms capable of accurately measuring these peptides 
in patient samples.

Prognosis biomarker
The prognostic utility of lncRNA-encoded peptides in 
cancer is an emerging field that offers significant promise 
in predicting disease progression and patient outcomes. 
These peptides, when identified and characterized, can 
serve as valuable markers that correlate with late-stage 
clinical pathological features and poor prognoses, thereby 
guiding treatment strategies and patient management. 
Certain peptides have been linked to tumor aggressive-
ness and survival rates. For instance, in TNBC, specific 
peptides such as ASRPS and HCP5-132aa have demon-
strated a positive correlation with poor OS [99, 113], sug-
gesting their potential as indicators of aggressive tumor 
behavior and treatment response [99, 113]. Conversely, 
the presence of the peptide CIP2A-BP has been found to 
inversely associate with metastasis and OS, indicating its 
potential as a protective factor or a marker of less aggres-
sive cancer [114]. In CRC, peptides like ASAP, RBRP, and 
SRSP have been linked to poor OS, with RBRP and SRSP 
emerging as independent prognostic factors for survival, 
correlating with advanced clinical stages and higher his-
tological grade [103–105]. The prognostic significance 
of lncRNA-encoded peptides extends beyond breast and 
colorectal cancers, with implications in pancreatic ductal 
adenocarcinoma [124], renal cell carcinoma [125], ovar-
ian cancer [39], etc. These peptides enable patient strati-
fication, leading to more personalized treatment plans 
and improved survival rates. As research continues to 
elucidate the complexities of lncRNA-encoded peptides, 
their role in cancer prognosis becomes increasingly clear, 
offering a unique perspective into tumor biology and 
informing clinical decision-making.



Page 24 of 33Zhang  Journal of Hematology & Oncology           (2024) 17:66 

Ta
bl

e 
5 

Th
e 

ap
pl

ic
at

io
ns

 o
f l

nc
RN

A
-e

nc
od

ed
 p

ep
tid

es

Ca
nc

er
Pe

pt
id

e
D

ia
gn

os
is

Pr
og

no
si

s
Th

er
ap

y
Re

fe
re

nc
es

Tr
ip

le
-N

eg
at

iv
e 

Br
ea

st
 C

an
ce

r
A

SR
PS

–
Po

si
tiv

el
y 

as
so

ci
at

ed
 w

ith
 p

oo
r O

S
In

tr
at

um
or

al
 in

je
ct

io
n 

of
 A

SR
PS

 s
ig

-
ni

fic
an

tly
 im

pr
ov

ed
 s

ur
vi

va
l i

n 
th

e 
TN

BC
 

m
ou

se
 x

en
og

ra
ft

 m
od

el

[9
9]

H
C

P5
-1

32
aa

–
Po

si
tiv

el
y 

as
so

ci
at

ed
 w

ith
 m

or
e 

ad
va

nc
ed

 
cl

in
ic

al
 s

ta
ge

s 
an

d 
po

or
 O

S
–

[1
13

]

C
IP

2A
-B

P
–

N
eg

at
iv

el
y 

as
so

ci
at

ed
 w

ith
 m

et
as

ta
si

s 
an

d 
po

or
 O

S
C

IP
2A

‐B
P 

in
je

ct
io

n 
vi

a 
ta

il 
ve

in
 re

du
ce

d 
lu

ng
 m

et
as

ta
se

sn
an

d 
im

pr
ov

ed
 o

ve
ra

ll 
su

rv
iv

al
 in

 lu
ng

 m
et

as
ta

si
s 

m
od

el
s 

in
 th

e 
M

M
TV

-P
yM

T 
m

ic
e

[1
14

]

Br
ea

st
 c

an
ce

r
M

RP
M

ay
 b

e 
a 

di
ag

no
st

ic
 b

io
m

ar
ke

r f
or

 L
N

M
, 

w
ith

 A
U

C
 v

al
ue

 in
 d

is
cr

im
in

at
in

g 
BC

 
pa

tie
nt

s 
w

ith
 o

r w
ith

ou
t L

N
M

 re
ac

he
d 

0.
71

12

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 L
N

M
–

[3
0]

Co
lo

re
ct

al
 c

an
ce

r
H

O
XB

-A
S3

–
N

eg
at

iv
el

y 
as

so
ci

at
ed

 w
ith

 lo
w

er
 O

S
–

[3
3]

A
SA

P
–

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 L
N

M
 a

nd
 p

oo
r 

O
S

In
tr

at
um

or
al

 in
je

ct
io

n 
of

 A
SA

P-
ta

rg
et

ed
 

C
RI

SP
R/

Ca
s9

 v
ec

to
r s

up
pr

es
se

d 
th

e 
gr

ow
th

 o
f C

RC
 p

at
ie

nt
-d

er
iv

ed
 

xe
no

gr
af

ts

[1
03

]

RB
RP

–
Po

si
tiv

el
y 

co
rr

el
at

ed
 w

ith
 a

dv
an

ce
d 

cl
in

ic
al

 
st

ag
es

 a
nd

 c
an

ce
r-

re
la

te
d 

de
at

h;
 h

ig
h 

RB
RP

 w
as

 a
n 

in
de

pe
nd

en
t p

ro
gn

os
tic

 fa
c-

to
r f

or
 p

oo
r s

ur
vi

va
l

–
[1

04
]

SR
SP

–
Po

si
tiv

el
y 

as
so

ci
at

ed
 w

ith
 h

is
to

lo
gi

ca
l 

gr
ad

e,
 p

N
 s

ta
tu

s, 
cl

in
ic

al
 s

ta
ge

, a
nd

 c
an

ce
r-

re
la

te
d 

de
at

h;
 h

ig
h 

SR
SP

 le
ve

l w
as

 a
n 

in
de

-
pe

nd
en

t p
ro

gn
os

tic
 fa

ct
or

 fo
r p

oo
r 

su
rv

iv
al

–
[1

05
]

Pa
nc

re
at

ic
 d

uc
ta

l a
de

no
ca

rc
in

om
a

RA
SO

N
–

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 II
B-

IV
 s

ta
ge

 
an

d 
po

or
 O

S
Pe

rit
um

or
al

 in
je

ct
io

n 
of

 s
h-

RA
SO

N
 in

hi
b-

ite
d 

xe
no

gr
af

t t
um

or
 g

ro
w

th
 a

nd
 s

en
si

-
tiz

ed
 K

RA
S 

m
ut

an
t p

an
cr

ea
tic

 c
an

ce
r c

el
ls

 
to

 E
G

FR
 in

hi
bi

to
rs

 (c
et

ux
im

ab
) i

n 
nu

de
 

m
ic

e

[1
24

]

Re
na

l c
el

l c
ar

ci
no

m
a

SM
IM

26
–

N
eg

at
iv

el
y 

as
so

ci
at

ed
 w

ith
 c

an
ce

r‐r
el

at
ed

 
de

at
h

–
[1

25
]

N
SC

LC
AT

M
LP

Co
ul

d 
be

 a
 d

ia
gn

os
tic

 s
er

um
 m

ar
ke

r 
w

ith
 A

U
C

 o
f 0

.8
52

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 m
or

e 
ad

va
nc

ed
 

di
se

as
e 

an
d 

po
or

 O
S

–
[1

20
]

Pa
n-

ca
nc

er
pT

IN
C

R
–

Po
so

tiv
el

y 
co

rr
el

at
ed

 w
ith

 in
cr

ea
se

d 
O

S 
of

 p
at

ie
nt

s 
w

ith
 b

la
dd

er
 c

ar
ci

no
m

a,
 P

D
A

C
, 

st
om

ac
h 

ad
en

oc
ar

ci
no

m
a,

 h
ea

d 
an

d 
ne

ck
 

sq
ua

m
ou

s 
ce

ll 
ca

rc
in

om
a 

an
d 

lu
ng

 a
de

no
-

ca
rc

in
om

a

–
[1

32
]



Page 25 of 33Zhang  Journal of Hematology & Oncology           (2024) 17:66  

Ta
bl

e 
5 

(c
on

tin
ue

d)

Ca
nc

er
Pe

pt
id

e
D

ia
gn

os
is

Pr
og

no
si

s
Th

er
ap

y
Re

fe
re

nc
es

O
va

ria
n 

ca
nc

er
D

D
U

P
–

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 C
D

D
P 

re
si

st
an

ce
 

an
d 

re
la

ps
e 

an
d 

in
ve

rs
el

y 
as

so
ci

at
ed

 
w

ith
 s

ho
rt

er
 o

ve
ra

ll/
re

la
ps

e-
fre

e 
su

rv
iv

al
 

in
 p

at
ie

nt
s 

w
ith

 o
va

ria
n 

ca
nc

er
 s

ub
je

ct
ed

 
to

 p
la

tin
um

-b
as

ed
 th

er
ap

y

–
[3

9]

N
eu

ro
bl

as
to

m
a

sP
EP

1
–

Po
so

tiv
el

y 
co

rr
el

at
ed

 w
ith

 a
dv

an
ce

d 
IN

SS
 

st
ag

es
, M

YC
N

 a
m

pl
ifi

ca
tio

n,
 p

oo
r d

irr
er

en
-

tia
tio

n,
 a

nd
 p

oo
r s

ur
vi

va
l

–
[1

29
]

Re
na

l c
el

l c
ar

ci
no

m
a

M
IA

C
–

N
eg

at
iv

el
y 

co
rr

el
at

ed
 w

ith
 a

dv
an

ce
d 

st
ag

e 
III

-IV
 a

nd
 p

oo
r O

S
In

tr
av

en
ou

s 
in

je
ct

io
ns

 w
ith

 s
yn

th
et

iz
ed

 
M

IA
C

 p
ep

tid
es

 in
hi

bi
te

d 
tu

m
or

 g
ro

w
th

 
in

 s
ub

cu
ta

ne
ou

s 
tr

an
sp

la
nt

ed
 tu

m
or

 
m

od
el

[1
26

]

Es
op

ha
ge

al
 s

qu
am

ou
s 

ce
ll 

ca
rc

in
om

a
YY

1B
M

–
–

YY
1B

M
 in

je
ct

io
n 

in
tr

at
um

or
al

ly
 

im
pr

ov
ed

 th
e 

su
rv

iv
al

 ra
te

 o
f m

al
e 

m
ic

e,
 

bu
t n

ot
 fe

m
al

e 
m

ic
e,

 in
 E

SC
C

 tu
m

or
s 

gr
af

te
d 

in
 n

ud
e 

m
ic

e

[9
1]



Page 26 of 33Zhang  Journal of Hematology & Oncology           (2024) 17:66 

Therapeutic target
Over the past few decades, cancer treatment has evolved 
significantly with the introduction of various therapies, 
including small molecule drugs that target specific sign-
aling pathways, antiangiogenic medications, monoclonal 
antibodies, and gene therapy [180–183]. The specificity, 
efficacy, and reduced side effects associated with peptide 
or protein-targeted drugs make them particularly prom-
ising for clinical application. LncRNA-encoded peptides, 
with their diverse mechanisms of action, are attractive 
candidates for therapeutic intervention. The peritumoral 
administration of sh-RASON, which targeting the pep-
tide RASON, exemplifies the therapeutic potential of 
SEPs. Studies have shown that sh-RASON can inhibit the 
growth of xenografted tumors and enhance the sensitiv-
ity of KRAS-mutant pancreatic cancer cells to epidermal 
growth factor receptor inhibitors, such as cetuximab, 
in a murine model [124], highlighting the potential of 
lncRNA-encoded peptides as therapeutic agents tailored 
to target specific molecular aberrations in cancer.

Other potential applications
The specificity, high activity, low cytotoxicity, and dimin-
ished immunogenicity of lncRNA-encoded peptides 
make them prime candidates for drug development. 
Intratumoral injection of ASRPS has been demonstrated 
to significantly improve survival in TNBC mouse xeno-
graft models [99]. Synthetic MIAC peptides, adminis-
tered intravenously, have shown promise in inhibiting 

tumor growth in RCC models [126]. Additionally, can-
cer vaccines, which can elicit long-term immunological 
memory, have garnered significant attention [184–186]. 
Several cancer vaccines are currently utilized in clini-
cal therapy, including Melacine for melanoma and Cima 
Vax EGF for lung cancer [187, 188]. Laumont et al. high-
lighted that tumor-specific antigens (TSA) are ideal 
targets for immunotherapy and found that most TSA 
derived from non-coding regions  [189], suggesting that 
TSA derived from non-coding regions could be a prom-
ising avenue for cancer immunotherapy. The landscape 
of cancer vaccines is also being reshaped by these pep-
tides, offering the advantage of long-term immunologi-
cal memory and sustained antitumor effects. Notably, 
lncRNA-derived peptides have been shown to elicit a 
potent antigen-specific CD8 + T lymphocyte response, 
as evidenced by Barczak et al., suggesting their utility in 
cancer vaccine development [190].

Other studies have explored the role of lncRNA-
encoded peptides in immune modulation [191, 192]. 
Jackson et  al. demonstrated that the translation of a 
novel ORF within the lncRNA Aw112010 is essential for 
coordinating mucosal immunity during bacterial infec-
tion and colitis [193], expanding our understanding of 
the protein-coding genome and the importance of pro-
teinaceous products from lncRNA in in  vivo immune 
responses. Kikuchi et  al. identified a peptide encoded 
by the lncRNA PVT1 that is predominantly enriched in 
multiple CRC tissues. The PVT1 peptide was recognized 

Fig. 10 Potential applications of lncRNA-encoded peptides. LncRNA-encoded peptides can be utilized in various aspects of oncology, 
including cancer diagnosis, prognosis, therapeutic target, drug development, immune regulation, and regenerative medicine. SEP, sORF-encoded 
peptide. Image created with BioRender.com
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by patient CD8 + tumor-infiltrating lymphocytes and 
peripheral blood mononuclear cells, indicating the pres-
ence of patient immune surveillance [194]. These findings 
suggest that peptides translated from lncRNAs and pre-
sented by HLA class I can be sensed by cancer patient T 
cells, highlighting their potential in noncoding genomic 
aberration detection.

As research delves deeper, the regulatory role of 
lncRNA-encoded peptides in tissue regeneration and 
stem cell differentiation is coming to light [129, 195, 
196]. Matsumoto et al. found that the lncRNA encoding 
SPAR is downregulated in skeletal muscle upon acute 
injury. Using a SPAR-polypeptide-specific knockout 
mouse model created by CRISPR/Cas9, they established 
that SPAR downregulation enables efficient activation 
of mTORC1, promoting muscle regeneration [195, 197]. 
This suggests that lncRNA-encoded peptides could be 
applied in regenerative medicine, with significant impli-
cations for therapeutic approaches following surgical 
procedures such as hepatectomy.

Prospect and conclusion
The field of lncRNA-encoded peptides in cancer research 
is burgeoning with potential, offering new insights into 
the intricate mechanisms underlying tumorigenesis and 
progression. In the past, the misannotation of genes 
containing non-canonical ORFs as non-coding RNAs 
has obscured the significant roles these protein-coding 
genes play in cancer. However, recent advancements 
in peptide identification methods, such as Ribo-seq 
and mass spectrometry, have catalyzed the discovery of 
SEPs, shedding light on their previously underappreci-
ated functions. To fully harness the potential of SEPs, it 
is imperative to experimentally validate their transla-
tion into functional proteins before delving into their 
functional studies. In this process, a critical considera-
tion is point-mutation, which may lead to the creation 
of new ORFs [198, 199]. These peptides often interact 
with proteins, impacting RNA splicing, and stability, and 
engaging in cellular metabolism and signaling pathways, 
thereby participating in biological processes crucial to 
cancer development. Furthermore, discerning the func-
tions of lncRNA-encoded peptides from those of their 
parental RNA sequences is imperative. This distinc-
tion can be achieved through the overexpression of the 
full-length lncRNA and its start codon mutant forms, 
followed by functional assays to determine whether the 
lncRNA itself or its encoded peptide is responsible for 
observed biological activities. Post-translational modi-
fications of lncRNA-encoded peptides, analogous to 
those of mRNA-encoded proteins, are another area 
that warrants investigation [200, 201]. The interac-
tion between these lncRNA-encoded peptides and the 

tumor microenvironment, as well as their role in tumor 
drug resistance, is a relatively unexplored domain that 
could significantly enhance our understanding of cancer 
mechanisms and their therapeutic applications [202–
205]. Despite the elucidation of the potential applica-
tions of lncRNA-encoded peptides in cancer diagnosis, 
prognosis, therapeutic targeting, immune modulation, 
drug development, and regenerative medicine, several 
unresolved questions and challenges must be addressed 
before their clinical translation. One of the primary chal-
lenges in the application of lncRNA-encoded peptides 
is the development of an effective delivery system. This 
system must effectively circumvent the possibility of pro-
voking undesirable immune responses, which can arise 
from the recognition of these peptides as foreign anti-
gens by antigen-presenting cells and T-cells via the major 
histocompatibility complex. Such unwanted immune 
reactions may undermine the therapeutic efficacy of the 
peptides or even result in detrimental side effects. Extra-
cellular vesicles, with their low immunogenicity and high 
in  vivo stability, are promising candidates for targeted 
drug delivery [206–208]. Furthermore, recombinant 
technologies and other advancements have facilitated the 
production of antibodies that can evade immune surveil-
lance and response [209], which is a field that requires 
further exploration. The development of optimization of 
peptide stability and half-life to ensure sustained thera-
peutic effects is also important. While some lncRNA-
encoded proteins have emerged as key regulatory factors 
in the transcriptional networks of human tumors, the 
functionality, regulation, and mechanisms of the majority 
remain elusive. Moving forward, there is a pressing need 
for large-scale validation to substantiate their biological 
relevance, development of sensitive detection methods, 
and optimization of peptide stability and delivery.

Effective resolution of the aforementioned issues will 
not only refine our understanding of the roles of lncRNA-
encoded proteins but also provide a roadmap for future 
research methods and clues. It is undeniable that the 
mechanism of lncRNA-encoded micropeptides will 
spearhead a new wave of research enthusiasm and propel 
the advancement of the life sciences field. The novel per-
spectives offered by these findings will undoubtedly con-
tribute to the development of future anti-cancer drugs 
and tumor biomarkers, offering a new frontier in the bat-
tle against cancer.
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