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Abstract 

The emergence of spatial multi-omics has helped address the limitations of single-cell sequencing, which often leads 
to the loss of spatial context among cell populations. Integrated analysis of the genome, transcriptome, proteome, 
metabolome, and epigenome has enhanced our understanding of cell biology and the molecular basis of human 
diseases. Moreover, this approach offers profound insights into the interactions between intracellular and intercellular 
molecular mechanisms involved in the development, physiology, and pathogenesis of human diseases. In this 
comprehensive review, we examine current advancements in multi-omics technologies, focusing on their evolution 
and refinement over the past decade, including improvements in throughput and resolution, modality integration, 
and accuracy. We also discuss the pivotal contributions of spatial multi-omics in revealing spatial heterogeneity, 
constructing detailed spatial atlases, deciphering spatial crosstalk in tumor immunology, and advancing translational 
research and cancer therapy through precise spatial mapping.

Keywords Spatial multi-omics, Heterogeneity, Spatial-specific atlas, Lineage tracking, Crosstalk, New therapy, 
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Introduction
Single-cell sequencing has been instrumental in providing 
detailed insights into gene expression at the individual cell 
level for decades. This technique has revealed the com-
plexity of cellular diversity, exacerbated by processes such 
as cell proliferation, differentiation, and death, particularly 
in relation to the local and distant environment of the cell 
[1]. Single-cell sequencing can detect cellular heteroge-
neity, enabling detailed analysis of individual cell behav-
ior, mechanisms, and relationships. The high resolution 
of these methods has allowed for the extensive explora-
tion and characterization of cell diversity on a large scale. 
However, despite these advantages, single-cell sequencing 
often fails to retain critical spatial information about cell 
populations, resulting in the loss of crucial spatial context 
[1, 2].
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To overcome this limitation, spatial multi-omics has 
emerged as a transformative technology, enabling the pre-
cise localization of cells within tissues and the quantitative 
measurement of gene expression in  situ. This advance-
ment marks an important technological breakthrough in 
life sciences and biomedicine, with wide-ranging applica-
tions in neuroscience, developmental biology, and can-
cer research [3]. Furthermore, spatial multi-omics allows 
researchers to investigate the development of multicellu-
lar organisms from single totipotent cells, as well as their 
function, aging, and disease progression. High-through-
put multi-omics technologies, such as genomics, epig-
enomics, transcriptomics, proteomics, and metabolomics, 
have also facilitated the mapping of diverse molecular lay-
ers, significantly broadening the scope of biological analy-
sis and our understanding of complex biological systems. 
In the current review, we trace the developmental time-
line of spatial multi-omics technologies, highlighting their 
evolution and substantial contributions to modern sci-
ence. Furthermore, we discuss the current state of these 
technologies, their integration into research, and their sig-
nificant applicative value in enhancing our understanding 
of biological complexity.

Technologies for spatial omics
Spatial mono-omics, such as spatial transcriptomics, 
was recognized as the “Technology of the Year 2020” 
by Nature Methods magazine [4] (Fig. 1). Although sin-
gle-cell sequencing technology has provided valuable 

insights into cellular heterogeneity, it lacks spatial con-
text. Spatial multi-omics overcomes this limitation by 
enabling the precise localization and molecular charac-
terization of individual cells within their tissue environ-
ments [5]. The innovation in spatial multi-omics builds 
upon foundational spatial mono-omics methods. In this 
section, we introduce key spatial mono-omics techniques 
(Table 1) and discuss their pivotal role in advancing the 
field of spatial multi-omics.

Spatial transcriptomics
Spatial transcriptomics has significantly enhanced our 
understanding of cellular organization and intra-tissue 
interactions based on the systematic measurement of gene 
expression levels across tissue space. Recent advance-
ments in spatial transcriptomics sequencing have focused 
on increasing the number of detectable genes or proteins, 
enhancing sensitivity and resolution, simplifying opera-
tion, and expanding the size of the analyzed area. Spatial 
transcriptomics has been used in various fields, includ-
ing cancer research [6], developmental biology [7], and 
disease studies [8]. Fundamentally, spatial transcriptom-
ics technology has the ability to reveal the precise spatial 
localization of RNA molecules within tissues. In this sec-
tion, we provide a comprehensive overview of mainstream 
spatial transcriptomics research strategies and summarize 
the strengths and limitations of these approaches.

(1) Image-based in  situ transcriptomics. Image-based 
spatial transcriptomics primarily includes fluorescence 

Fig. 1 Timeline of spatial multi-omics. Transcriptomics, genomics, proteomics, metabolomics, and epigenomics are included. In addition 
to the frequently used techniques, some emerging methods are mentioned
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in situ hybridization (FISH) and in situ sequencing (ISS). 
Recent advancements feature highly multiplexed sin-
gle‐molecule FISH (smFISH), which uses reverse com-
plementary oligo probes conjugated with fluorophores 
[9] for precise mRNA quantification and localization at 
the single-cell level [10]. The specificity of fluorescent 
probes to their RNA targets is critical for reliable smFISH 
results [11]. While smFISH can detect many transcripts 
due to high hybridization efficiency, signal overlap com-
plicates barcode deconvolution. To address this issue, 
single-molecule imaging and multiplexed error-robust 
FISH (MERFISH) (Fig. 2A) have been developed, allow-
ing the identification of thousands of RNA species in sin-
gle cells by reducing optical crowding, albeit at the cost of 
increased imaging rounds and time [12]. Sequential FISH 
(seqFISH) [13, 14] (Fig. 2B), an in situ three-dimensional 
(3D) multiplexed imaging method, also addresses opti-
cal crowding by decreasing the number of transcripts 
per image, requiring additional imaging rounds. Despite 
these advancements, smFISH is limited by the spec-
tral overlap of fluorophores, restricting its multiplexing 
capabilities and its effectiveness in analyzing cell hetero-
geneity in complex tissues [15]. For example, Long et al. 
utilized seqFISH to analyze the hippocampus, identifying 
distinct transcriptional states by quantifying and cluster-
ing 249 genes in 16,958 cells [14], thereby demonstrating 
the effectiveness of this method for detailed transcrip-
tional profiling in complex tissues.

Both ISH and ISS provide similar transcriptomic infor-
mation, with the primary difference being that ISS-based 
methods directly read nucleotide sequences within tissues 
to identify a larger number of RNA‐targeting probes, while 
ISH-based methods image the sequences of barcoded 
FISH probes [9]. As a targeted spatial transcriptomics 
technology, ISS facilitates highly multiplexed in situ gene 
expression profiling through padlock probes, rolling cir-
cle amplification (RCA), and sequencing-by-ligation [16, 
17] chemistry combined with next-generation sequenc-
ing chemistry [18]. In ISS, reverse transcribed cDNA is 
hybridized with padlock probes containing gene-spe-
cific barcode sequences, which are ligated at the specific 
hybridization site and amplified by rolling circle ampli-
fication (RCA) with a circularized padlock primer probe 
[9]. Chatarina et  al. developed a method that combines 
padlock probes with in  situ target-primed rolling-circle 
amplification to detect and genotype individual tran-
scripts, offering deeper insights into mRNA expression 
heterogeneity within single-cell populations [19]. Sequen-
tial imaging using sequencing-by-ligation allows for the 
identification of repeatedly amplified barcode sequences 
in  situ, while fluorescent in  situ sequencing (FISSEQ) 
(Fig.  2C) employs an oligonucleotide ligation and detec-
tion substrate (SOLiD) for genome and transcriptome 

sequencing of DNA amplicons [9, 17]. FISSEQ experi-
ences fewer issues with optical crowding compared to 
ISH-based methods because it is less efficient at convert-
ing transcripts into cDNA in situ. However, methods that 
use padlock probes hybridized with target RNA species 
require enzyme ligations and have lower detection rates 
compared to multiplexed FISH methods [12]. Next-gener-
ation FISSEQ [20] was developed to complement spatially 
structured sequencing libraries and includes an imaging 
method capable of resolving amplicons, which is essential 
for conducting ISS of cellular RNA for gene expression 
profiling [17]. RNA is reverse transcribed in fixed cells 
with tagged random hexamers to generate cDNA ampli-
cons within the cell, which can be repeatedly hybridized 
with minimal changes in signal-to-noise ratios or position 
[21]. RNA sequencing libraries can be visualized in differ-
ent cell types, tissue sections, and whole-mount embryos, 
enabling 3D visualization spanning multiple resolution 
scales [17]. Spatially resolved transcript amplicon readout 
mapping (STARmap) [22, 23] (Fig. 2D) employs dynamic 
annealing and ligation (SEDAL) to reduce sequencing 
errors. This technology integrates hydrogel tissue chem-
istry, targeted signal amplification, and ISS [22], enabling 
high multiplexing and analysis of thicker tissue slices, 
although it may detect fewer transcripts in such slices 
[24]. BaristaSeq, an optimized padlock probe-based 
technique compatible with Illumina sequencing, signifi-
cantly enhances amplification efficiency and sequencing 
accuracy, achieving at least 97% accuracy and a five-fold 
increase in amplification efficiency [25].

Both ISS and ISH-based methods require image pro-
cessing to generate gene expression matrices. These 
images are segmented to create cell-level matrices, which 
can be done manually for small areas or systematically 
using computational approaches [3, 26]. RNA hybridiza-
tion-based spatial transcriptomics provides exceptional 
detection sensitivity [27]; however, the misassignment of 
mRNAs during cell segmentation is a significant source 
of error. To address this, the JSTA computational frame-
work utilizes prior knowledge of cell type-specific gene 
expression to perform joint cell segmentation and cell 
type annotation, increasing the accuracy of RNA assign-
ment by over 45% [28]. Spot-based spatial cell-type 
analysis by multidimensional mRNA density estimation 
(SSAM) is a robust cell segmentation-free computational 
framework that identifies cell types and tissue domains in 
both 2D and 3D [29].

(2) Oligonucleotide-based spatial barcoding followed 
by the next-generation sequencing (NGS) [20]. NGS 
represents a significant improvement over previous 
sequencing technologies, offering cost-effective, rapid 
sequencing with higher throughput, thereby greatly 
extending our genomic knowledge [30] and addressing 
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the time and resource-intensive challenges faced by the 
Human Genome Project [31]. NGS technologies intro-
duce three main improvements over first-generation 
sequencing. First, they rely on the preparation of NGS 
libraries in a cell-free system, eliminating the need 
for bacterial cloning of DNA fragments [32]. Second, 
numerous sequencing reactions are produced in paral-
lel, enhancing efficiency [33]. Third, sequencing outputs 
are detected directly, with base interrogation performed 
cyclically and in parallel [34]. Several prominent NGS 
platforms have emerged, including 454 (pyrosequencing) 
[35], Illumina/Solexa, and Sequencing by Oligo Ligation 
Detection (SOLiD) [36]. The 454 approach involves the 
clonal amplification of DNA fragments on beads within 
emulsion droplets, which are then loaded into wells for 
sequencing using the pyrosequencing protocol [37]. This 
approach enables the sequencing of long reads, making 
it suitable for various applications, although its inher-
ent problem in detecting homopolymers and nucleotide 
stretches can impact data quality as sequence volume 
increases [38]. Illumina/Solexa employs an array-based 
DNA sequencing-by-synthesis technology with revers-
ible terminator chemistry [39]. Primers, DNA polymer-
ase, and four differently labeled reversible terminator 
nucleotides are used, with each nucleotide identified by 
color, followed by terminator and fluorophore removal, 
and the cycle repeating [34]. This platform currently 
offers the highest throughput and lowest per-base cost, 
making it the leading NGS platform. In contrast, the 
SOLiD platform prepares sequencing libraries by emul-
sion polymerase chain reaction (PCR) and sequences 
through successive cycles of ligation [39], exhibiting 
the lowest error rate among the three platforms. How-
ever, NGS methods have several drawbacks, notably 
short reads that fail to cover full-length transcripts in 
eukaryotic genomes and challenges in detecting larger 
structural variations. Additionally, the reliance on PCR 
amplification can lead to difficulties in regions with 
extreme GC content [40]. The advent of single-molecule, 
third-generation sequencing technologies, such as Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies 
(ONT), has resolved these issues. PacBio and ONT offer 

read lengths exceeding 15  kb and 30  kb, respectively, 
surpassing the length necessary to capture most RNA 
molecules in eukaryotes. Furthermore, ONT long-read 
sequencing does not require PCR amplification, thereby 
reducing potential bias [41, 42].

(3) Laser capture microdissection (LCM). A key chal-
lenge in transcriptomics is precise segmentation of tis-
sues and accurate assignment of individual cells to 
specific locations, often resulting in the loss of spatial 
information [12]. LCM (Fig. 2E), a powerful, microscope-
guided cutting system that uses ultraviolet (UV) light 
as a contact- and contamination-free knife [43], enables 
accurate isolation of specific tissues or cells of inter-
est from complex tissue structures. The combination of 
smart-3SEQ and LCM overcomes various experimen-
tal design challenges posed by conventional single-cell 
RNA-sequencing (scRNA-seq). For instance, formalin-
fixed, paraffin-embedded archival clinical tissues, which 
are unsuitable for conventional RNA-seq due to their 
inability to be physically dissociated, and fresh or frozen 
non-archival tissue samples that lack sufficient material 
for clinical studies can be effectively analyzed using the 
LCM smart-3SEQ technique [11].

Spatial genomics
The proper functioning of tissues relies on the precise spa-
tial organization of cell types, which is influenced by both 
intrinsic genetic factors and the external cellular environ-
ment. In cancer, tumor cells exhibit multiple DNA muta-
tions and large chromosomal rearrangements, resulting in 
intratumor genetic heterogeneity [44]. Additionally, cells 
within the tumor microenvironment (TME) interact with 
each other, forming spatial neighborhoods with distinct 
biochemical and biomechanical properties. Quantifying 
these genetic aberrations and environmental cues within 
tumors is critical for understanding cancer progression 
and improving treatment [45]. In  situ genome sequenc-
ing (IGS) (Fig.  2F) and slide-DNA-seq (Fig.  2G) are two 
exciting methods that promise to fuel the spatial genom-
ics revolution [46]. IGS expands non-targeted genomic 
samples in a natural spatial environment, creating an 
in situ sequencing library in a fixed sample using in vitro 

Fig. 2 Technologies of spatial techniques. A The MERFISH technology, a binary barcode scheme that employs different fluorescent probes 
to sequentially detect each bit. B The seqFISH technology. Complete RNA in cells/tissues was imaged by multiple rounds of hybridization. 
Each round obtains a coded message, corresponding to a bit in the digital code, and then decodes it to correspond to each RNA. C FISSEQ 
incorporates amplification after reverse transcription of cellular RNA into cDNA. D STARmap is based on DNA tandem sequencing technology, 
using complementary pairing principle of DNA and fluorescent dye labeled nucleotide probe for sequence determination. E LCM-seq utilizes a laser 
beam to microdissect tissue regions under a microscope. F IGS combines in situ sequencing with high-throughput paired-end DNA sequencing. 
G Slide-DNA-seq is used to fragment genomic DNA in situ by tissue, and barcode connector with spatial information is added for subsequent 
second-generation sequencing. H CUT and Tag guides Protein A/G-Tn5 transposase to cut the target chromatin region through protein-specific 
antibodies such as transcription factors. At the same time, sequencing joints are added to both ends of the sequence to form a library 
for high-throughput sequencing by PCR amplification

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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transposon technology to fragment DNA. Hairpin DNA 
splices are then connected to DNA fragments to form 
circular DNA, which is amplified via rolling circle replica-
tion mediated by Phi29 DNA polymerase. Sequencing is 
performed at both in situ and ectopic sites on the circu-
lar DNA fragments [47]. IGS spatially locates paired-end 
sequences of the whole genome in an endogenous envi-
ronment, combining sequencing and imaging to con-
struct a genome map [47]. This technique specializes in 
high-resolution imaging of chromosome structure, allow-
ing detailed analysis of tissue sections. Slide-DNA-seq 
enables spatially resolved sequencing of DNA from intact 
tissues. The process begins with generating a spatial index 
array composed of 3 mm beads, each containing unique 
DNA barcodes corresponding to specific spatial locations. 
This array is then read through chemical sequencing 
[48]. Next, a single 10  μm thick fresh-frozen tissue slice 
is transferred onto the sequencing bead array. Spatial bar-
coding is performed through photolysis, and the proximal 
genome fragments are attached and amplified via PCR to 
create a DNA sequencing library [49]. Following library 
construction, high-throughput paired-end sequencing is 
carried out, associating each genome fragment with its 

spatial location on the bead array using DNA barcoding 
[45]. Slide-DNA-seq enables detection of clonal heteroge-
neity, characterization of copy number variations in each 
clone, and analysis of their spatial distribution within tis-
sue. This technique is particularly useful for large-scale 
mapping of tumor evolution, providing essential spa-
tial context to the study of clonal heterogeneity [45, 50]. 
Current methods for characterizing chromatin states 
or DNA within tissues on a large spatial scale are still in 
their infancy. The integration of spatial multi-omics tech-
nologies aims to achieve spatially resolved whole-exome 
or whole-genome sequencing. Ultimately, integrating 
various spatially resolved omics technologies will mark 
the beginning of the era of molecular anatomy, offering 
unprecedented insights into tissue organization and func-
tion [46].

Spatial proteomics
Proteomics involves the large-scale study of proteins, 
encompassing their expression levels, post-translational 
modifications, and protein–protein interactions, thereby 
providing a comprehensive understanding of processes 
such as disease occurrence and cell metabolism at the 

Table 2 Technologies for spatial multi-omics

Technologies for spatial multi-omics; DNA-MERFISH, multiplexed error-Robust fluorescence in situ hybridization; DNAseqFISH +, Sequential fluorescence in situ 
hybridization plus; Spatial ATAC–RNA-seq, Spatially resolved assay of transposase-accessible chromatin with sequencing and RNA sequencing; Spatial CUT&Tag–RNA-
seq, spatial assay of cleavage under targets and tagmentation and RNA using sequencing; MISAR-seq, Microfluidic indexing-based spatial assay for ATAC and RNA-
sequencing; Spatial CITE-seq, Spatial cellular indexing of transcriptomes and epitopes by sequencing; SPOTS, Spatial protein and transcriptome sequencing; DBiT-seq, 
deterministic barcoding in tissue for spatial omics sequencing; seqFISH, sequential fluorescence in situ hybridization; SMA, spatial multimodal analysis; MIP-seq, 
Multi-omics in situ pairwise sequencing;

Method Technology Resolution References

Integrating transcriptomics and genomics

 Slide-DNA-seq Microarray-based sequencing 25 µm [45]

 DNA-MERFISH Probe hybridization -based sequencing Subcellular [152]

 DNAseqFISH + Probe hybridization -based sequencing Subcellular [93]

Integrating epigenomics and transcriptomics

 Spatial ATAC–RNA-seq Microchannel-based microfluidics sequencing 20–25 µm [88]

 Spatial CUT&Tag–RNA-seq Microchannel-based microfluidics sequencing 20–25 µm [88]

 MISAR-seq Microchannel-based microfluidics sequencing 50 µm [153]

Integrating proteomics and transcriptomics

 SM-Omics Microarray-based sequencing 100 µm [96]

 Slide-TCR-seq Microarray-based sequencing 10 µm [154]

 Spatial CITE-seq Microchannel-based microfluidics sequencing 20 µm [155]

 SPOTS Microarray-based sequencing 55 µm [156]

 DBiT-seq Microchannel-based microfluidics sequencing 10–25 µm [91]

 seqFISH Probe hybridization -based sequencing Subcellular [157]

 MERFISH Probe hybridization -based sequencing Subcellular [158]

Integrating spatial transcriptomics and metabolomics

 SMA Mass spectrometry imaging 10–55 µm [88, 103]

Integrating of spatial transcriptomics, genomics and proteomics

 MIP-seq Multi-omics in situ pairwise sequencing Subcellular [103]
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protein level. Proteins, whether in their native or modi-
fied forms, are functional units within the body, making 
the direct study of proteomics more valuable than relying 
on transcripts. Targeted localization of proteins within 
eukaryotic cells can redirect existing proteins to various 
transport pathways, including nuclear, mitochondrial, 
ciliary, peroxisomal, endomembrane, and vesicular trans-
port [51], enabling rapid changes in local protein func-
tions. Conversely, protein mislocalization is frequently 
associated with cellular dysfunction and diseases such as 
neurodegeneration, cancer [52], cystic fibrosis [53], and 
metabolic disorders. Therefore, researching protein local-
ization at the subcellular level and capturing subcellular 
dynamics are crucial for a complete understanding of 
cell biology. Two primary approaches are used to acquire 
large-scale spatial proteomic data, including mass spec-
trometry (MS) and imaging-based methods.

(1) Mass spectrometry-based methods: These 
approaches offer accurate, proteome-wide identification 
and quantification of proteins. In subcellular proteom-
ics, specific subcellular compartments are often isolated 
through biochemical fractionation or proximity labe-
ling before MS analysis [54]. Key processes involve the 
enrichment and quantification of proteins through bio-
chemical fractionation across different stages using MS 
[55]. Organelles are separated based on properties such 
as size, density, membrane solubility, or charge, with 
differential and density centrifugation being common 
strategies. These methods typically achieve high sensi-
tivity and proteome coverage, although contamination 
from non-target proteins can occur. Ensuring adequate 
enrichment of the target organelle is crucial for accurate 
analysis. Once purified, the distribution profiles of pro-
teins specific to different organelles can reveal the subcel-
lular localization or complex binding of uncharacterized 
proteins [54]. MS analysis, combined with multivariate 
statistics and machine learning (ML), is widely used to 
handle the complex data generated in spatial proteom-
ics [56]. These techniques compare the abundance dis-
tribution of proteins with known organelle markers to 
infer protein locations and trafficking pathways [57]. 
They can identify trends in organelle protein distribution, 
even in the presence of structural alterations. Proteins, 
which can have different morphologies and modified 
states, function as essential units within cells. The rela-
tionship between mRNA and corresponding protein 
expression is highly regulated and non-linear, making 
RNA expression an unreliable predictor of protein lev-
els. Unlike the more random expression of transcripts, 
proteins exhibit a much lower coefficient of variation 
than their homologous mRNA counterparts. There-
fore, directly studying proteins at the single-cell level is 
far more informative than using transcripts as proxies 

[58]. Deep visual proteomics (DVP) combines artificial 
intelligence-driven image analysis of cellular phenotypes 
with automated single-cell or single-nucleus laser micro-
dissection and ultra-high-sensitivity MS. This technique 
associates protein abundance with complex cellular or 
subcellular phenotypes while preserving spatial context 
[59]. To achieve this, an ultra-sensitive liquid chromatog-
raphy-mass spectrometry (LC/MS) workflow has been 
developed, enhancing sensitivity by up to two orders 
of magnitude to enable true single-cell state proteomic 
analysis. The data generated by DVP provide molecular 
insights into proteomic variation at the phenotypic level 
while retaining complete spatial information.

(2) Imaging-based methods: These approaches allow 
for the visualization of proteins in situ without requiring 
cell lysis or the physical separation of compartments or 
organelles. Unlike MS methods, which are faster and suit-
able for large‐scale quantitative analysis, imaging-based 
approaches visualize the interactions between proteins 
and affinity reagents. Modern microscopes can simul-
taneously analyze up to 50 proteins, but each protein of 
interest requires specific and validated antibodies, limit-
ing high-throughput detection. To minimize the loss of 
soluble proteins during cellular permeability, it is best to 
use non-specific crosslinking in proteome-wide studies. It 
is increasingly evident that protein expression varies even 
among genetically identical cells. Imaging-based methods 
can capture this variation by targeting the spatial distri-
bution of proteins at single-cell resolution [60]. However, 
the number of published global spatial proteomic studies 
remains small due to the high cost and time-consuming 
production of affinity reagents for entire proteomes.

MS and imaging methods each have unique advan-
tages and disadvantages and can complement each other. 
MS offers high sensitivity, high resolution, and power-
ful quantitative analysis but involves complex and costly 
sample preparation. In contrast, imaging methods pro-
vide high spatial resolution and dynamic observation 
capabilities, enabling visualization of protein distribution 
but have limited quantitative abilities and cover only a 
small number of proteins. Combining these two tech-
niques allows for comprehensive global protein analysis, 
enabling the observation of the spatial distribution and 
dynamic changes of key proteins for a more complete 
understanding of protein spatial organization.

Spatial epigenomics
Spatial epigenomics examines modifications to the DNA 
sequence and chromatin structure that regulate gene 
activity without altering the genetic code itself [61]. 
Nucleosomes, the fundamental units of chromosomes, 
are organized into higher-order chromatin structures. 
Epigenetic modifications, such as histone acetylation, 
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methylation, phosphorylation, ubiquitination, and DNA 
methylation, play crucial roles in regulating chromatin 
structure and DNA accessibility [62, 63]. These modifica-
tions impact key cellular processes, including gene tran-
scription, DNA replication, recombination, and repair 
[61]. Unlike other omics fields, epigenomics relies heavily 
on bioinformatics to uncover the mechanisms by which 
the epigenome operates at the molecular level. Develop-
ing powerful, repeatable, and process-based techniques 
is essential for generating data that can be integrated into 
existing omics databases. The ultimate goal is to create a 
comprehensive picture of the epigenome by combining 
information on DNA methylation, chromatin dynamics, 
accessibility, and gene expression [64]. Epigenomic MER-
FISH combined with the recently developed Cleavage 
Under Targets and Tagmentation (CUT&Tag) approach 
(Fig.  2H) enables the mapping of more than 100 epi-
genomic loci in tissues [65]. These maps can be used to 
study patterns of active and silent promoters and poten-
tial enhancers, providing deeper insights into the spatial 
organization and regulation of the epigenome [65].

Spatial metabolomics
Metabolites play a crucial role in various cellular activi-
ties, such as cell signaling, energy transfer, and intercel-
lular communication [66]. Metabolomics is an emerging 
discipline that involves the qualitative and quantitative 
analysis of all low-molecular-weight metabolites within 
an organism or cell during specific physiological states 
[67]. Analyzing metabolites presents challenges due to 
their dynamic nature and susceptibility to environmental 
influences during cellular processes [68]. Spatial metabo-
lomics involves the initial detection and quantification of 
metabolites present in biological material [69]. Depending 
on experimental objectives, researchers can employ either 
targeted approaches, focusing on quantifying specific ana-
lytes, or untargeted approaches, focusing on biomarker 
discovery and global metabolite profiling [70].

(1) Targeted metabolomics [71]: This approach ana-
lyzes specific subsets of compounds to address particular 
biochemical questions or hypotheses. The two primary 
methods include Fourier transfer mass spectrometry (FT-
MS) [72] and nuclear magnetic resonance (NMR) [73], 
both of which offer significant advantages in data acqui-
sition due to their specificity and quantitative reproduc-
ibility. FT-MS generates mass data for infused samples, 
allowing for the identification and matching of metabo-
lites with entries in metabolomics databases. The major 
drawback of this method is that it does not establish a 
one-to-one correspondence relationship between enti-
ties, which means that a single data point can potentially 
match with multiple metabolites. NMR produces signals 
based on the chemical environment of protons present 

in each metabolite, enabling tentative identification [74]. 
The development of triple quadrupole (QqQ) MS pro-
vides a robust and sensitive method for high-throughput 
measurement of a substantial number of biologically sig-
nificant metabolites. This technique is particularly effec-
tive for quantifying low-concentration metabolites that 
are difficult to detect using NMR [75].

(2) Untargeted metabolomics: Untargeted metabolomics 
aims to globally analyze biological compounds, permit-
ting the simultaneous detection of as many metabolites 
as possible and the exploration of cellular biochemical 
pathways. LC/MS is the most commonly used platform 
for untargeted metabolomics [76, 77], producing numer-
ous signals during the detection of biological samples. The 
structural diversity of metabolites is vast, and the acquired 
data often include both known and unknown metabolites. 
When searching metabolomics databases for the mass–
charge ratio of each detected feature, only a small percent-
age match the database entries, making the identification 
of unknown metabolites challenging [78]. The number of 
detected unknown metabolites is often overestimated due 
to several factors. A high concentration of 13C can cause a 
mass shift, leading to the detection of multiple features for 
a single metabolite through naturally occurring isotopes. 
Additionally, a single metabolite can be ionized into vari-
ous adducts, including isomers, increasing the demand 
for selective analytical techniques. Furthermore, metabo-
lites can fragment or form non-covalent interactions with 
other metabolites upon entering the mass spectrometer. 
These factors collectively increase the complexity and 
diversity of detected metabolites [79].

LC/MS data analysis addresses the complexity of 
metabolite detection through two main approaches: 
(1) grouping metabolites with similar features and (2) 
annotating the type of ion species. These steps facilitate 
the identification of excimer ions, which are essential 
for further metabolite identification, such as determin-
ing elemental composition or conducting tandem MS 
based on accurate mass and isotope patterns. CAMERA 
(an integrated strategy for compound spectral extraction 
and annotation of LC/MS datasets) can effectively iden-
tify most features corresponding to isotopes, adducts, 
and fragments [80]. Isotopic labeling methods can also 
be used to identify and analyze isotope ratio outliers [81]. 
Despite these advancements, many metabolites remain 
uncharacterized. Variations in metabolites within the cel-
lular environment are closely linked to health and disease 
development. Metabolomics enhances disease analysis at 
the genomic and protein levels by providing semi-quan-
titative and quantitative measurements of metabolite 
levels, which serve as chemical mediators defining spe-
cific phenotypes [70]. The rapid expansion of omics tech-
nologies has provided holistic molecular information, 
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enabling the comprehensive study of biological systems. 
Small molecules and metabolites are essential for numer-
ous cellular functions [82], offering unique insights into 
the phenotypic characteristics associated with genome 
sequences [83].

Integration of spatial multi‑omics
While single-cell multi-omics yields valuable insights 
into gene regulation across various omics layers [84, 85], 
it lacks the spatial information necessary for understand-
ing cellular functions within tissues. Recently, spatial 
transcriptomics, proteomics, genomics, epigenomics and 
metabolomics have emerged, with extensive application 
in various fields [86, 87]. These techniques typically cap-
ture only one layer of omics information, and computa-
tional methods for integrating data from different omics 
layers cannot fully overcome the lack of mechanistic links 
between them. Spatial multi-omics enables the simulta-
neous analysis of multiple data modalities, such as tran-
scriptomics, proteomics, genomics, epigenomics, and 
metabolomics, with the same tissue section (Table 2).

Integration of spatial transcriptomics and (epi)genomics
Spatial ATAC&RNA-seq and spatial CUT&Tag RNA-
seq have revolutionized genome-wide co-mapping of 
the epigenome and transcriptome by simultaneously 
profiling chromatin accessibility and mRNA expres-
sion, or histone modifications and mRNA expression, 
respectively. These technologies integrate the chemistry 
of spatial ATAC-seq or CUT&Tag with spatial transcrip-
tomics on the same tissue section at the cellular level via 
deterministic co-barcoding [88], combining microfluidic 
deterministic barcoding in tissue (DBiT) strategies for 
spatial ATAC-seq [89] and CUT&Tag [90] with DBiT-
seq poly(A) transcript profiling [91]. Spatial-ATAC-seq 
enables high-spatial-resolution genome-wide mapping 
of chromatin accessibility in tissue at the cellular level by 
applying a spatial barcoding scheme to DNA oligomers 
inserted into accessible genomic loci by Tn5 transposi-
tion [89]. This technology advances our understanding 
of cell identity, cell state, and cell fate decisions related 
to epigenetic bases in development and disease. Spatial-
CUT&Tag analyzes spatial histone modification profiling 
at the pixel level on frozen tissue sections without requir-
ing dissociation. This method addresses spatially distinct 
and cell type-specific chromatin modifications during 
mouse embryonic organogenesis and postnatal brain 
development, adding a new dimension to spatial biology 
by mapping epigenetic regulation related to development 
and disease [90]. DBiT-seq creates a 2D grid of spatially 
barcoded tissue pixels, each defined by a unique combi-
nation of barcodes A and B [88]. After reverse crosslink-
ing, barcoded complementary DNA and genomic DNA 

fragments are released, and NGS constructs separate 
libraries for gDNA and cDNA. Sequencing reads are 
then combined with microscopy images of the tissue 
section based on spatial barcodes, allowing multi-omics 
sequence information to be spatially mapped [88]. These 
techniques have been applied to co-map embryonic and 
juvenile mouse brains, as well as the adult human brain. 
Spatially resolved, genome-wide co-sequencing of the 
epigenome and transcriptome at the cellular level pro-
vides an informative tool for a wide range of biological 
and biomedical research. Transcriptomics focuses on 
gene expression from the perspective of mRNA, present-
ing a global perspective on molecular dynamic changes 
induced by environmental factors or pathogenic agents 
[92]. Benefiting from mature in  situ RNA hybridiza-
tion strategies, targeted capture of DNA sequences or 
chromosomal loci facilitates spatial genomics detec-
tion. DNA-seq FISH + can be applied for studying the 
spatial structure of the genome based on multi-round 
probe hybridization imaging. Takei et  al. [93] reported 
the imaging of 3660 chromosomal sites in a single mouse 
embryonic stem cell (ES) using DNA-seq FISH + and the 
imaging of 17 chromatin markers and subnuclear struc-
tures by sequential immunofluorescence and expression 
profiles of 70 RNAs. Genomic regions and chromosomes 
associated with nuclear bodies and chromatin marks in 
different cells were revealed by genomic regions. Some of 
these regions appear to be related to cell types, whereas 
others (mostly spot-related regions) are more conserved 
among different cell types [46].

Integration of spatial proteomics and transcriptomics
Single-cell multi-omics has been highly successful in 
capturing diverse biological processes at the level of 
individual cells and nuclei but lacks spatial information 
[94]. Gene expression is regulated at multiple levels, from 
transcription to protein degradation, with RNA and pro-
tein levels conveying distinct information about gene 
function and cell state. These processes occur in various 
contexts, such as tumors and single-cell suspensions [95]. 
Recent progress in spatial in situ profiling has enabled the 
simultaneous profiling of location and expression. Spa-
tial transcriptomics provides a global spatial tissue pro-
file and has been applied to the study of diverse diseases. 
Spatial proteomics acquires large-scale spatial proteomic 
data through MS- and imaging-based experimental 
approaches. However, few platforms have successfully 
integrated spatial proteomics and transcriptomics data. 
Vickovic et al. [96] developed Spatial Multi-Omics (SM-
Omics), an end-to-end framework that leverages a liquid 
handling platform for high-throughput transcriptome 
and antibody-based spatial tissue profiling. Using DNA-
barcoded antibodies, this automated system enables the 
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simultaneous profiling of the epitopes and transcrip-
tomes within single cells, offering detailed molecular 
characterization of tissues in  situ by quantifying both 
spatial transcriptomics and multiplex protein detection 
[96]. Compared to Visium by 10X Genomics, SM-Omics 
provides an automated workflow that extends com-
bined spatial transcriptomics and antibody-based pro-
tein measurements into a scalable all-sequencing-based 
technology.

NanoString GeoMx Digital Spatial Profiler (DSP) facili-
tates high-plex profiling at both the protein and RNA 
level, permitting spatial and temporal assessment of 
tumors in frozen or formalin-fixed, paraffin-embedded 
limited tissue samples [97]. This platform quantifies pro-
tein or RNA abundance by counting unique indexing 
oligos assigned to each target of interest, using oligonu-
cleotides to study a higher number of biomarkers. Addi-
tionally, DSP is a non-destructive technique, allowing the 
same slides to be used for subsequent studies after the 
assay is completed [97].

Spatial co-indexing of transcriptomes and epitopes 
(Spatial-CITE-seq) offers high-plex protein and whole-
transcriptome co-mapping. This approach involves 
the staining of a tissue slide with a cocktail of approxi-
mately 200–300 antibody-derived tags (ADTs), followed 
by deterministic in-tissue barcoding of both DNA tags 
and mRNAs. Each tag contains a unique spatial address 
code AiBj (i = 1 − 50, j = 1 − 50), co-indexing all protein 
epitopes and the transcriptome. Barcoded cDNAs are 
subsequently retrieved, refined, and amplified via PCR 
to create two NGS libraries for paired-end sequencing of 
ADTs and mRNAs. This process enables computational 
reconstruction of spatial protein or gene-expression 
maps [98].

Integration of spatial transcriptomics and metabolomics
Gene expression and metabolite distribution in tissues 
are influenced by a variety of factors, including cell type, 
microenvironment, signaling pathways, and gene regu-
lation. To elucidate the interplay among these factors, it 
is essential to employ methods that can simultaneously 
measure molecular evidence of different patterns in tis-
sues while preserving spatial distribution information. 
Researchers have developed a spatial multimodal analysis 
(SMA) protocol that combines spatially resolved tran-
scriptomics and mass spectrometry imaging (MSI) in a 
single tissue slice, while maintaining the specificity and 
sensitivity of both analytical methods [88]. This inte-
grated approach reveals associations and heterogeneities 
between transcriptomes and metabolomes across differ-
ent tissue regions. Combining spatial transcriptomic and 
metabolomic data, Vicari et al. identified a reduced pro-
portion of midbrain dopaminergic neurons (MBDOP2) in 

the lesioned substantia nigra pars compacta and ventral 
tegmental area, and specified the localization of multiple 
neurotransmitters and metabolites, including taurine, 
3-methoxytyramine, 3,4-dihydroxy-phenylacetaldehyde 
(DOPAL), 3,4-dihydroxy-phenylacetic acid, norepineph-
rine, serotonin, histidine, tocopherol, and gamma-amin-
obutyric acid [88]. Oral submucous fibrosis (OSF) is a 
well‐established precancerous lesion, but the molecu-
lar mechanisms underlying its malignant transforma-
tion into oral squamous cell carcinoma (OSCC) remain 
unclear [99]. Yuan et al. integrated spatial transcriptomics 
and metabolomics to obtain spatial location information 
on cancer cells, fibroblasts, and immune cells, as well as 
the transcriptomic and metabolomic landscapes of OSF-
derived OSCC tissues. Moreover, they revealed the malig-
nant progression from in situ carcinoma (ISC) to partial 
epithelial-mesenchymal transformation (pEMT), and 
identified significant metabolic reprogramming, includ-
ing abnormal polyamine metabolism, which may play a 
key role in promoting tumorigenesis and immune escape 
[100]. Zheng et al. [101] combined spatial transcriptomic 
and metabolic analyses to reveal metabolic heterogeneity 
and complex transcriptome regulation in injured human 
brain tissue, facilitating the design of reagents for func-
tional analysis of specific genes. The simultaneous appli-
cation of these advanced technologies reveals the spatial 
composition of functional maps within tissues, hetero-
geneous distribution of cell populations, and differential 
gene expression in different locations. This comprehen-
sive spatial expression mapping of genes holds significant 
research value and potential for advancing our under-
standing of complex biological systems.

Integration of spatial transcriptomics, genomics, 
and proteomics
The integration of spatial multi-omics aims to expand our 
understanding of mechanistic relationships across differ-
ent omics layers and uncover molecular roles essential for 
cellular function by jointly profiling the transcriptome, 
genome, epigenome, proteome, and metabolome. Spa-
tially resolved joint analysis of multi-omics can facilitate 
the identification of novel cell subtypes and measurement 
of intracellular and intercellular molecular interactions 
[102]. Therefore, the need for advanced spatial multi-
omics methods has become increasingly important. 
Multi-omics in  situ pairwise sequencing (MiP-seq) is a 
high-throughput targeted in  situ sequencing technique 
that simultaneously detects multiplexed DNA, RNA, 
proteins, and biomolecules at subcellular resolution, pro-
viding comprehensive data for studying cellular functions 
and disease mechanisms [103]. The in  situ detection of 
proteins and biomolecules is achieved using padlocking 
probes that target antibody-conjugated nucleic acids, 
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while the detection of DNA and RNA is accomplished 
through direct padlock probes targeting nucleic acids 
[103]. Compared to current in situ sequencing methods, 
MiP-seq utilizes a pairwise-sequencing strategy and dual 
barcoded padlock probes, markedly increasing decod-
ing capacity and requiring fewer sequencing rounds  (10N 
vs.  4N). Consequently, MiP-seq can reduce sequencing 
time by approximately 50%, lower sequencing and imag-
ing costs, and minimize laser damage, thereby improving 
signal decoding accuracy, a key issue in in situ sequenc-
ing [104]. MiP-seq has been applied to mouse brain tis-
sue, enabling the in  situ detection of Rbfox3 and Nr4a1 
gene loci, which are located on different chromosomes 
and spatially localized within the nucleus. MiP-seq has 
also been used to study PK-15 cells co-infected with por-
cine circovirus 2 (PCV2) and classical swine fever virus 
(CSFV), simultaneously detecting mRNA from eight 
cytokine or chemokine genes and two virus-specific 
proteins (CSFV E2 protein and PCV2 Cap protein) by 
binding antibodies to nucleic acids [103]. Thus, MiP-seq 
demonstrates versatility and high sensitivity in multi-
omics in situ analysis, detecting specific DNA sequences, 
RNA transcripts, and proteins at single-cell resolution, 
and is a powerful tool for studying cell function, disease 
mechanisms, and cell–cell interactions in complex bio-
logical systems.

Applications of spatial multi‑omics
Deciphering spatial‑specific atlas production of molecular 
and cellular profiles
A comprehensive spatial-specific atlas of molecular and 
cellular profiles in both healthy and diseased states is 
essential for developing new therapeutic targets and dis-
ease interventions (Fig. 3A). Spatial transcriptomics com-
bined with single-cell sequencing has been widely used 
to decipher molecular profiles. Fang et al. constructed a 
spatial atlas of the human middle and superior temporal 
gyrus using MERFISH, revealing differences in the cellu-
lar composition of these cortical regions between humans 
and mice [105]. Single-nucleus RNA-seq (snRNA-seq), 
single-nucleus assay for transposase-accessible chro-
matin with sequencing (snATAC-seq) [106], and spatial 
transcriptomics have been applied to generate a spatially 
resolved multi-omics single-cell atlas of the entire human 
maternal–fetal interface, including the myometrium, 
enabling resolution of the full trajectory of trophoblast 
differentiation [107]. Kuppe et  al. used snRNA-seq and 
spatial transcriptomics to create an integrative high-res-
olution map of cardiac remodeling, enhancing the spa-
tial resolution of cell-type composition and providing 
spatially resolved insights into the cardiac transcriptome 
and epigenome with identification of distinct cellular 
zones of injury, repair, and remodeling [106]. Advanced 

spatial epigenome-transcriptome co-sequencing has 
revealed how epigenetic mechanisms control transcrip-
tional phenotypes and cell dynamics at both spatial and 
genome-wide levels, providing new insights into spatial 
epigenetic initiation, differentiation, and gene regula-
tion within tissue structures. Spatial ATAC-RNA-seq 
and spatial CUT&Tag-RNA-seq were first introduced in 
analyzing mouse embryos, successfully distinguishing 
each organ with epigenetic and transcriptome data [88]. 
In some mouse brain tissue regions, the epigenetic sig-
nature of certain genes persisted with development, but 
the gene expression was different. In addition, the results 
of the joint analysis also found that epigenetic regulation 
and gene expression in different regions of the brain of 
young mice have unexpected correlations, and that dif-
ferent epigenetic features can cooperate with each other 
to regulate gene expression. The integration of spatial 
multi-omics not only opens a new field of spatial omics 
but also provides novel research avenues for biological 
and biomedical research.

Spatial multi‑omics decodes spatial‑based heterogeneity 
in human diseases
The complex interactions among tumor cells, surround-
ing tissues, infiltrating innate immune cells, and adaptive 
immune cells create a unique environment characterized 
by inter-related, coexisting, and competitive dynamics 
[108]. The characteristics of this tumor immune micro-
environment vary significantly due to both intrinsic (e.g., 
tumor type) and extrinsic factors (e.g., environment). 
Tumor heterogeneity plays a crucial role in enabling 
tumor cells to adapt to changes in the microenvironment, 
thereby promoting tumor resistance and progression 
(Fig. 3B).

Tumor heterogeneity includes both intratumor and 
intertumor heterogeneity [109]. Metastatic prostate 
cancer exhibits a wide spectrum of diverse phenotypes, 
but the extent of these heterogeneities has not yet been 
established [110]. Brady et  al. integrated spatial tran-
scriptomics and proteomics to analyze multiple discrete 
areas of metastases, discovering heterogeneity among 
tumors at different metastatic sites and within the same 
site. They also identified significant intra-patient hetero-
geneity in regions with varying androgen receptor (AR) 
and neuroendocrine activity. Most metastases lacked 
significant inflammatory infiltrates and PD1, PD-L1, and 
CTLA4 expression, while the B7-H3/CD276 immune 
checkpoint protein was highly expressed, particularly in 
metastatic prostate cancers with high AR activity [111]. 
These findings correlate with the clinical observation 
that metastatic prostate cancers often fail to respond 
to immune checkpoint blockade therapies such as anti-
CTLA4, PD1, and PD-L1 antibodies, suggesting that 
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B7-H3/CD276 could be a potential therapeutic target. 
Non-small cell lung cancer (NSCLC) is characterized 
by substantial heterogeneity among individual tumors 
and within regions of a single tumor [112]. Intratumor 
heterogeneity has been shown to contribute to treat-
ment failure and drug resistance through the expansion 
of pre-existing resistant subclones [113, 114]. Previous 
studies using multi-region profiling to decode the spatial 

patterns of heterogeneity were limited by the small num-
ber of regions analyzed per tumor [115]. Wu et  al. 
employed multi-region matrix-assisted laser desorption 
ionization-time of flight (MALDI-TOF), cyclic immuno-
fluorescence (CyCIF), and multi-region single-cell copy 
number sequencing to conduct spatial multi-omics anal-
ysis of tumors from 147 lung adenocarcinoma patients. 
They developed a novel analysis approach to quantify 

Fig. 3 Applications of spatial-based technologies. Spatial multi-omics technology is employed to investigate various cell biology. This diagram 
provides an overview of the application of spatial multi-omics. A Spatial-based molecular and cellular atlas. B Spatial-based heterogeneity 
in human diseases. C Spatial-related crosstalk in tumor immunology. D Spatial trajectory and lineage tracking in human diseases. E Potential targets 
for therapeutic applications. F Reproduction and development research
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intratumor spatial heterogeneity: clustered geographic 
diversification (GD), where molecularly similar cells clus-
ter together, and random GD, where molecularly similar 
cells are randomly distributed. Patients with random GD 
exhibited higher recurrence rates and risk of death, char-
acterized by fewer tumor-interacting endothelial cells, 
higher infiltrating immune cells, and similar GD patterns 
observed in both proteomic and genomic data [116], pro-
viding insights into spatial heterogeneity and innovative 
ideas for cancer research. A non-targeted MALDI-MSI 
analysis [117] followed by spatial segmentation using 
different algorithms allowed to highlight molecular het-
erogeneity among glioblastomas. Three sub-regions were 
identified (A, B and C regions). Duhamel et al. performed 
a spatially resolved proteomic analysis to decode the bio-
logical pathways involved in these three regions: region 
A is enriched in genes related to neurotransmission and 
synaptogenesis; proteins overexpressed in region B are 
associated with immune infiltration; region C identified 
proteins involved in RNA processing and metabolism. 
Finally, they identified PPP1R12A and RPS14 are favora-
ble prognostic markers while ALCAM, ANXA11, and 
AltProt IP_652563 are unfavorable prognostic markers 
[118]. These results highlight the potential of spatial pro-
teomics and spatial metabolomics to decipher the molec-
ular heterogeneity of glioblastoma and identify markers 
associated with survival.

Understanding how reprogrammed metabolic networks 
impact tumor growth is crucial for identifying metabolic 
vulnerabilities that improve cancer treatment. Sun et  al. 
[119] combined mass spectrometry imaging-based spa-
tial metabolomics and lipid-omics with microarray-based 
spatial transcriptomics [120] to visualize intratumor meta-
bolic heterogeneity and cell metabolic interactions within 
the same gastric cancer sample. They imaged tumor-asso-
ciated metabolic reprogramming at metabolic-transcrip-
tional levels, linking marker metabolites, lipids, and genes 
within metabolic pathways and colocalizing them in het-
erogeneous cancer tissues. The integrated data revealed 
unique transcriptional features and significant immune-
metabolic changes at the tumor invasion frontier. Further-
more, glutamine was overutilized in tumor tissue, genes 
related to lipids, fatty acid synthesis (FA), and fatty acid 
elongation were enriched in the tumor tissue region, and 
long chain polyunsaturated fatty acids were significantly 
up-regulated in borderline lymphoid tissue, even exceed-
ing levels in tumor tissues [121]. These findings enhance 
our understanding of tumor molecular mechanisms and 
potential targets for cancer therapy. Spatial multi-omics 
technology accurately depicts gene expression in differ-
ent tumor tissue locations, addressing the lack of spatial 
context in single-cell sequencing. Thus, the advancement 
of spatial omics provides essential support for exploring 

tumor immune microenvironment dynamics and identi-
fying corresponding therapeutic targets.

Novel insights from spatial multi‑omics analyze 
spatial‑related crosstalk in tumor immunology
Spatial multi-omics has provided new perspectives on 
the complex interactions within the tumor microenviron-
ment. Tumor tissue comprises various cell types, includ-
ing epithelial, endothelial, fibroblast, vascular smooth 
muscle, resident immune, and infiltrating immune cells, 
all of which interact within a 3D environment to support 
cancer cell growth [122] (Fig.  3C). By integrating mass 
spectrometry imaging-based spatial metabolomics and 
lipidomics with microarray-based spatial transcriptom-
ics, researchers have identified a distinct interface at the 
junction of tumors and neighboring tissues, termed clus-
ter9, within which peritumoral lymphoid tissue (PLT) and 
distal lymphoid tissue (DLT) are defined [121]. The PLT 
exhibits significantly increased uptake and metabolism 
of glutamine, as well as certain fatty acids, essential for 
tumor energy metabolism and signaling. Genes associated 
with fatty acid synthesis, such as FASN, SCD, and ELOVL, 
as well as ALOX5AP, which promotes arachidonic acid 
metabolism into leukotriene inflammatory mediators, 
are also up-regulated in PLT. These results suggest that 
PLT has a stronger inflammatory response than DLT and 
inhibits tumor cell proliferation [121]. Identification of 
this crosstalk between PLT and tumor cells has enhanced 
our understanding of tumor molecular mechanisms. 
ScRNA-seq studies on glioblastomas have highlighted the 
dynamic plasticity across cellular states [123], including 
mesenchymal-like (MES-like), neural progenitor cell-like 
(NPC-like), astrocyte-like (AC-like), and oligodendrocytic 
precursor cell-like (OPC-like) states, which are mark-
ers of malignant brain tumors [124]. However, single-cell 
analysis provides only indirect inferences about cell inter-
actions, often neglecting the role of the local microenvi-
ronment in tumorigenesis. Ravi et al. [125] utilized spatial 
transcriptomics, metabolomics, and proteomics to quan-
tify the relationship between tumor cells and myeloid 
and lymphoid cells, discovering increased interactions 
in inflammation-related gene-rich areas and confirming 
enhanced interactions between tumor cells and virus-free 
compartments within transcriptionally defined reactive 
immune regions. Annika et  al. [126] combined spatial 
multi-omics and scRNA-seq data from epithelial and 
stromal compartments to examine immune cell compo-
sition during intestinal damage and regeneration, finding 
that activated B cells decreased and disrupted the essen-
tial crosstalk between stromal and epithelial cells during 
mucosal healing. Spatiotemporal multi-omics allows for 
consideration of the microenvironment in cell–cell cross-
talk studies, enhancing the accuracy of research findings.
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Spatial trajectory and lineage tracking in human diseases
Lineage tracking technology is crucial for studying the 
developmental trajectory and differentiation process of 
cells (Fig. 3D). This technology can help determine how 
individual cells differentiate from a founder cell and how 
they evolve during development and disease [127]. Tradi-
tionally, lineage tracing involves labeling cells with herit-
able marks and tracking the trajectory of their offspring. 
The diversity of cell types produced from a founder cell 
reflects its differentiation potential. To predict the poten-
tial and evolutionary trajectory of founder cells, a wide 
array of markers is needed for accurate cell type classi-
fication. However, the limited availability of markers can 
mask the variability within cell subsets expressing the 
selected marker genes [128], potentially biasing the inter-
pretation of organ complexity. Spatial transcriptomics 
not only enables comprehensive transcriptomic analysis 
of thousands of cells but also offers considerable insights 
into the spatiotemporal relationships among cells. This 
approach enhances cell-type identification, deepening 
our understanding of organizational complexity [129]. By 
constructing transcriptional atlases of adult tissues and 
developing embryos, spatial transcriptomics reveals the 
molecular mechanisms underlying differentiation from 
stem cells to mature cells. This detailed record elucidates 
the sequence of events and molecular mechanisms by 
which cells attain their final identity in embryogenesis 
or tissue regeneration. It also provides clues to the ori-
gins of developmental pathologies and cancer, allowing 
intervention in pathogenic pathways and replication of 
cell differentiation processes in vitro [130]. Densely sam-
pling cells at various stages can describe state manifolds, 
which visualize the continuum of cell state changes in a 
multidimensional space and the trajectory of cell differ-
entiation. To understand the instantaneous state of the 
cell, it is necessary to consider its molecular composition, 
inter-relationships, tissue position, and physical and reg-
ulatory interactions with surrounding cells. This compre-
hensive approach provides deeper insights into the state 
and function of cells [130]. Given the complexity of cells 
within different species, lineage tracing has expanded 
to include additional approaches, such as tracer dyes, 
cell transplantation, and in  vivo genetic recombination. 
Advances in confocal and light-sheet microscopy have 
enabled the direct tracking of individual cell division 
patterns in complex vertebrates. However, these meth-
ods are limited to only a few measurements of cell state. 
Recent spatial transcriptomics approaches overcome 
spectral limitations by allowing genome-scale measure-
ments in fixed in situ samples. High-throughput sequenc-
ing employs DNA sequence barcodes to encode clonal 
information, which can later be read and integrated with 
other sequence-based omics data. Zhang et  al. applied 

single-cell and spatial transcriptomics to demonstrate 
extensive diversification of cells from a few multipotent 
progenitors to numerous differentiated cell states, includ-
ing several novel cell populations. Furthermore, they 
identified lineage-specific clusters radiating from the 
center of six mesenchymal states and active transcription 
factor network modules associated with the progression 
of each lineage. They also observed that chondrocyte lin-
eages increased over time, shifting from progenitor cells 
to more mature clusters [131]. Bao et  al. [132] revealed 
that microglia and perivascular macrophages exhibit par-
allel differentiation processes, although the developmen-
tal origins of other tissue-resident macrophages require 
further exploration using single-cell and spatial tran-
scriptomics. Spatial multi-omics have been applied in 
several fields, such as tumor progression, immune-asso-
ciated diseases and metabolism-related disorders. Renal 
fibrosis, a critical pathological feature in chronic kidney 
disease progression, has significant global health implica-
tions. Spatial multi-omics techniques, such as Cut&Tag 
with DBiT-Seq [133], have been crucial in elucidating the 
complex epigenetic reprogramming during the transi-
tion from acute kidney injury to chronic kidney disease, 
underscoring the importance of multi-omics in under-
standing and addressing renal fibrosis pathogenesis [134]. 
The integration of imaging and sequencing-based omics 
has led to significant progress in spatial technologies, 
enabling spatially resolved single-cell detection [135]. 
These technologies preserve spatial resolution and large 
fields of view, allowing for detailed analysis of the micro-
environment, spatial neighborhoods, and niche networks 
in kidney injury. Compatibility with formalin-fixed, par-
affin-embedded tissue also facilitates the establishment 
of kidney injury cohorts, filling a critical gap in prognos-
tic research [136].

Investigation of new therapies via spatial multi‑omics
Targeting nucleotide metabolism is a well-established 
metabolic therapy in clinical oncology and practice [137]. 
However, efforts to target non-nucleotide metabolism in 
clinical trials have faced challenges due to drug toxicity, 
inconsistent dietary interventions, lack of biomarkers, and 
imprecise combination treatments, collectively leading to 
suboptimal trial outcomes. Additionally, cells within the 
TME can significantly influence treatment efficacy and 
undergo substantial changes during tumor progression 
and treatment response [138]. Therefore, developing bio-
marker-guided personalized precision metabolic thera-
pies and targeted metabolic reprogramming is critical to 
improve the sensitivity of cancer therapy. Rational com-
binations of chemotherapy, radiation therapy, and other 
targeted therapies should also be considered. Integrating 
spatial multi-omics could enhance our understanding of 
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tumor metabolic regulation, offering new therapeutic tar-
gets and identifying diagnostic and prognostic markers 
for various diseases.

Through multi-omics analysis of patients with triple-
negative breast cancer (TNBC), researchers discovered 
that Clostridiales and the associated metabolite trimeth-
ylamine N-oxide (TMAO) induce pyroptosis in tumor 
cells by activating the endoplasmic reticulum stress 
kinase PERK, which amplifies  CD8+ T cell-mediated 
antitumor immunity in vivo. These findings suggest that 
microbial metabolites, such as TMAO or its precur-
sor choline, could serve as a new therapeutic strategy 
to enhance the efficacy of TNBC treatment [139], offer-
ing insights into the crosstalk between microbiota and 
metabolite immunology. Metastasis remains the leading 
cause of death in patients with breast cancer; however, 
the dynamic changes in dissemination evolution remain 
poorly understood. High-resolution technologies, such 
as spatial transcriptomics and metabolomics, have been 
used to map the metabolic landscape. Combined spatial 
transcriptomics and scRNA-seq have revealed metabolic 
changes in tumor cells during their transition from the 
primary site to the leading edge and metastatic lymph 
nodes, highlighting the potential of incorporating meta-
bolic therapies in treating breast cancer with lymph 
node metastasis [140]. Eclipta prostrata L. [141] has long 
been used in traditional medicine for its liver-protective 
properties. Wedelolactone (WEL) and demethylwedelo-
lactone (DWEL) are the primary coumarins found in 
E. prostrata L. Using a mature thioacetamide (TAA)-
induced zebrafish model, Chen et  al. integrated spatial 
metabolomics and transcriptomics and discovered that 
both WEL and DWEL can improve metabolic disorders 
induced by nonalcoholic fatty liver disease (NAFLD), pri-
marily through the regulatory effects of WEL on steroid 
biosynthesis and fatty acid metabolism. Their study suc-
cessfully mapped the biological distribution and meta-
bolic characteristics of these compounds in zebrafish, 
revealing the unique mechanisms of WEL and DWEL 
in improving NAFLD and proposing a multi-omics plat-
form to develop highly effective compounds that improve 
therapeutic outcomes [142]. Previous studies have high-
lighted the role of ferroptosis in a variety of neurological 
diseases [143], although its precise role in multiple scle-
rosis (MS) remained uncertain. Wu et al. integrated data 
from snRNA‐seq, spatial transcriptomics, and spatial 
proteomics to define a computational metric of ferropto-
sis levels and identify the ferroptosis landscape in neuro-
immunity and neurodegeneration in MS patients [144]. 
Results showed that active lesion edges exhibited the 
highest ferroptosis scores, associated with phagocyte sys-
tem activation, while remyelination lesions had the low-
est scores. Elevated ferroptosis scores were also observed 

in cortical neurons, linked to multiple neurodegenerative 
disease-related pathways [144], while significant co-local-
ization was detected between ferroptosis scores, neu-
rodegeneration, and microglia. They also established a 
diagnostic model for MS based on 24 ferroptosis-related 
genes in peripheral blood. These findings suggest that fer-
roptosis may play a dual role in MS, associated with both 
neuroimmunological and neurodegenerative processes, 
making it a promising therapeutic target and diagnostic 
marker for MS. Vedolizumab (VDZ) is known to inhibit 
lymphocyte trafficking to the intestine and is effective 
in treating ulcerative colitis (UC). However, its broader 
effects on other cell subsets are less understood. Using 
comprehensive spatial transcriptomic and proteomic 
phenotyping, Mennillo et  al. identified mononuclear 
phagocytes as an important cell type impacted by anti-
integrin therapy in UC and revealed changes in the spa-
tial distribution of cell subpopulations in tissues before 
and after VDZ treatment [145]. Notably, they highlighted 
the cellular and genetic factors of UC and VDZ therapy, 
potentially aiding in the development of more precise 
treatment strategies and the prediction of treatment 
responses (Fig. 3E).

Multi‑omics in reproduction and development research
Mammalian fertilization begins with the fusion of an 
oocyte and a sperm cell [146], with the reproductive 
system creating an environment for embryonic develop-
ment (Fig.  3F). In-depth exploration of the reproductive 
system requires an understanding of the function of each 
cell type and their interactions. Spatial multi-omics tech-
niques have been used to examine interactions between 
adjacent cells and gametes or embryos within the natu-
ral tissue environment, preserving the spatial context of 
the analyzed cells. These technologies have the potential 
to transform our understanding of mammalian repro-
duction [147]. Winkler et al. used scRNA-seq and spatial 
transcriptomics to profile the remodeling of the female 
reproductive tract during the estrous cycle, decidualiza-
tion, and aging and discovered that fibroblasts play a cen-
tral and organ-specific role in female reproductive tract 
remodeling by coordinating extracellular matrix (ECM) 
recombination and inflammation. They also revealed the 
unexpected costs of repeated remodeling required dur-
ing reproduction and illustrated how estrus, pregnancy, 
and aging collectively shape the female reproductive tract 
[148]. Yang et al. conducted scRNA-seq, scATAC-seq, and 
spatial transcriptomic analyses of fetal samples from ges-
tational week (GW) 13–18, generating a large-scale multi-
omics atlas of the developing human fetal cerebellum. 
They found that PARM1 exhibits inconsistent distribu-
tion in human and mouse granulosa cells, and identified 
gene regulatory networks that control the diversity of 
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Purkinje cells and unipolar brush cells [149]. These key 
regulatory factors can be harnessed in  vitro to gener-
ate small brain cells for future clinical applications and 
enhance our understanding of the link between molecular 
variation and cell types in neurodevelopmental disorders. 
Li et  al. employed scRNA-seq, spatial transcriptomics, 
and hybridization-based in  situ sequencing to analyze 
16 human embryonic and fetal spinal cord samples from 
post-conceptional weeks 5–12, providing a comprehen-
sive atlas of developmental cells and identifying novel 
molecular targets and genetic regulation of childhood spi-
nal cancer stem cells [150] (Table 3).

Perspectives
The rapidly evolving field of spatial omics technolo-
gies aims to achieve higher resolution, deeper cover-
age, greater multiplexity, and enhanced versatility in 
analyzing diverse samples, including formalin-fixed, 
paraffin-embedded, fresh-frozen, and living tissues. 
These advancements enable 3D reconstruction of larger 
tissue regions and comprehensive analysis of spati-
otemporal multi-omics, enhancing our understand-
ing of the complex molecular mechanisms underlying 
cellular interactions within tissues. Effective acquisi-
tion, manipulation, analysis, and visualization of spatial 
omics data are critical components for their successful 
application. Integrating datasets from different omics 
modalities is essential to unlock their synergistic poten-
tial, although this is challenging due to differing spatial 
features of the data. Consequently, there is an urgent 
need for specialized hardware and software to visual-
ize these complex datasets effectively. Key steps include 
normalizing data matrices, removing low-quality data, 
improving signal-to-noise ratios, smoothing data to 
increase sensitivity, and eliminating unwanted techni-
cal and biological variations. Developing an independ-
ent benchmark of spatial omics integration algorithms 
should greatly assist researchers in selecting appro-
priate integration strategies and designing experi-
ments. Without suitable analytical tools, even costly 
experiments can yield unusable data. To mitigate bias, 
the scientific community must provide open datasets 
for comparative analysis of tissues and develop novel 
methods for accurate detection or capture efficiency. 
The path to widespread adoption of these technologies 
remains long. A thorough understanding of the cellu-
lar and molecular mechanisms within specific normal 
or pathogenic microenvironments is crucial for advanc-
ing personalized precision medicine. This approach is 
anticipated to become the primary treatment option 
in the near future. Expected advancements include 
increased throughput, reduced costs, integration of 
more detection modes, and enhanced sensitivity and 

specificity. Ultimately, multi-omics techniques with 
spatial single-cell resolution will revolutionize our 
understanding of cell biology.

Conclusions
The integration of multi-omics with spatial analysis is 
a rapidly evolving field that holds great promise for a 
wide range of applications. Spatial multi-omics enables 
a deeper understanding of complex biological systems, 
providing novel insights into disease mechanisms, drug 
target identification, and biomarker discovery. However, 
integrating multi-omics data presents technical chal-
lenges, necessitating advanced computational and sta-
tistical methods. Moreover, the interpretation of spatial 
multi-omics data is further complicated by spatially vary-
ing environmental factors and technical noise. Thus, the 
development of sophisticated computational tools and 
analytical methods capable of managing large-scale spa-
tial multi-omics datasets is essential for fully leveraging 
the potential of this approach.
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