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Abstract 

Osteosarcomas are intricate cellular ecosystems, where heterotypic interactions significantly influence disease 
progression and therapeutic outcomes. Despite their importance, a detailed understanding of their cellular composi-
tion and organizational structure remains elusive. In this study, we provide a comprehensive single-cell and spatially 
resolved transcriptomics analysis of human osteosarcomas. We construct a cellular meta-map to dissect spatial 
transcriptomic data, unveiling a detailed atlas of osteosarcoma compositional subgroups. We meticulously character-
ize the unique gene signatures and functional states of each subgroup and investigate the impact of chemotherapy 
on these cellular subpopulations. Additionally, our spatial transcriptomics analysis identifies a distinct spatial niche, 
located at the forefront of tumor necrotic zones, potentially associated with chemotherapy resistance. We also delve 
into the crosstalk between different cellular subgroups. This study furnishes a comprehensive transcriptional atlas 
of osteosarcoma’s cellular architecture, enriching our comprehension of its complexity and laying the groundwork 
for more targeted therapeutic approaches.
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To the editor
Osteosarcoma, a primary bone tumor mainly affecting 
children and young adults, has seen limited improvement 
in patient prognosis despite chemotherapy advance-
ments in the 1980s [1]. Single-cell RNA sequencing 
(scRNA-seq) has shed light on the complex tumor micro-
environment, but the rarity of osteosarcoma has limited 
comprehensive studies, with only 17 samples across cur-
rent datasets. Despite ongoing meaningful in-depth anal-
yses of public data [2], there remains a significant gap in 

our understanding of the spatial distribution and interac-
tions among various cell types within tumors. To address 
this, we integrated our newly generated dataset of 10 
osteosarcoma samples with existing datasets (GSE162454 
[3] and GSE152048 [4]), forming the largest scRNA-seq 
cohort of 27 samples. We also pioneered the establish-
ment and analysis of spatial transcriptomic data for oste-
osarcoma. This allowed us to map a detailed scRNA-seq 
atlas of osteosarcoma and establish spatial transcriptomic 
data, similar to other scRNA-seq atlases [5], providing 
insights across different patient profiles (Fig. 1A).

Analysis of new osteosarcoma sc‑RNA seq dataset 
from National Cancer Center (NCC) and the largest 
osteosarcoma sc‑RNA seq dataset
After conducting quality control and data processing, We 
analyzed the NCC osteosarcoma sc-RNA seq dataset, 
identifying 49,356 cells across 10 clusters (Fig.  1B; Fig. 
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Fig. 1 A single-cell and spatially resolved atlas of human osteosarcomas. A Workflow of this study. B UMAP plot displaying 49,356 single cells 
from osteosarcoma tissues, annotated by major cell types in NCC sc-RNA seq data. (osteosarcoma cells (n = 10,467), myeloid cells (n = 13,966), 
mesenchymal stromal cells (MSCs; n = 3,240), endothelial cells (ECs; n = 2,084), osteoclast cells (OCs; n = 2,555), B cells (n = 462), plasma cells 
(n = 206), mast cells (n = 184), myocytes (n = 1,790) and TNK cells (n = 14,402)). C UMAP plot displaying 194,083 single cells from osteosarcoma 
tissues, annotated by major cell types in integrated sc-RNA seq data. (osteosarcoma cells (n = 87,256), myeloid cells (n = 51,894), MSCs (n = 9,867), 
ECs (n = 6,960), OCs (n = 12,910), B cells (n = 1,094), plasma cells (n = 874), mast cells (n = 592), myocytes (n = 2,050) and TNK cells (n = 21,306)). D 
Pie chart depicting the proportion of major cell types within the sample in NCC sc-RNA seq data. E Pie chart depicting the proportion of major 
cell types within the sample in integrated sc-RNA seq data. F Spearman correlation analysis showing relationships between proportions of major 
cell types; MSC and endothelium demonstrate the correlation in NCC sc-RNA seq data. G. Spearman correlation analysis showing relationships 
between proportions of major cell types; MSC and endothelium demonstrate the correlation in integrated sc-RNA seq data. H MRI images 
of the BS3 sample before and after three chemotherapy cycles, indicating no significant tumor reduction, suggestive of potential chemotherapy 
resistance. I H&E staining of a BS3 tissue slice reveals less than 50% necrosis, indicating potential chemotherapy resistance. Spatial transcriptomics 
show a low number of detected genes in the necrotic areas of BS3. J Cell2location deconvolution analysis estimates the proportions and spatial 
distribution of primary cell types (OS, MSC, endothelium, myeloid, osteoclasts, and TNK cells) in SP_BS3. K Analysis by Scanpy identifies six spatial 
niches within SP_BS3, with cluster_6 located at the tumor necrosis front, highly expressing genes such as COL4A1, suggesting a potential link 
to chemotherapy resistance
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S1A, B). By integrating this with existing data, we created 
the largest osteosarcoma sc-RNA seq dataset (Fig.  1C; 
Fig. S1C–F). The heterogeneity in cell distribution, inter-
cellular correlations, and changes in gene expression of 
major cell types before and after chemotherapy were all 
described, providing insights into the cellular response to 
treatment. (Fig. 1D–G and Fig. S1 G–K).

Analysis of the first osteosarcoma spatial 
transcriptomics data
Sample BS3, after three cycles of chemotherapy, 
showed minimal lesion shrinkage on MRI (Fig.  1H). 
Spatial RNA sequencing revealed characteristics of 
chemoresistance, with post-surgical histopathology 
(H&E staining) showing a necrosis rate below 50% 
and a low gene count in necrotic areas (Fig.  1I). We 
focused on analyzing these necrotic regions, explor-
ing the spatial distribution of major cell types and gene 
expression to uncover potential links between gene 
expression and chemotherapy resistance in osteosar-
coma (Fig. 1J-K).

Subcluster analysis of osteosarcoma cells 
from integrated sc‑RNA seq data
We performed unbiased clustering of malignant osteo-
sarcoma cells and identified a total of seven subclusters. 
(Fig. 2A and Fig. S2A–D). We identified the characteris-
tics and functions of each subcluster based on their gene 
expression profiles and pathway enrichment analysis. 
Specifically, the OS_c3_TAGLN subcluster appears to 
highlight a fibroblast-like trajectory. The OS_c5_TOP2A 
subcluster exhibits a proliferative phenotype, while the 
OS_c1_JUN subcluster is involved in stress response 
mechanisms and is enriched in TNFα signaling through 
the NFKB, WNT/β-catenin, and TGF-β signaling path-
ways., among others. (Fig. S2E, F).

Subcluster analysis of mesenchymal stromal cells 
(MSCs) from integrated sc‑RNA seq data
MSCs were divided into distinct clusters based on gene 
expression, revealing diverse origins and functions 
(Fig. 2B and Fig. S2G–L). Using Gene Set Variation Anal-
ysis (GSVA) and examining changes in cell abundance 
before and after chemotherapy, we identified the func-
tional roles of these clusters (Fig. S2M, N). For instance, 
inflammatory fibroblasts (iCAF) are involved in antitu-
mor activities, myofibroblasts (myoCAFs) play a role in 
wound healing, and vascular CAFs (vCAFs) are linked to 
tumor resistance. Cell communication analysis showed 
MSCs closely interact with endothelial cells, highlight-
ing FN1 − (ITGA5 + ITGB1) as a key communication 
signal between pericytes and endothelial cells, as well 
as between matrix-associated fibroblasts (mCAFs) and 
endothelial cells, suggesting a potential synergistic inter-
action (Fig. 2C–E).

Subcluster analysis of TNK cells and myeloid cells 
from integrated sc‑RNA seq data
We conducted subcluster analyses of TNK and myeloid 
cells from integrated scRNA-seq data. TNK cells were 
divided into nine subpopulations, including distinct 
CD4 + and CD8 + T cell types, and NK cells, highlighting 
roles in immune activation, suppression, and cytotoxicity 
(Fig. 2F, Fig. S3A–E). Myeloid cells formed nine clusters, 
with osteoclasts showing a maturation trajectory, crucial 
for osteosarcoma progression (Fig.  2G, H, Fig. S3F–M). 
Pseudotime analysis traced osteoclast evolution from 
immature to mature stages, with increasing expression of 
ACP5 and CTSK (Fig. 2H, I).

In summary, we provided a detailed description of the 
osteosarcoma cellular landscape at both single-cell and 
spatial transcriptomic levels, explored spatial niches, 
partially uncovered mechanisms of chemotherapy resist-
ance, and identified potential therapeutic targets.

(See figure on next page.)
Fig. 2 Subcluster analysis of cells from integrated sc-RNA seq data. A Dimensionality reduction plot (Dimplot) for main osteosarcoma cell types: 
OS_C1_JUN, OS_C2_MT1X, OS_C3_TAGLN, OS_C4_SPP1, OS_C5_TOP2A, OS_C6_IBSP, and OS_C7_COL2A1. B Dimplot for five MSC subtypes: matrix 
CAF (mCAF), inflammatory CAF (iCAF), myogenesis CAF (myoCAF), vascular CAF (vCAF), and pericytes. C Cellchat analysis of cell communication 
between ten main cell types, with MSCs showing the strongest interaction with endothelium. D Cellchat analysis of cell communication 
between mCAF, myoCAF, iCAF, pericytes, and endothelium, with mCAF showing the strongest interaction with endothelium. E Key receptors 
and ligands involved in cell communication between mCAF, myoCAF, iCAF, pericytes, and endothelium. F Dimplot for nine TNK subtypes: three 
CD4 + subtypes, four CD8 + subtypes, and two NK cell subtypes. G Dimplot for nine myeloid subtypes: Macro_C1QC, Macro_LYVE1, Macro_SPP1, 
Macro_NLRP3, Mast_KIT, Mono_CD14, cDC1_CLEC9A, cDC2_CD1C, and Cdc3_LAMP3. H Dimplot of five main osteoclast (OC) subclusters 
with pseudotime analysis showing progression from OC_immature to OC_early response, and finally to OC_mature. I Monocle3 analysis identifies 
differentially expressed genes (DEGs) during pseudotime, with ACP5 and CTSK (known osteoclast markers) increasingly expressed from OC_
immature to OC_mature
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Fig. 2 (See legend on previous page.)
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mCAFs  Matrix-associated fibroblasts
ECs  Endothelial cells
OCs  Osteoclast cells

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13045- 024- 01598-7.

Additional file 1.

Additional file 2.

Additional file 3.

Additional file 4.

Acknowledgements
None

Author contributions
Xuejing Zheng and Xinxin Zhang contributed to Writing-Original Draft and 
Methodology. Zhenguo Zhao was responsible for Software, Formal Analysis, 
and Visualization. Wence Wu provided Resources. Shengji Yu contributed to 
Writing-Review & Editing, Supervision, and Funding Acquisition. Xu Liu made 
significant contributions to the revision of the manuscript, including sup-
plementing the methodology, reanalyzing the data, adding additional results, 
and reorganizing the figures and manuscript.

Funding
This research was supported by the National Natural Science Foundation of 
China (No.82002848; No.82003397; No.82272964).

Availability of data and materials
The datasets used are publicly available in GSE162454 and GSE15204855, our 
own data is available on Code Ocean (https:// codeo cean. com/ capsu le/ 74004 
82/ tree).

Declarations

Ethics approval and consent to participate
This study received approval from the Ethics Committee of Cancer Hospital, 
Chinese Academy of Medical Sciences, and Peking Union Medical College 
(NCC2021C-232).

Consent for publication
The authors confirm that they have obtained written consent from each 
patient to publish the manuscript.

Competing interests
The authors declare no competing interests.

Received: 21 April 2024   Accepted: 15 August 2024

References
 1. Smith MA, Seibel NL, Altekruse SF, Ries LAG, Melbert DL, O’Leary M, et al. 

Outcomes for children and adolescents with cancer: challenges for the 
twenty-first century. J Clin Oncol. 2010;28:2625–34.

 2. Truong DD, Weistuch C, Murgas KA, Deasy JO, Mikos AG, Tannenbaum A, 
et al. Mapping the single-cell differentiation landscape of osteosarcoma. 
bioRxiv. 2023;25:621.

 3. Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, et al. Single-cell transcriptomics 
reveals the complexity of the tumor microenvironment of treatment-
naive osteosarcoma. Front Oncol. 2021;11: 709210.

 4. Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, et al. Single-cell RNA 
landscape of intratumoral heterogeneity and immunosuppressive micro-
environment in advanced osteosarcoma. Nat Commun. 2020;11:6322.

 5. Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, Hong AL, 
et al. A first-generation pediatric cancer dependency map. Nat Genet. 
2021;53:529–38.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13045-024-01598-7
https://doi.org/10.1186/s13045-024-01598-7
https://codeocean.com/capsule/7400482/tree
https://codeocean.com/capsule/7400482/tree

	A single-cell and spatially resolved atlas of human osteosarcomas
	Abstract 
	To the editor
	Analysis of new osteosarcoma sc-RNA seq dataset from National Cancer Center (NCC) and the largest osteosarcoma sc-RNA seq dataset
	Analysis of the first osteosarcoma spatial transcriptomics data
	Subcluster analysis of osteosarcoma cells from integrated sc-RNA seq data
	Subcluster analysis of mesenchymal stromal cells (MSCs) from integrated sc-RNA seq data
	Subcluster analysis of TNK cells and myeloid cells from integrated sc-RNA seq data
	Acknowledgements
	References


